Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits
Abstract
:1. Introduction
2. Microbial Biocontrol and Sustainable Biotechnologies
3. The Potential of Preharvest Microbial Applications on the Final Quality of Vegetables and Fruits
4. Postharvest Application of Microorganisms as Biocontrol Agents
Product | Active Ingredient | Country/Company | Fruit/Vegetable | Target | Currently Marketed | Ref. |
---|---|---|---|---|---|---|
Biofungicides Recommended for Postharvest Applications | ||||||
Aspire® | Candida oleophila | Ecogen USA | Pome Fruit, Citrus, Strawberry, Stone Fruit | Botrytis, Penicillium, Monilinia | No | [86,95] |
YieldPlus® | Cryptococcus albidus | Lallemand South Africa | Pome Fruit, Citrus | Botrytis, Penicillium, Mucor | No | [86,95] |
Candifruit™ | Candida sake | IRTA/Sipcam-Inagra Spain | Pome Fruit | Penicillium, Botrytis, Rhizopus | No | [86] |
Biosave® | Pseudomonas syringae | Jet Harvest Solutions USA | Pome Fruit, Citrus, Strawberry, Cherry, Potato | Penicillium, Botrytis, Mucor | Yes | [86] |
Avogreen | Bacillus subtilis | South Africa | Avocado | Cercospora, Colletotrichum | No | [86] |
Nexy® | Candida oleophila | Lesaffre Belgium | Pome Fruit | Botrytis, Penicillium | Yes | [86,95] |
BoniProtect® BlossomProtect® Botector® | Aureobasisium pullulans (2 strains) | Bio-ferm, Austria | Pome Fruit Grape | Penicillium, Botrytis, Monilinia | Yes | [86,95,96] |
Pantovital® | Pantoea agglomerans | IRTA/Sipcam-Inagra Spain | Citrus, Pome Fruit | Penicillium, Botrytis, Monilinia | No | [86] |
Noli | Metschnikowia fructicola | Koppert The Netherlands | Table Grape, Pome Fruit, Strawberry, Stone Fruit, Sweet Potato | Botrytis, Penicillium, Rhizopus, Aspergillus | Yes | [86,95,97] |
Biofungicides Developed for Preharvest Applications, Also Recommended in Postharvest | ||||||
Serenade® Opti | Bacillus subtilis | Bayer | Grape, Berry Fruits, Potato | Botrytis, Silver scarf | Yes | [98] |
Amylo-x® | Bacillus amyloliquefaciens | Biogard, Italy CBC-Europe, Germany | Grape, Apple, Pear, Kiwifruit | Botrytis, Pseudomonas syringae | Yes | [99] |
Bioprotection Agents Developed for Food Processing, Also Recommended for Postharvest | ||||||
Gaia™ | Metschnikowia fructicola | IOC, France | Harvested grape, withering grape, grape musts | Botrytis, non-Saccharomyces spoiling yeasts | Yes | [100] |
Nymphea™ | Torulaspora delbrueckii | ICV/Lallemand, France | Harvested grape, grape musts | Botrytis, non-Saccharomyces spoiling yeasts | Yes | [101] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. Nutrients 2019, 11, 2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- De Simone, N.; Capozzi, V.; Amodio, M.L.; Colelli, G.; Spano, G.; Russo, P. Microbial-Based Biocontrol Solutions for Fruits and Vegetables: Recent Insight, Patents, and Innovative Trends. Recent Pat. Food Nutr. Agric. 2021, 12, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, A.; Nigro, F. Impact of Preharvest Application of Biological Control Agents on Postharvest Diseases of Fresh Fruits and Vegetables. Crop. Prot. 2000, 19, 715–723. [Google Scholar] [CrossRef]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis Cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef]
- Khadka, R.B.; Marasini, M.; Rawal, R.; Gautam, D.M.; Acedo, A.L. Effects of Variety and Postharvest Handling Practices on Microbial Population at Different Stages of the Value Chain of Fresh Tomato (Solanum Lycopersicum) in Western Terai of Nepal. BioMed Res. Int. 2017, 2017, e7148076. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, A.D.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, M.; Gïrgïn, G.; Baydar, T. Occurrence, Prevention and Limitation of Mycotoxins in Feeds. Anim. Nutr. Feed. Technol. 2015, 15, 471. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Ameye, M.; Saeger, S.D.; Audenaert, K.; Haesaert, G. Biological Control of Mycotoxigenic Fungi and Their Toxins: An Update for the Pre-Harvest Approach; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Botticella, G.; Capozzi, V.; Massa, S.; Spano, G.; Beneduce, L. A Fast, Reliable, and Sensitive Method for Detection and Quantification of Listeria monocytogenes and Escherichia coli O157:H7 in Ready-to-Eat Fresh-Cut Products by MPN-QPCR. BioMed Res. Int. 2014, 2014, e608296. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Hadjilouka, A.; Beneduce, L.; Capozzi, V.; Paramithiotis, S.; Drosinos, E.H.; Spano, G. Effect of Different Conditions on Listeria monocytogenes Biofilm Formation and Removal. Czec. J. Food Sci. 2018, 36, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Fiocco, D.; Amodio, M.L.; Gallone, A.; Spano, G. Bacterial Stressors in Minimally Processed Food. Int. J. Mol. Sci. 2009, 10, 3076–3105. [Google Scholar] [CrossRef] [Green Version]
- OIV—FAO. FAO-OIV Focus 2016 Table and Dried Grapes; FAO: Rome, Italy, 2016; ISBN 978-92-5-109708-3. [Google Scholar]
- Zhou, B.; Li, X. The Monitoring of Chemical Pesticides Pollution on Ecological Environment by GIS. Environ. Technol. Innov. 2021, 101506. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Spadaro, D.; Gullino, M.L. Sustainable Management of Plant Diseases. In Innovations in Sustainable Agriculture; Farooq, M., Pisante, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 337–359. ISBN 978-3-030-23169-9. [Google Scholar]
- Inculet, C.-S.; Mihalache, G.; Sellitto, V.M.; Hlihor, R.-M.; Stoleru, V. The Effects of a Microorganisms-Based Commercial Product on the Morphological, Biochemical and Yield of Tomato Plants under Two Different Water Regimes. Microorganisms 2019, 7, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puglisi, I.; Brida, S.; Stoleru, V.; Torino, V.; Sellitto, V.M.; Baglieri, A. Application of Novel Microorganism-Based Formulations as Alternative to the Use of Iron Chelates in Strawberry Cultivation. Agriculture 2021, 11, 217. [Google Scholar] [CrossRef]
- Capozzi, V.; Fragasso, M.; Bimbo, F. Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. Fermentation 2021, 7, 54. [Google Scholar] [CrossRef]
- Naamala, J.; Smith, D.L. Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. Agronomy 2020, 10, 1179. [Google Scholar] [CrossRef]
- Umesha, S.; Singh, P.K.; Singh, R.P. Chapter 6—Microbial Biotechnology and Sustainable Agriculture. In Biotechnology for Sustainable Agriculture; Singh, R.L., Mondal, S., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 185–205. ISBN 978-0-12-812160-3. [Google Scholar]
- Altieri, M.A. Linking Ecologists and Traditional Farmers in the Search for Sustainable Agriculture. Front. Ecol. Environ. 2004, 2, 35–42. [Google Scholar] [CrossRef]
- Hartmann, A.; Rothballer, M.; Hense, B.A.; Schröder, P. Bacterial Quorum Sensing Compounds Are Important Modulators of Microbe-Plant Interactions. Front. Plant. Sci. 2014, 5, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A Review on the Plant Microbiome: Ecology, Functions, and Emerging Trends in Microbial Application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Berg, M.; Koskella, B. Nutrient- and Dose-Dependent Microbiome-Mediated Protection against a Plant Pathogen. Curr. Biol. CB 2018, 28, 2487–2492.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in Plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, R.L.; Vismans, G.; Yu, K.; Song, Y.; de Jonge, R.; Burgman, W.P.; Burmølle, M.; Herschend, J.; Bakker, P.A.H.M.; Pieterse, C.M.J. Disease-Induced Assemblage of a Plant-Beneficial Bacterial Consortium. ISME J. 2018, 12, 1496–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of Plant Domestication on Rhizosphere Microbiome Assembly and Functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [Green Version]
- Conrath, U.; Beckers, G.J.M.; Langenbach, C.J.G.; Jaskiewicz, M.R. Priming for Enhanced Defense. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [Green Version]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. Mechanisms Underlying the Protective Effects of Beneficial Fungi against Plant Diseases. Biol. Control. 2018, 117, 147–157. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Mazzola, M. Diversity and Natural Functions of Antibiotics Produced by Beneficial and Plant Pathogenic Bacteria. Annu. Rev. Phytopathol. 2012, 50, 403–424. [Google Scholar] [CrossRef]
- Köhl, J.; Postma, J.; Nicot, P.; Ruocco, M.; Blum, B. Stepwise Screening of Microorganisms for Commercial Use in Biological Control of Plant-Pathogenic Fungi and Bacteria. Biol. Control. 2011, 57, 1–12. [Google Scholar] [CrossRef]
- Trivedi, P.; Schenk, P.M.; Wallenstein, M.D.; Singh, B.K. Tiny Microbes, Big Yields: Enhancing Food Crop Production with Biological Solutions. Microb. Biotechnol. 2017, 10, 999–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejarano, A.; Puopolo, G. Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture. In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases; De Cal, A., Melgarejo, P., Magan, N., Eds.; Progress in Biological Control; Springer International Publishing: Cham, Switzerland, 2020; pp. 275–293. ISBN 978-3-030-53238-3. [Google Scholar]
- Binns, J. EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-db_en (accessed on 13 March 2021).
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; Marques, D.C.; et al. Peer Review of the Pesticide Risk Assessment of the Active Substance Clonostachys rosea Strain J1446 (Approved in Regulation (EU) No 540/2011 as Gliocladium catenulatum Strain J1446). EFSA J. 2017, 15, e04905. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant. Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-L.; George, E.; Marschner, H. Extension of the Phosphorus Depletion Zone in VA-Mycorrhizal White Clover in a Calcareous Soil. Plant Soil 1991, 136, 41–48. [Google Scholar] [CrossRef]
- Santhanam, R.; Luu, V.T.; Weinhold, A.; Goldberg, J.; Oh, Y.; Baldwin, I.T. Native Root-Associated Bacteria Rescue a Plant from a Sudden-Wilt Disease That Emerged during Continuous Cropping. Proc. Natl. Acad. Sci. USA 2015, 112, E5013–E5020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Lin, H.; Lin, Y.; Shi, J.; Xue, S.; Hung, Y.-C.; Chen, Y.; Wang, H. Effects of Biocontrol Bacteria Bacillus amyloliquefaciens LY-1 Culture Broth on Quality Attributes and Storability of Harvested Litchi Fruit. Postharvest Biol. Technol. 2017, 132, 81–87. [Google Scholar] [CrossRef]
- Singh, B.K.; Trivedi, P. Microbiome and the Future for Food and Nutrient Security. Microb. Biotechnol. 2017, 10, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Wallenstein, M.D. Managing and Manipulating the Rhizosphere Microbiome for Plant Health: A Systems Approach. Rhizosphere 2017, 3, 230–232. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus Species as Versatile Weapons for Plant Pathogens: A Review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef] [Green Version]
- Morales-Cedeño, L.R.; Orozco-Mosqueda, M.d.C.; Loeza-Lara, P.D.; Parra-Cota, F.I.; de los Santos-Villalobos, S.; Santoyo, G. Plant Growth-Promoting Bacterial Endophytes as Biocontrol Agents of Pre- and Post-Harvest Diseases: Fundamentals, Methods of Application and Future Perspectives. Microbiol. Res. 2021, 242, 126612. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Goutam, M.; Dhaliwal, H.S.; Mahajan, B.V.C. Effect of Pre-Harvest Calcium Sprays on Post-Harvest Life of Winter Guava (Psidium guajava L.). J. Food Sci. Technol. 2010, 47, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Kaur, G.; Brar, J.S. Pre-Harvest Application of Hexanal Formulations for Improving Post-Harvest Life and Quality of Mango (Mangifera indica L.) Cv. Dashehari. J. Food Sci. Technol. 2020, 57, 4257–4264. [Google Scholar] [CrossRef]
- Nunes, C.; Usall, J.; Teixidó, N.; de Eribe, X.O.; Viñas, I. Control of Post-Harvest Decay of Apples by Pre-Harvest and Post-Harvest Application of Ammonium Molybdate. Pest Manag. Sci. 2001, 57, 1093–1099. [Google Scholar] [CrossRef]
- Rokaya, P.R.; Baral, D.R.; Gautam, D.M.; Shrestha, A.K.; Paudyal, K.P. Effect of Pre-Harvest Application of Gibberellic Acid on Fruit Quality and Shelf Life of Mandarin (Citrus reticulata Blanco). Am. J. Plant. Sci. 2016, 7, 1033. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yu, J.; Brecht, J.K.; Jiang, T.; Zheng, X. Pre-Harvest Application of Oxalic Acid Increases Quality and Resistance to Penicillium expansum in Kiwifruit during Postharvest Storage. Food Chem. 2016, 190, 537–543. [Google Scholar] [CrossRef]
- Anusuya, P.; Nagaraj, R.; Janavi, G.J.; Subramanian, K.S.; Paliyath, G.; Subramanian, J. Pre-Harvest Sprays of Hexanal Formulation for Extending Retention and Shelf-Life of Mango (Mangifera indica L.) Fruits. Sci. Hortic. 2016, 211, 231–240. [Google Scholar] [CrossRef]
- DeBrouwer, E.J.; Sriskantharajah, K.; El Kayal, W.; Sullivan, J.A.; Paliyath, G.; Subramanian, J. Pre-Harvest Hexanal Spray Reduces Bitter Pit and Enhances Post-Harvest Quality in ‘Honeycrisp’ Apples (Malus domestica Borkh.). Sci. Hortic. 2020, 273, 109610. [Google Scholar] [CrossRef]
- Mekawi, E.M.; Khafagi, E.Y.; Abdel-Rahman, F.A. Effect of Pre-Harvest Application with Some Organic Acids and Plant Oils on Antioxidant Properties and Resistance to Botrytis cinerea in Pepper Fruits. Sci. Hortic. 2019, 257, 108736. [Google Scholar] [CrossRef]
- Jiang, Y.-L.; Chen, L.-Y.; Lee, T.-C.; Chang, P.-T. Improving Postharvest Storage of Fresh Red-Fleshed Pitaya (Hylocereus polyrhizus Sp.) Fruit by Pre-Harvest Application of CPPU. Sci. Hortic. 2020, 273, 109646. [Google Scholar] [CrossRef]
- Ehtesham Nia, A.; Taghipour, S.; Siahmansour, S. Pre-Harvest Application of Chitosan and Postharvest Aloe Vera Gel Coating Enhances Quality of Table Grape (Vitis vinifera L. Cv. ‘Yaghouti’) during Postharvest Period. Food Chem. 2021, 347, 129012. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Tian, S. Effects of Pre- and Post-Harvest Application of Salicylic Acid or Methyl Jasmonate on Inducing Disease Resistance of Sweet Cherry Fruit in Storage. Postharvest Biol. Technol. 2005, 35, 253–262. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Giménez, M.J.; Zapata, P.J.; Guillén, F.; Valverde, J.M.; Serrano, M.; Valero, D. Preharvest Application of Methyl Salicylate, Acetyl Salicylic Acid and Salicylic Acid Alleviated Disease Caused by Botrytis cinerea through Stimulation of Antioxidant System in Table Grapes. Int. J. Food Microbiol. 2020, 334, 108807. [Google Scholar] [CrossRef] [PubMed]
- Madani, B.; Muda Mohamed, M.T.; Biggs, A.R.; Kadir, J.; Awang, Y.; Tayebimeigooni, A.; Shojaei, T.R. Effect of Pre-Harvest Calcium Chloride Applications on Fruit Calcium Level and Post-Harvest Anthracnose Disease of Papaya. Crop. Prot. 2014, 55, 55–60. [Google Scholar] [CrossRef]
- Khan, A.S.; Singh, Z.; Abbasi, N.A.; Swinny, E.E. Pre- or Post-Harvest Applications of Putrescine and Low Temperature Storage Affect Fruit Ripening and Quality of ‘Angelino’ Plum. J. Sci. Food Agric. 2008, 88, 1686–1695. [Google Scholar] [CrossRef]
- Pétriacq, P.; López, A.; Luna, E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? Plants 2018, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining Biocontrol Agents with Different Mechanisms of Action in a Strategy to Control Botrytis cinerea on Grapevine. Crop. Prot. 2017, 97, 85–93. [Google Scholar] [CrossRef]
- Lima, G.; Ippolito, A.; Nigro, F.; Salerno, M. Effectiveness of Aureobasidium pullulans and Candida oleophila against Postharvest Strawberry Rots. Postharvest Biol. Technol. 1997, 10, 169–178. [Google Scholar] [CrossRef]
- Karabulut, O.A.; Tezcan, H.; Daus, A.; Cohen, L.; Wiess, B.; Droby, S. Control of Preharvest and Postharvest Fruit Rot in Strawberry by Metschnikowia fructicola. Biocontrol Sci. Technol. 2004, 14, 513–521. [Google Scholar] [CrossRef]
- Vivekananthan, R. Pre-Harvest Application of a New Biocontrol Formulation Induces Resistance to Post-Harvest Anthracnose and Enhances Fruit Yield in Mango; Firenze University Press: Firenze, Italy, 2006; pp. 1000–1013. [Google Scholar] [CrossRef]
- Gotor-Vila, A.; Teixidó, N.; Casals, C.; Torres, R.; De Cal, A.; Guijarro, B.; Usall, J. Biological Control of Brown Rot in Stone Fruit Using Bacillus amyloliquefaciens CPA-8 under Field Conditions. Crop. Prot. 2017, 102, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Poleatewich, A.M.; Ngugi, H.K.; Backman, P.A. Assessment of Application Timing of Bacillus spp. to Suppress Pre- and Postharvest Diseases of Apple. Plant Dis. 2012, 96, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Kara, Z.; Sabır, F.K.; Sabir, A.; Yazar, K.; Günal, E. Effects of pre-harvest biopesticide and azotobacter applications on post harvest quality retention of table grape cv. “Antep Karası”. Selcuk J. Agric. Food Sci. 2018, 32, 133–141. [Google Scholar]
- Gava, C.A.T.; Alves, Í.L.S.; Duarte, N.C. Timing the Application of Bacillus subtilis QST 713 in the Integrated Management of the Postharvest Decay of Mango Fruits. Crop. Prot. 2019, 121, 51–56. [Google Scholar] [CrossRef]
- Bhatt, K.; Jampala, S.S.M. Influence of Pre-Harvest Foliar Spray of Fungal Culture Filtrates on Post-Harvest Biology of Date Fruit Harvested at Khalal Stage. Postharvest Biol. Technol. 2020, 166, 111220. [Google Scholar] [CrossRef]
- Casals, C.; Guijarro, B.; Cal, A.D.; Torres, R.; Usall, J.; Perdrix, V.; Hilscher, U.; Ladurner, E.; Smets, T.; Teixidó, N. Field Validation of Biocontrol Strategies to Control Brown Rot on Stone Fruit in Several European Countries. Pest. Manag. Sci. 2021, 77, 2502–2511. [Google Scholar] [CrossRef]
- Sellitto, V.M. I Microrganismi Utili in Agricoltura; Edagricole-New Business Media: Milano, Italy, 2020; ISBN 978-88-506-5588-5. [Google Scholar]
- Torsvik, V.; Øvreås, L. Microbial Diversity, Life Strategies, and Adaptation to Life in Extreme Soils. In Microbiology of Extreme Soils; Dion, P., Nautiyal, C.S., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-74231-9. [Google Scholar]
- Święciło, A.; Zych-Wezyk, I. Bacterial Stress Response as an Adaptation to Life in a Soil Environment. Pol. J. Environ. Stud. 2013, 22, 1577–1587. [Google Scholar]
- Omomowo, O.I.; Babalola, O.O. Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity. Microorganisms 2019, 7, 481. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.F.; De Boevre, M.; Landschoot, S.; De Saeger, S.; Haesaert, G.; Audenaert, K. Fungal Endophytes Control Fusarium graminearum and Reduce Trichothecenes and Zearalenone in Maize. Toxins 2018, 10, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusstatscher, P.; Cernava, T.; Abdelfattah, A.; Gokul, J.; Korsten, L.; Berg, G. Microbiome Approaches Provide the Key to Biologically Control Postharvest Pathogens and Storability of Fruits and Vegetables. FEMS Microbiol. Ecol. 2020, 96, fiaa119. [Google Scholar] [CrossRef]
- Crupi, P.; Palattella, D.; Corbo, F.; Clodoveo, M.L.; Masi, G.; Caputo, A.R.; Battista, F.; Tarricone, L. Effect of Pre-Harvest Inactivated Yeast Treatment on the Anthocyanin Content and Quality of Table Grapes. Food Chem. 2021, 337, 128006. [Google Scholar] [CrossRef]
- Zhao, X.; da Silva, M.B.R.; Van der Linden, I.; Franco, B.D.G.M.; Uyttendaele, M. Behavior of the Biological Control Agent Bacillus thuringiensis subsp. Aizawai ABTS-1857 and Salmonella enterica on Spinach Plants and Cut Leaves. Front. Microbiol. 2021, 12, 135. [Google Scholar] [CrossRef]
- Blakeney, M. Food Loss and Food Waste: Causes and Solutions; Edward Elgar Publishing: Cheltenham, UK, 2019; ISBN 978-1-78897-539-1. [Google Scholar]
- Droby, S.; Romanazzi, G.; Tonutti, P. Alternative Approaches to Synthetic Fungicides to Manage Postharvest Decay of Fruit and Vegetables: Needs and Purposes of a Special Issue. Postharvest Biol. Technol. 2016, 122, 1–2. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative Management Technologies for Postharvest Disease Control: The Journey from Simplicity to Complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The Science, Development, and Commercialization of Postharvest Biocontrol Products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, M.; Droby, S. The Postharvest Microbiome: The Other Half of Sustainability. Biol. Control. 2019, 137, 104025. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M. The Fruit Microbiome: A New Frontier for Postharvest Biocontrol and Postharvest Biology. Postharvest Biol. Technol. 2018, 140, 107–112. [Google Scholar] [CrossRef]
- Zhimo, V.Y.; Kumar, A.; Biasi, A.; Salim, S.; Feygenberg, O.; Toamy, M.A.; Abdelfattaah, A.; Medina, S.; Freilich, S.; Wisniewski, M.; et al. Compositional Shifts in the Strawberry Fruit Microbiome in Response to Near-Harvest Application of Metschnikowia fructicola, a Yeast Biocontrol Agent. Postharvest Biol. Technol. 2021, 175, 111469. [Google Scholar] [CrossRef]
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; Marques, D.C.; et al. Peer Review of the Pesticide Risk Assessment of the Active Substance Metschnikowia fructicola NRRL Y-27328. EFSA J. 2017, 15, e05084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, T. Microbial Resources as a Tool for Enhancing Sustainability in Winemaking. Microorganisms 2020, 8, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA). Pesticide Active Substances That Do Not Require a Review of the Existing Maximum Residue Levels under Article 12 of Regulation (EC) No 396/2005. EFSA J. 2016, 14, 4458. [Google Scholar] [CrossRef] [Green Version]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [Green Version]
- BIO-FERM.COM|Botector—Biotechnological Botryticid. Available online: https://bio-ferm.com/en/products/botector (accessed on 13 March 2021).
- Noli. Available online: https://www.koppert.com/noli/ (accessed on 13 March 2021).
- Serenade Opti|Biologicals|Bayer Crop Science. Available online: https://www.crop.bayer.com.au/find-crop-solutions/by-product/bayer-biologics/serenade-opti (accessed on 19 March 2021).
- Amylo-X®|Biogard. Available online: https://www.biogard.it/prodotto/amylo-x/ (accessed on 19 March 2021).
- Yeasts | IOC. Available online: https://ioc.eu.com/en/products/yeasts/ (accessed on 19 March 2021).
- Levure Œnologique ICV Nymphea®|Groupe ICV. Available online: https://www.icv.fr/produits-oenologiques/levures-vinification/icv-nymphea (accessed on 19 March 2021).
Biocontrol Microorganisms | Category |
---|---|
Ampelomyces quisqualis strain AQ10 | FU |
Bacillus subtilis str. QST 713 | BA, FU |
Gliocladium catenulatum strain J1446 * | FU |
Paecilomyces fumosoroseus Apopka strain 97 | FU |
Phlebiopsis gigantea (several strains) | FU |
Pseudomonas chlororaphis strain MA342 | FU |
Streptomyces K61 (formerly S. griseoviridis) | FU |
Trichoderma asperellum (formerly T. harzianum) strains ICC012, T25 and TV1 | FU |
Trichoderma asperellum (strain T34) | FU |
Trichoderma atroviride (formerly T. harzianum) strains IMI 206040 and T11 | FU |
Trichoderma atroviride strain I-1237 | FU |
Trichodermagamsii (formerly T.viride) strain ICC080 | FU |
Trichoderma harzianum strains T-22 and ITEM 908 | FU |
Trichoderma polysporum strain IMI 206039 | FU |
Verticillium albo-atrum (formerly Verticillium dahliae) strain WCS850 | FU |
Aureobasidium pullulans | FU, BA |
Bacillus amyloliquefaciens subsp. plantarum D747 | FU |
Bacillus pumilus QST 2808 | FU |
Candida oleophila strain O | FU |
Streptomyces lydicus WYEC 108 | FU, BA |
Fruit | Year/Country | Treatments | Effects | Ref. |
---|---|---|---|---|
Strawberry | 1997, Italy | Application at flowering and at fruit maturity of Aureobasidium pullulans L47 and Candida oleophila L66 | Antagonists were more active when applied at the flowering stage | [67] |
Strawberry | 2002, Turkey | Preharvest treatment with Metschnikowia fructicola also for the control of postharvest rots | The yeast reduced postharvest incidence of fruit rot significantly better than chemical control | [68] |
Mango fruits | 2006, India | Application of P. fluorescens FP7 plus chitin | Durably effective against anthracnose in postharvest storage. | [69] |
Stone fruits | 2017, Spain | Treatments based on Bacillus amyloliquefaciens CPA-8 to control brown rot under field conditions | Used at the correct concentration, CPA-8 reduced postharvest brown rot similar to chemical applications | [70] |
Apple | 2012, USA | Bacillus megaterium isolate A3-6, Bacillus mycoides isolate A1-1, and Bacillus cereus FLS-5 | Combined pre- and postharvest application resulted in the greatest suppression of bitter rot | [71] |
Table grape | 2018, Turkey | Bacillus subtilis QST 713 and Azotobacter chroococum + Azotobacter vinelandii preparations | Postharvest quality retention of table grape cv. ‘Antep Karası’. | [72] |
Mango fruits | 2019, Brazil | Application of a commercial formulation of Bacillus subtilis QST 713 | Reduced mango fruit decay | [73] |
Date fruit | 2020, India | Preharvest foliar spray of fungal culture filtrates from Aspergillus niger and Rhizopus oryzae | Improve plant defence mechanism, with also enhanced quality and shelf life of fruit. | [74] |
Stone fruits | 2021, Belgium, France, Italy and Spain | Application of two biocontrol agents (BCAs), Bacillus amyloliquefaciens CPA-8 or Penicillium frequentans 909 | With the incidence of brown rot in postharvest < 35%, the efficacy level of the BCA was comparable with chemical application | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellitto, V.M.; Zara, S.; Fracchetti, F.; Capozzi, V.; Nardi, T. Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits. Fermentation 2021, 7, 60. https://doi.org/10.3390/fermentation7020060
Sellitto VM, Zara S, Fracchetti F, Capozzi V, Nardi T. Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits. Fermentation. 2021; 7(2):60. https://doi.org/10.3390/fermentation7020060
Chicago/Turabian StyleSellitto, Vincenzo Michele, Severino Zara, Fabio Fracchetti, Vittorio Capozzi, and Tiziana Nardi. 2021. "Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits" Fermentation 7, no. 2: 60. https://doi.org/10.3390/fermentation7020060
APA StyleSellitto, V. M., Zara, S., Fracchetti, F., Capozzi, V., & Nardi, T. (2021). Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits. Fermentation, 7(2), 60. https://doi.org/10.3390/fermentation7020060