Beer Aroma and Quality Traits Assessment Using Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Physical Measurements—RoboBEER
2.3. Chemical Measurements
2.3.1. Aromas—Gas-Chromatography Mass-Spectroscopy
2.3.2. Near-Infrared Spectroscopy
2.3.3. Other Chemical Measurements
2.4. Statistical Analysis and Machine Learning Modeling
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Emerging Technologies Based on Artificial Intelligence to Assess the Quality and Consumer Preference of Beverages. Beverages 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Euromonitor-International. Beer in Australia; Euromonitor International: London, UK, 2015; p. 15. [Google Scholar]
- Euromonitor-International. Statistics—Alcoholic Drinks; Euromonitor-International: London, UK, 2018. [Google Scholar]
- Carbone, A.; Quici, L. Craft beer mon amour: An exploration of Italian craft consumers. Br. Food J. 2020. [Google Scholar] [CrossRef]
- Aquilani, B.; Laureti, T.; Poponi, S.; Secondi, L. Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Qual. Prefer. 2015, 41, 214–224. [Google Scholar] [CrossRef]
- Wang, L.; Sun, D.W.; Pu, H.; Cheng, J.H. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments. Crit. Rev. Food Sci. Nutr. 2017, 57, 1524–1538. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Dell Technologies. The Difference Between AI, Machine Learning, and Robotics. Available online: https://www.delltechnologies.com/en-us/perspectives/the-difference-between-ai-machine-learning-and-robotics/ (accessed on 15 April 2020).
- Silva, T.; Godinho, M.D.S.; Oliveira, A.E.D. Identification of pale lager beers via image analysis. Lat. Am. Appl. Res. 2011, 41, 141–145. [Google Scholar]
- Fengxia, S.; Yuwen, C.; Zhanming, Z.; Yifeng, Y. Determination of beer color using image analysis. J. Am. Soc. Brew. Chem. 2004, 62, 163–167. [Google Scholar] [CrossRef]
- Hepworth, N.; Varley, J.; Hind, A. Characterizing gas bubble dispersions in beer. Food Bioprod. Process. 2001, 79, 13–20. [Google Scholar] [CrossRef]
- Yasui, K.; Yokoi, S.; Shigyo, T.; Tamaki, T.; Shinotsuka, K. A customer-oriented approach to the development of a visual and statistical foam analysis. J. Am. Soc. Brew. Chem. 1998, 56, 152–158. [Google Scholar] [CrossRef]
- Cimini, A.; Pallottino, F.; Menesatti, P.; Moresi, M. A low-cost image analysis system to upgrade the rudin beer foam head retention meter. Food Bioprocess Technol. 2016, 9, 1587–1597. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Li, G.; Collmann, R.; Condé, B.; Torrico, D. Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 2016, 89, 504–513. [Google Scholar] [CrossRef]
- Condé, B.C.; Fuentes, S.; Caron, M.; Xiao, D.; Collmann, R.; Howell, K.S. Development of a robotic and computer vision method to assess foam quality in sparkling wines. Food Control 2017, 71, 383–392. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. The Effect of Sonication on Bubble Size and Sensory Perception of Carbonated Water to Improve Quality and Consumer Acceptability. Beverages 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.P.; Lozano, J. Real time detection of beer defects with a hand held electronic nose. In Proceedings of the 2015 10th Spanish Conference on Electron Devices (CDE), Madrid, Spain, 11–13 February 2015; pp. 1–4. [Google Scholar]
- Zhang, Y.; Jia, S.; Zhang, W. Predicting acetic acid content in the final beer using neural networks and support vector machine. J. Inst. Brew. 2012, 118, 361–367. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci. 2018, 83, 1381–1388. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Development of Artificial Neural Network Models to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Caboche, C.H.; Kerr, E.D.; Pegg, C.L.; Schulz, B.L.; Howell, K.; Fuentes, S. Development of a rapid method to assess beer foamability and quality based on relative protein content using RoboBEER and machine learning modeling. Beverages 2020, 6, 28. [Google Scholar] [CrossRef]
- Men, H.; Shi, Y.; Jiao, Y.; Gong, F.; Liu, J. Electronic nose sensors data feature mining: A synergetic strategy for the classification of beer. Anal. Methods 2018, 10, 2016–2025. [Google Scholar] [CrossRef]
- Nimsuk, N. Improvement of accuracy in beer classification using transient features for electronic nose technology. J. Food Meas. Charact. 2019, 13, 656–662. [Google Scholar] [CrossRef]
- Santos, J.P.; Lozano, J.; Aleixandre, M. Electronic noses applications in beer technology. Brew. Technol. 2017, 177. [Google Scholar] [CrossRef] [Green Version]
- Buss, D. Food Companies Get Smart About Artificial Intelligence. Food Technol. 2018, 72, 26–41. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Godbole, A.; Dunshea, F. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef]
- Papadopoulou-Bouraoui, A.; Vrabcheva, T.; Valzacchi, S.; Stroka, J.; Anklam, E. Screening survey of deoxynivalenol in beer from the European market by an enzyme-linked immunosorbent assay. Food Addit. Contam. 2004, 21, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F.R. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Hiralal, L.; Olaniran, A.O.; Pillay, B. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions. J. Biosci. Bioeng. 2014, 117, 57–64. [Google Scholar] [CrossRef]
- Delcour, J.A.; Hoseney, R.C. Principles of Cereal Science and Technology; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Jablonská, J.; Pôbiš, T.; Timčák, G.M. Beer tourism in Slovakia. In Proceedings of the Geotour and Irse 2013: Strategies of Building Geotourist and Geoheritage Attractions, Wrocław, Poland, 25–27 September 2013; pp. 67–74. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F. Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers. Physiol. Behav. 2019, 200, 139–147. [Google Scholar] [CrossRef]
- Liger-Belair, G.; Cilindre, C.; Gougeon, R.D.; Lucio, M.; Gebefügi, I.; Jeandet, P.; Schmitt-Kopplin, P. Unraveling different chemical fingerprints between a champagne wine and its aerosols. Proc. Natl. Acad. Sci. USA 2009, 106, 16545–16549. [Google Scholar] [CrossRef] [Green Version]
- Abeytilakarathna, P.; Fonseka, R.; Eswara, J.; Wijethunga, K. Relationship between total solid content and red, green and blue colour intensity of strawberry (Fragaria x ananassa Duch.) fruits. J. Agric. Sci. 2013, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Cayuela, J.A. Rapid NIR determination of alkyl esters in virgin olive oil. Grasas Y Aceites 2017, 68, 195. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bamforth, C.; Russell, I.; Stewart, G. Beer: A Quality Perspective; Elsevier Science: San Diego, CA, USA, 2011. [Google Scholar]
- Badui, S. Química de los Alimentos; Pearson Education: Naucalpan de Juarez, Estado de Mexico, México, 2006. [Google Scholar]
- Fuentes, S.; Tongson, E.; Torrico, D.D.; Gonzalez Viejo, C. Modeling Pinot Noir Aroma Profiles Based on Weather and Water Management Information Using Machine Learning Algorithms: A Vertical Vintage Analysis Using Artificial Intelligence. Foods 2020, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez Viejo, C.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F. Robotics and computer vision techniques combined with non-invasive consumer biometrics to assess quality traits from beer foamability using machine learning: A potential for artificial intelligence applications. Food Control 2018. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Gunaratne, T.M.; Gonzalez Viejo, C.; Gunaratne, N.M.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Chocolate Quality Assessment Based on Chemical Fingerprinting Using Near Infra-red and Machine Learning Modeling. Foods 2019, 8, 426. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, S.; Chacon, G.; Torrico, D.D.; Zarate, A.; Gonzalez Viejo, C. Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. Sensors 2019, 19, 3054. [Google Scholar] [CrossRef] [Green Version]
Beer Style | Country | Fermentation | Label | Seal | Net Content |
---|---|---|---|---|---|
Abbey Ale | Belgium | Top | L | Bottle cap | 330 mL |
Porter | Poland | Top | Z | Bottle cap | 330 mL |
Kolsch | Australia | Top | P | Bottle cap | 330 mL |
Red Ale | USA | Top | RT | Bottle cap | 355 mL |
Steam Ale | Australia | Top | SA | Bottle cap | 330 mL |
Aged Ale | Scotland | Top | IG | Bottle cap | 330 mL |
Sparkling Ale | Australia | Top | CS | Bottle cap | 375 mL |
Pale Lager | Mexico | Bottom | C | Bottle cap | 355 mL |
Pale Lager | Mexico | Bottom | XX | Bottle cap | 355 mL |
Vienna Lager | USA | Bottom | BL | Bottle cap | 355 mL |
Pale Lager | Netherlands | Bottom | H | Bottle cap | 330 mL |
Pale Lager | Czech Republic | Bottom | BC | Bottle cap | 330 mL |
German Pilsner | Czech Republic | Bottom | PU | Bottle cap | 330 mL |
Lambic Cassis | Belgium | Spontaneous | LC | Cork + Bottle cap | 375 mL |
Lambic Framboise | Belgium | Spontaneous | LF | Cork + Bottle cap | 375 mL |
Lambic Gueuze | Belgium | Spontaneous | LG | Cork + Bottle cap | 375 mL |
Lambic Kriek | Belgium | Spontaneous | LK | Cork + Bottle cap | 375 mL |
Lambic Gueuze | Belgium | Spontaneous | OG | Cork | 375 mL |
Lambic Gueuze | Belgium | Spontaneous | OT | Cork | 375 mL |
Wild Saison | Australia | Spontaneous | LW | Bottle cap | 375 mL |
Stage | Samples | Observations (Samples × Targets) | R | Performance (MSE) | Slope |
---|---|---|---|---|---|
Model 1 (Inputs: Near-infrared; Targets: Aromas) | |||||
Training | 42 | 252 | 1.00 | <0.01 | 1.00 |
Testing | 18 | 108 | 0.73 | 0.22 | 0.64 |
Overall | 60 | 360 | 0.91 | - | 0.87 |
Model 2 (Inputs: Near-infrared; Targets: Chemical data) | |||||
Training | 42 | 252 | 1.00 | <0.01 | 1.00 |
Testing | 18 | 108 | 0.75 | 0.11 | 0.67 |
Overall | 60 | 360 | 0.93 | - | 0.90 |
Model 3 (Inputs: RoboBEER; Targets: Aromas) | |||||
Training | 42 | 252 | 0.99 | <0.01 | 1.00 |
Testing | 18 | 108 | 0.96 | 0.04 | 1.00 |
Overall | 60 | 360 | 0.99 | - | 1.00 |
Model 4 (Inputs: RoboBEER; Targets: Chemical data) | |||||
Training | 42 | 252 | 0.99 | <0.01 | 1.00 |
Testing | 18 | 108 | 0.95 | 0.03 | 1.00 |
Overall | 60 | 360 | 0.98 | - | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Viejo, C.; Fuentes, S. Beer Aroma and Quality Traits Assessment Using Artificial Intelligence. Fermentation 2020, 6, 56. https://doi.org/10.3390/fermentation6020056
Gonzalez Viejo C, Fuentes S. Beer Aroma and Quality Traits Assessment Using Artificial Intelligence. Fermentation. 2020; 6(2):56. https://doi.org/10.3390/fermentation6020056
Chicago/Turabian StyleGonzalez Viejo, Claudia, and Sigfredo Fuentes. 2020. "Beer Aroma and Quality Traits Assessment Using Artificial Intelligence" Fermentation 6, no. 2: 56. https://doi.org/10.3390/fermentation6020056