In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials Preparation
2.2. Chemical Composition Analysis
2.3. Rumen Collection
2.4. In Vitro Gas Production
2.5. In Vitro Rumen Fermentation Characteristics
2.6. Bacterial and Protozoal Count
2.7. Statistical Analysis
3. Results
3.1. Chemical Analyses of Plant Materials
3.2. In Vitro Gas Production Parameters
3.3. In Vitro Rumen Fermentation, Bacterial, and Protozoal Population Characteristics
3.4. In Vitro Apparent OM Digestibility, Methane Production, and Net Energy for Lactation
4. Discussion
4.1. Chemical Analyses of Plant Materials
4.2. In Vitro Gas Production Parameters
4.3. In Vitro Rumen Fermentation, Bacteria, and Protozoal Population Characteristics
4.4. In Vitro Apparent OM Digestibility, Methane Production, and Net Energy for Lactation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanapat, M.; Kang, S.; Polyorach, S. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J. Anim. Sci. Biotechnol. 2013, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Twine, R. Emissions from animal agriculture-6.5% is the new minimum figure. Sustainability 2021, 13, 6276. [Google Scholar] [CrossRef]
- Lazarus, O.; McDermid, S.; Jacquet, J. The climate responsibilities of industrial meat and dairy producers. Clim. Chang. 2021, 165, 1–21. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization (FAO): Rome, Italy, 2013; p. 214. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Patra, A.K. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; Ungerfeld, E.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banik, B.K.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop. Pasture Sci. 2013, 64, 935–942. [Google Scholar] [CrossRef]
- Wanapat, M.; Kongmun, P.; Poungchompu, O.; Cherdthong, A.; Khejornsart, P.; Pilajun, R.; Kaenpakdee, S. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology. Trop. Anim. Health Prod. 2011, 44, 399–405. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Khejornsart, P. Effects of plant herb combination supplementation on rumen fermentation and nutrient digestibility in beef cattle. Asian-Australas. J. Anim. Sci. 2013, 26, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Chanthakhoun, V.; Pilajun, R.; Khejornsart, P. Feed resources, rumen fermentation, manipulation and production in swamp buffalo: A review. In The Buffaloes (Bubalus Bubalis)—Production and Research; Presicce, P.A., Ed.; Bentham Science Publishers: Rome, Italy, 2017; pp. 145–179. [Google Scholar]
- Patra, A.K.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emissions by anti-methanogenic com-pounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M. In vitro evaluations of pellets containing Delonix regia seed meal for rumi-nants. Trop. Anim. Health Prod. 2019, 51, 2003–2010. [Google Scholar] [CrossRef]
- Wanapat, M.; Khejornsart, P.; Pakdee, P.; Wanapat, S. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J. Sci. Food Agric. 2008, 88, 2231–2237. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Foiklang, S.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of supplementation of Piper sarmentosum leaf powder on feed efficiency, rumen ecology and rumen protozoal concentration in Thai native beef cattle. Animals. 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honan, M.; Feng, X.; Tricarico, J.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; p. 102. [Google Scholar]
- Terril, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Food Sciences, Texas Tech University: Lubbock, TX, USA, 1989; p. 192. [Google Scholar]
- Tassone, S.; Fortina, R.; Peiretti, P.G. In vitro techniques using the DaisyII incubator for the assessment of digestibility: A review. Animals 2020, 10, 775. [Google Scholar] [CrossRef]
- Marius, L.N.; Shipandeni, M.N.T.; Rodríguez-Campos, L.A.; Osafo, E.L.K.; Mpofu, I.D.T.; Ansah, T.; Shiningavamwe, K.L.; Attoh-Kotoku, V.; Antwi, C. Seasonal variation in chemical composition and in-vitro gas production of woody plant species of semi-arid condition of Namibia. Agrofor. Syst. 2021, 95, 1191–1204. [Google Scholar] [CrossRef]
- Patra, A.K.; Min, B.-R.; Saxena, J. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. Diet. Phytochem. Microbes 2012, 237–262. [Google Scholar] [CrossRef]
- Liu, T.; Chen, H.; Bai, Y.; Wu, J.; Cheng, S.; He, B.; Casper, D.P. Calf starter containing a blend of essential oils and prebiotics affects the growth performance of Holstein calves. J. Dairy Sci. 2020, 103, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Rymer, C.; Huntington, J.; Williams, B.; Givens, D. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed. Sci. Technol. 2005, 123–124, 9–30. [Google Scholar] [CrossRef]
- Elberg, K.; Steuer, P.; Habermann, U.; Lenz, J.; Nelles, M.; Südekum, K.-H. A small scale in vitro system for high throughput gas production analysis—A comparison with the Hohenheim gas test. Anim. Feed Sci. Technol. 2018, 241, 8–14. [Google Scholar] [CrossRef]
- El-Zaiat, H.; Kholif, A.; Moharam, M.; Attia, M.; Abdalla, A.; Sallam, S. The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: In vitro and in vivo evaluation. Small Rumin. Res. 2020, 193, 106259. [Google Scholar] [CrossRef]
- Getachew, G.; Makkar, H.; Becker, K. Tropical browses: Contents of phenolic compounds, in vitro gas production and stoi-chiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Terranova, M.; Kreuzer, M.; Braun, U.; Schwarm, A. In vitro screening of temperate climate forages from a variety of woody plants for their potential to mitigate ruminal methane and ammonia formation. J. Agric. Sci. 2018, 156, 929–941. [Google Scholar] [CrossRef]
- Chen, L.; Bao, X.; Guo, G.; Huo, W.; Xu, Q.; Wang, C.; Li, Q.; Liu, Q. Effects of hydrolysable tannin with or without condensed tannin on alfalfa silage fermentation characteristics and in vitro ruminal methane production, fermentation patterns, and microbiota. Animals. 2021, 11, 1967. [Google Scholar] [CrossRef]
- Fagundes, G.M.; Benetel, G.; Carriero, M.M.; Sousa, R.L.M.; Muir, J.P.; Macedo, R.O.; Bueno, I.C.S. Tannin-rich forage as a methane mitigation strategy for cattle and the implications for rumen microbiota. Anim. Prod. Sci. 2021, 61, 26–37. [Google Scholar] [CrossRef]
- Min, B.R.; Castleberry, L.; Allen, H.; Parker, D.; Waldrip, H.; Brauer, D.; Willis, W. Associative effects of wet distiller’s grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes. J. Anim. Sci. 2019, 97, 4668–4681. [Google Scholar] [CrossRef] [PubMed]
- Aderinboye, R.Y.; Olanipekun, A.O. An in-vitro evaluation of the potentials of turmeric as phytogenic feed additive for rumen modification. Niger. J. Anim. Prod. 2021, 48, 193–203. [Google Scholar] [CrossRef]
- Sarnataro, C.; Spanghero, M.; Lavrenčič, A. Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. J. Anim. Physiol. Anim. Nutr. 2020, 104. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2011, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; De La Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Faciola, A.P. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants—A meta-analysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef] [Green Version]
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Luo, D.; Zhao, X.; Yin, M.; Zhou, C.; Liu, G. Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro. S. Afr. J. Anim. Sci. 2019, 49, 63–70. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, D.; Hu, H.; Zhou, H. Effects of Piper sarmentosum extract supplementation on growth performances and rumen fermentation and microflora characteristics in goats. J. Anim. Physiol. Anim. Nutr. 2020, 104, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Akanmu, A.M.; Hassen, A. The use of certain medicinal plant extracts reduced in vitro methane production while improving in vitro organic matter digestibility. Anim. Prod. Sci. 2018, 58, 900. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, A.; Zmora, P.; Matkowski, A.; Nawrot-Hadzik, I.; Pers-Kamczyc, E.; El-Sherbiny, M.; Bryszak, M.; Szumacher-Strabe, M. Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J. Anim. Plant Sci. 2016, 26, 54–62. [Google Scholar]
- Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. Animals 2020, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; et al. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. 2013, 98, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Min, B.R.; Solaiman, S.; Waldrip, H.M.; Parker, D.; Todd, R.W.; Brauer, D. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 2020, 6, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Gunun, P.; Gunun, N.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Sirilaophaisan, S.; Wachirapakorn, C.; Kang, S. In vitro rumen fermentation and methane production as affected by rambutan peel powder. J. Appl. Anim. Res. 2017, 46, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Wanapat, M.; Cherdthong, A. Effect of banana flower powder supplementation as a rumen buffer on rumen fer-mentation efficiency and nutrient digestibility in dairy steers fed on high concentrate diet. Anim. Feed Sci. Technol. 2014, 196, 32–41. [Google Scholar] [CrossRef]
Plant Species. | Plant Family | Common Name | Plant Part | Harvest Time |
---|---|---|---|---|
Zingiber officinale Roscoe | Zingiberaceae | Ginger | Rhizome | July |
Alpinia galanga L. | Zingiberaceae | Galanga | Rhizome | September |
Cymbopogon citratus | Poaceae | Lemon grass | Stem + Leaf | July |
Zingiber cassumunar Roxb. | Zingiberaceae | Cassumunar ginger | Rhizome | September |
Curcuma longa L. | Zingiberaceae | Turmeric | Rhizome | September |
Piper sarmentosum Roxb. | Piperaceae | Wild pepper | Stem + Leaf | July |
Acmella oleracea L. | Asteraceae | Toothache plant | Stem + Leaf | May |
Careya arborea Roxb. | Lecythidaceae | Wild guava, Ceylon oak | Leaf | May |
Anacardium occidentale L. | Anacardiaceae | Cashew nut | Leaf | May |
Items | Concentrate | Rice Straw |
---|---|---|
Ingredients (% DM) | ||
Cassava chips | 58.5 | |
Rice bran | 14.0 | |
Palm kernel meal | 14.0 | |
Soy bean meal | 6.0 | |
Mineral mixed * | 1.0 | |
Sulfur | 1.0 | |
Urea | 1.5 | |
Salt | 1.0 | |
Molasses | 3.0 | |
Chemical composition | ||
Dry matter (%) | 93.5 | 94.5 |
Organic matter (% DM) | 92.7 | 93.1 |
Crude protein (% DM) | 14.0 | 2.8 |
Neutral detergent fiber (% DM) | 12.5 | 65.8 |
Acid detergent fiber (% DM) | 8.9 | 43.3 |
Scientific Names | Chemical Composition (g/kg DM) | ||||||
---|---|---|---|---|---|---|---|
OM | CP | EE | NDF | ADF | CT | TP | |
Zingiber officinale | 832.2 | 76.9 | 63.6 | 563.2 | 369.7 | 27.6 | 155.8 |
Alpinia galanga | 831.5 | 81.8 | 68.1 | 625.0 | 368.1 | 63.9 | 385.4 |
Cymbopogon citratus | 897.4 | 54.8 | 18.7 | 649.4 | 427.0 | 15.4 | 24.6 |
Zingiber cassumunar | 957.0 | 136.2 | 58.8 | 423.8 | 184.7 | 14.0 | 236.4 |
Curcuma longa | 952.5 | 104.7 | 78.8 | 404.9 | 131.9 | 29.4 | 289.6 |
Piper sarmentosum | 940.1 | 188.5 | 63.9 | 647.2 | 398.6 | 89.3 | 91.2 |
Acmella oleracea | 946.8 | 234.5 | 52.2 | 434.1 | 189.3 | 104.1 | 135.7 |
Careya arborea | 966.0 | 150.3 | 59.8 | 514.1 | 309.3 | 159.2 | 201.5 |
Anacardium occidentale | 928.3 | 97.5 | 11.9 | 458.4 | 391.5 | 165.7 | 194.3 |
Treatments | Gas Production Kinetic Parameters | Cumulative Gas (mL/48 h) | |||
---|---|---|---|---|---|
a | b | c | a + b | ||
Basal diet | 2.07 ab | 102.60 f | 0.062 | 104.53 d | 99.80 e |
Zingiber officinale | 3.05 bc | 78.44 bc | 0.060 | 81.49 b | 80.15 b |
Alpinia galanga | 1.36 a | 73.96 ab | 0.052 | 75.42 a | 72.90 a |
Cymbopogon citratus | 2.02 ab | 84.22 c | 0.050 | 86.42 b | 84.95 c |
Zingiber cassumunar | 1.35 a | 72.04 a | 0.034 | 73.39 a | 70.40 a |
Curcuma longa | 1.74 a | 72.86 a | 0.030 | 73.59 a | 70.70 a |
Piper sarmentosum | 1.91 a | 80.74 c | 0.043 | 82.65 b | 81.90 b |
Acmella oleracea | 3.41 c | 96.42 e | 0.048 | 99.83 d | 98.40 e |
Careya arborea | 2.18 ab | 80.69 c | 0.060 | 82.79 b | 80.50 b |
Anacardium occidentale | 2.32 ab | 90.55 d | 0.054 | 92.87 c | 91.55 d |
SEM | 0.325 | 1.706 | 0.011 | 1.723 | 0.956 |
Plant Species | Ammonia (mg/dL) | Total Bacteria (109/mL) | Total Protozoa (104/mL) | SCFA (mmol/dL) and the Molar Proportions (mmol/100 mol) | ||||
---|---|---|---|---|---|---|---|---|
TVFA | C2 | C3 | C4 | C2/C3 | ||||
Basal diet | 13.98 c | 5.76 c | 5.73 c | 94.19 c | 69.61 | 18.24 a | 11.85 | 3.75 d |
Zingiber officinale | 9.85 ab | 4.48 bc | 4.96 bc | 87.64 ab | 69.75 | 18.98 abc | 11.27 | 3.67 bcd |
Alpinia galanga | 8.94 ab | 4.82 bc | 4.32 b | 85.60 a | 69.80 | 18.69 abc | 11.51 | 3.73 cd |
Cymbopogon citratus | 9.45 ab | 5.05 bc | 2.25 a | 88.78 ab | 69.20 | 19.65 bc | 11.15 | 3.52 ab |
Zingiber cassumunar | 9.52 ab | 3.14 b | 2.64 a | 86.28 ab | 69.96 | 18.42 ab | 11.62 | 3.80 d |
Curcuma longa | 10.70 b | 1.26 a | 2.04 a | 85.15 a | 69.56 | 18.40 ab | 12.04 | 3.78 d |
Piper sarmentosum | 9.38 ab | 4.46 bc | 2.88 a | 89.30 bc | 68.93 | 19.54 abc | 11.53 | 3.53 abc |
Acmella oleracea | 9.78 ab | 5.00 bc | 2.91 a | 85.48 a | 68.31 | 19.72 bc | 10.97 | 3.46 a |
Careya arborea | 8.59 ab | 3.75 b | 2.72 a | 90.5 bc | 68.96 | 20.29 c | 10.75 | 3.39 a |
Anacardium occidentale | 7.39 a | 4.25 bc | 2.33 a | 84.58 a | 69.18 | 18.62 ab | 12.20 | 3.72 bcd |
SEM | 0.741 | 0.582 | 0.439 | 1.395 | 0.634 | 0.487 | 0.351 | 0.063 |
Plant Species | Total Gas (mL/24 h) | AOMDvt (%) | dOM (mg/24 h) | CH4/OM (mL/g) | CH4 (mL/24 h) | CH4/TVFA (mmol/mol) | NEL (MJ/kg DM) |
---|---|---|---|---|---|---|---|
Basal diet | 69.24 cd | 67.62 c | 135.24 c | 57.01 f | 7.71 e | 132.19 e | 5.16 d |
Zingiber officinale | 75.20 d | 67.28 c | 134.56 c | 50.16 e | 6.75 d | 116.09 d | 4.68 abc |
Alpinia galanga | 70.78 cd | 66.55 c | 133.10 cd | 38.47 c | 5.12 c | 110.45 c | 5.21 d |
Cymbopogon citratus | 66.80 c | 66.80 c | 133.60 cd | 39.75 c | 5.31 c | 108.88 c | 4.50 ab |
Zingiber cassumunar | 65.88 c | 65.89 bc | 131.78 bcd | 32.79 b | 4.32 b | 100.04 a | 5.06 cd |
Curcuma longa | 58.09 ab | 59.96 a | 119.92 a | 43.95 d | 5.27 c | 110.96 c | 4.96 cd |
Piper sarmentosum | 65.95 c | 64.50 b | 129.01 bc | 33.64 b | 4.34 b | 104.57 b | 4.92 bcd |
Acmella oleracea | 63.80 bc | 63.84 b | 127.68 b | 28.52 a | 3.64 a | 101.65 ab | 5.00 cd |
Careya arborea | 53.67 a | 59.85 a | 119.70 a | 29.49 a | 3.53 a | 99.29 a | 4.69 abc |
Anacardium occidentale | 53.92 a | 58.96 a | 117.92 a | 32.74 b | 3.86 ab | 104.71 b | 4.37 a |
SEM | 0.824 | 0.761 | 1.523 | 0.695 | 0.194 | 1.145 | 0.135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khejornsart, P.; Cherdthong, A.; Wanapat, M. In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions. Fermentation 2021, 7, 166. https://doi.org/10.3390/fermentation7030166
Khejornsart P, Cherdthong A, Wanapat M. In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions. Fermentation. 2021; 7(3):166. https://doi.org/10.3390/fermentation7030166
Chicago/Turabian StyleKhejornsart, Pichad, Anusorn Cherdthong, and Metha Wanapat. 2021. "In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions" Fermentation 7, no. 3: 166. https://doi.org/10.3390/fermentation7030166
APA StyleKhejornsart, P., Cherdthong, A., & Wanapat, M. (2021). In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions. Fermentation, 7(3), 166. https://doi.org/10.3390/fermentation7030166