Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Culture Conditions
2.2. Plasmid and Pathway Construction
2.3. Metabolite Analysis
3. Results and Discussion
3.1. Developing a ‘Metabolic Funnel’ for Phenol Biosynthesis
3.2. Host Engineering to Increase Phenol Production via Improved Precursor Availability
3.3. Enhancing Phenol Production via In Situ Solvent Extraction
3.4. Comparing Strain Performance and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Haveren, J.; Scott, E.L.; Sanders, J. Bulk chemicals from biomass. Biofuels Bioprod. Biorefin. 2007, 2, 41–57. [Google Scholar] [CrossRef]
- Wang, J.; Shen, X.; Rey, J.; Yuan, Q.; Yan, Y. Recent advances in microbial production of aromatic natural products and their derivatives. Appl. Microbiol. Biotechnol. 2017, 102, 47–61. [Google Scholar] [CrossRef]
- Thompson, B.; Machas, M.; Nielsen, D.R. Creating pathways towards aromatic building blocks and fine chemicals. Curr. Opin. Biotechnol. 2015, 36, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, S.; Kondo, A. Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives. Trends Biotechnol. 2017, 35, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Gosset, G. Production of aromatic compounds in bacteria. Curr. Opin. Biotechnol. 2009, 20, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Martnez, J.A.; Flores, N.; Escalante, A.; Gosset, G.; Bolivar, F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 2014, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Averesch, N.J.H.; Krömer, J. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies. Front. Bioeng. Biotechnol. 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Machas, M.; Kurgan, G.; Jha, A.K.; Flores, A.; Schneider, A.; Coyle, S.; Varman, A.M.; Wang, X.; Nielsen, D.R. Emerging tools, enabling technologies, and future opportunities for the bioproduction of aromatic chemicals. J. Chem. Technol. Biotechnol. 2018, 94, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Adkins, J.; Pugh, S.; McKenna, R.; Nielsen, D.R. Engineering microbial chemical factories to produce renewable “biomonomers”. Front. Microbiol. 2012, 3, 313. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Ma, L.; Mao, Y. Biological production of adipic acid from renewable substrates: Current and future methods. Biochem. Eng. J. 2016, 105, 16–26. [Google Scholar] [CrossRef]
- Wierckx, N.J.P.; Ballerstedt, H.; de Bont, J.A.M.; de Winde, J.H.; Ruijssenaars, H.J.; Wery, J. Transcriptome Analysis of a Phenol-Producing Pseudomonas putida S12 Construct: Genetic and Physiological Basis for Improved Production. J. Bacteriol. 2008, 190, 2822–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierckx, N.J.P.; Ballerstedt, H.; de Bont, J.A.M.; Wery, J. Engineering of Solvent-Tolerant Pseudomonas putida S12 for Bioproduction of Phenol from Glucose. Appl. Environ. Microbiol. 2005, 71, 8221–8227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Yang, S.; Yuan, Q.; Sun, X. Microbial production of phenol via salicylate decarboxylation. RSC Adv. 2015, 5, 92685–92689. [Google Scholar] [CrossRef]
- Miao, L.; Li, Q.; Diao, A.; Zhang, X.; Ma, Y. Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation. Appl. Microbiol. Biotechnol. 2015, 99, 5163–5173. [Google Scholar] [CrossRef]
- Thompson, B.; Machas, M.; Nielsen, D.R. Engineering and comparison of non-natural pathways for microbial phenol production. Biotechnol. Bioeng. 2016, 113, 1745–1754. [Google Scholar] [CrossRef]
- Bouwer, E.J.; Zehnder, A.J. Bioremediation of organic compounds-putting microbial metabolism to work. Trends Biotechnol. 1993, 11, 360–367. [Google Scholar] [CrossRef]
- Linger, J.G.; Vardon, D.; Guarnieri, M.T.; Karp, E.; Hunsinger, G.B.; Franden, M.A.; Johnson, C.; Chupka, G.; Strathmann, T.J.; Pienkos, P.T.; et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA 2014, 111, 12013–12018. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.; Pugh, S.; Machas, M.; Nielsen, D.R. Muconic Acid Production via Alternative Pathways and a Synthetic “Metabolic Funnel”. ACS Synth. Biol. 2017, 7, 565–575. [Google Scholar] [CrossRef]
- Pugh, S.; McKenna, R.; Osman, M.; Thompson, B.; Nielsen, D.R. Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli. Process. Biochem. 2014, 49, 1843–1850. [Google Scholar] [CrossRef]
- Quan, J.; Tian, J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat. Protoc. 2011, 6, 242–251. [Google Scholar] [CrossRef]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A.; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Meth. 2009, 6, 343–345. [Google Scholar] [CrossRef]
- Holden, M.J.; Mayhew, M.P.; Gallagher, D.T.; Vilker, V.L. Chorismate lyase: Kinetics and engineering for stability. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 2002, 1594, 160–167. [Google Scholar] [CrossRef]
- Shiloach, J.; Kaufman, J.; Guillard, A.S.; Fass, R. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM109. Biotechnol. Bioeng. 1996, 49, 421–428. [Google Scholar] [CrossRef]
- Postma, P.W.; Lengeler, J.W.; Jacobson, G.R. Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993, 57, 543–594. [Google Scholar] [CrossRef] [PubMed]
- Gosset, G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: Sugar phosphotransferase system. Microb. Cell Fact. 2005, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.P.; Liu, R.X.; Xiao, M.R.; Zhang, L.; Ding, Z.Y.; Gu, Z.H.; Shi, G.Y. A systems level engineered E. coli capable of efficiently producing L-phenylalanine. Proc. Biochem. 2014, 49, 751–757. [Google Scholar] [CrossRef]
- Kim, B.; Park, H.; Na, D.; Lee, S.Y. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 2013, 9, 621–629. [Google Scholar] [CrossRef]
- Flores, A.; Wang, X.; Nielsen, D.R. Recent trends in integrated bioprocesses: Aiding and expanding microbial biofuel/biochemical production. Curr. Opin. Biotechnol. 2019, 57, 82–87. [Google Scholar] [CrossRef]
- Brennan, T.C.R.; Turner, C.D.; Kromer, J.O.; Nielsen, L.K. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 2513–2522. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Q.; Hou, H.; Wu, J.; Zheng, Z.; Ouyang, J. Efficient biosynthesis of cinnamyl alcohol by engineered Escherichia coli overexpressing carboxylic acid reductase in a biphasic system. Microb. Cell Fact. 2020, 19, 163. [Google Scholar] [CrossRef]
- Noda, S.; Shirai, T.; Oyama, S.; Kondo, A. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab. Eng. 2016, 33, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Wynands, B.; Lenzen, C.; Otto, M.; Koch, F.; Blank, L.M.; Wierckx, N. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production. Metab. Eng. 2018, 47, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gil, J.; Rodríguez-Concepción, M. Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochemical. J. 2013, 452, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Guo, L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 2014, 13, 160. [Google Scholar] [CrossRef] [Green Version]
Strain | Description | Source |
---|---|---|
E. coli NEB10-beta | Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 galE15 e14- ϕ80dlacZΔM15 recA1 relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC) | NEB |
E. coli NST74 | aroH367, tyrR366, tna-2, lacY5, aroF394(fbr), malT384, pheA101(fbr), pheO352, aroG397(fbr) | ATCC |
E. coli NST74 ∆pheA | pheA chromosomal deletion in E. coli NST74 | Pugh et al. (2014) |
E. coli NST74 ∆pheA ∆pykA ∆pykF ∆crr | crr chromosomal deletion in E. coli NST74 ∆pheA ∆pykA ∆pykF | Thompson et al. (2017) |
E. coli BW25113 | Source of ubiC and entC | CGSC |
C. braakii ATCC 29063 | Source of tutA | ATCC |
P. aeruginosa PAO1 | Source of pchB | DSMZ |
K. pneumoniae PZH572 | Source of kpdBCD | ATCC |
Plasmid | Description | Source |
pTrcCOLAK | ColA ori, Kanr, lacIq, Ptrc | McKenna et al. (2013) |
pY3 | p15A ori, Ampr, lacI, Plac-UV5-tyrAfbr-tyrB- aroC T1-Ptrc-aroA-aroL | Juminaga et al. (2012) |
pS3 | pBBR1 ori, Cmr, lacI Plac-UV5-aroE-aroD-aroBop-aroGfbr-ppsA-tktA | Juminaga et al. (2012) |
pTyrAfbr-TutA | tutA of C. braakii ATCC29063 inserted into pY3 backbone, retaining the existing copy of tyrAfbr (replacing all of tyrB-aroC T1-Ptrc-aroA-aroL) | This study |
pSDC-PchB-EntC | SDC of T. moniliforme, pchB of P. aeruginosa PAO1, and entC of E. coli BW25113 inserted into pS3 backbone (replacing all of aroE-aroD-aroBop-aroGfbr-ppsA-tktA) | Thompson et al. (2015) |
pUbiC-Kpd | ubiC of E. coli and kpdBCD of K. pneumoniae PZH572 inserted to pTrcCOLAK | Thompson et al. (2015) |
Pathway Designation | Plasmids Used | |
1 | pTyrAfbr-TutA, | |
2 | pSDC-PchB-EntC | |
3 | pUbiC-Kpd | |
F1 (1 + 2) | pTyrAfbr-TutA, pSDC-PchB-EntC | |
F2 (1 + 3) | pTyrAfbr-TutA, pUbiC-Kpd | |
F3 (2 + 3) | pSDC-PchB-EntC, pUbiC-Kpd | |
F4 (1 + 2 + 3) | pTyrAfbr-TutA, pSDC-PchB-EntC, pUbiC-Kpd |
Pathway | Phenol Titer (mg/L) | Glucose Utilization (%) | Acetate Titer (g/L) | Yield (mg/g) |
---|---|---|---|---|
1 | 377 ± 23 | 100 | 9 ± 0.1 | 18.7 ± 0.7 |
2 | 377 ± 14 | 53.2 ± 0.7 | 6 ± 0.3 | 35.7 ± 0.8 |
3 | 259 ± 31 | 100 | 4 ± 0.3 | 12.9 ± 1.1 |
F1 (1 + 2) | 439 ± 7 | 90.1 ± 0.9 | 8 ± 0.2 | 24.0 ± 0.5 |
F2 (1 + 3) | 355 ± 17 | 100 | 6 ± 0.2 | 17.8 ± 1.2 |
F3 (2 + 3) | 149 ± 10 | 90.2 ± 0.4 | 6 ± 0.3 | 8.4 ± 1.0 |
F4 (1 + 2 + 3) | 205 ± 13 | 87.1 ± 0.3 | 5 ± 0.2 | 11.8 ± 0.7 |
Pathway | Phenol (mg/L) | Glucose Utilization (%) | Yield (mg/g) |
---|---|---|---|
1 | 436 ± 9 | 100 | 22.2 ± 0.7 |
2 | 301 ± 15 | 100 | 15.0 ± 0.2 |
F1 | 554 ± 19 | 100 | 27.7 ± 0.3 |
F1 + DBP | 812 ± 145 | 100 | 40.6 ± 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, B.; Machas, M.; Abed, O.; Nielsen, D.R. Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli. Fermentation 2021, 7, 216. https://doi.org/10.3390/fermentation7040216
Thompson B, Machas M, Abed O, Nielsen DR. Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli. Fermentation. 2021; 7(4):216. https://doi.org/10.3390/fermentation7040216
Chicago/Turabian StyleThompson, Brian, Michael Machas, Omar Abed, and David R. Nielsen. 2021. "Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli" Fermentation 7, no. 4: 216. https://doi.org/10.3390/fermentation7040216
APA StyleThompson, B., Machas, M., Abed, O., & Nielsen, D. R. (2021). Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli. Fermentation, 7(4), 216. https://doi.org/10.3390/fermentation7040216