The Effects of Oil Palm Fronds Silage Supplemented with Urea-Calcium Hydroxide on Rumen Fermentation and Nutrient Digestibility of Thai Native-Anglo Nubian Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensiling Materials and Silage Preparation
2.2. Animals, Experimental Design, and Feeding
2.3. Procedures for Collecting Samples and Sampling
2.4. Statistical Analyses
3. Results
3.1. Nutrient Content in Total Mixed Ration Diets
3.2. Chemical Compositions of Oil Palm Fronds Ensiled with Various Additives
3.3. Feed and Nutrient Intake
3.4. Apparent Total Tract Digestibility of TMR
3.5. The pH, NH3-N, and Blood Metabolites
3.6. Volatile Fatty Acid Profiles
3.7. Microorgarnism Count in Rumen Fluid
3.8. Nitrogen Balance
4. Discussion
4.1. Chemical Compositions of Oil Palm Fronds Ensiled with Various Additives
4.2. Effects on Feed Intake and Apparent Total Tract Digestibility
4.3. Rumen Characteristics, Volatile Fatty Acid Profiles, and Blood Parameters
4.4. Nitrogen Utilization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maluin, F.N.; Hussein, M.Z.; Idris, A.S. An overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development. Agronomy 2020, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Parveez, G.K.A.; Sarmizi, A.H.A.; Sundram, S.; Loh, S.K.; Ong-abdullah, M.; Palam, K.D.P.; Salleh, K.M.; Ishak, S.M.; Idris, Z. Oil palm economic performance in Malaysia and R&D progress in 2020. J. Oil Palm Res. 2021, 33, 2. [Google Scholar]
- Poh, P.E.; Wu, T.Y.; Lam, W.H.; Poon, W.C.; Lim, C.S. Oil palm plantation wastes. In Waste Management in the Palm Oil Industry; Springer Nature: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Ishida, M.; Abu Hassan, O. Utilization of oil palm frond as cattle feed. Jpn. Agric. Res. Q. 1997, 31, 41–48. [Google Scholar]
- Khalil, H.P.S.A.; Alwani, M.S.; Omar, A.K.M. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 2006, 1. [Google Scholar] [CrossRef]
- Gomes, D.I.; Detmann, E.; Filho, S.V.; Fukushima, R.S.; De Souza, M.A.; Valente, T.N.; Paulino, M.F.; De Queiroz, A.C. Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber. Anim. Feed Sci. Technol. 2011, 168, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.J.; Jung, H.-J.G. Lignin and fiber digestion. Rangeland Ecology & Management. J. Range Manag. 2001, 54, 420–430. [Google Scholar]
- Astuti, W.D.; Widyastuti, Y.; Fidriyanto, R.; Ridwan, R.; Rohmatussolihat; Sari, N.F.; Firsoni; Sugoro, I. In vitro gas production and digestibility of oil palm frond silage mixed with different levels of elephant grass. IOP Conf. Ser. Earth Environ. Sci. 2020, 439. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. J. Anim. Physiol. Anim. Nutr. 2015, 99, 449–456. [Google Scholar] [CrossRef]
- Wanapat, M. Supplementation of straw-based diets for ruminants in Thailand. In Proceedings of the Sustainable Animal Production and the Environment. The 7th AAAP Animal Science Congress, Bali, Indonesia, 22–25 August 2016; pp. 25–38. [Google Scholar]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Cedrez, C.B.; Chamberlin, J.; Guo, Z.; Hijmans, R.J. Spatial variation in fertilizer prices in Sub-Saharan Africa. PLoS ONE 2020, 15, e0227764. [Google Scholar] [CrossRef] [Green Version]
- Elseed, A.M.A.F.; Sekine, J.; Hishinuma, M.; Hamana, K. Effects of ammonia, urea plus calcium hydroxide and animal urine treatments on chemical composition and in sacco degradability of rice straw. Asian Australas. J. Anim. Sci. 2003, 16, 368–373. [Google Scholar] [CrossRef]
- Yitbarek, M.B.; Tamir, B. Silage additives. Open J. Appl. Sci. 2014, 4, 258–274. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, 1st ed.; National Research Council; The National Academies Press: Washington, DC, USA, 2007.
- Association of Official Analytical Chemist (AOAC). The Official Methods of Analysis of the Association of Official Analytical Chemist, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1998. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mathew, S.; Sagathevan, S.; Thomas, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids in ruminal fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Life Science, New Mexico State University: New Mexico, NM, USA, 1989; p. 188. [Google Scholar]
- SAS. User’s Guide: Statistic, 12th ed.; Version 6; SAS Inst. Inc.: Cary, NC, USA, 1998. [Google Scholar]
- Klopfenstein, T. Chemical Treatment of Crop Residues. J. Anim. Sci. 1978, 46, 841–848. [Google Scholar] [CrossRef]
- Watson, A.K.; Macdonald, J.C.; Erickson, G.E.; Kononoff, P.J.; Klopfenstein, T.J. Forages and pastures symposium: Optimizing the use of fibrous residues in beef and dairy diets1. J. Anim. Sci. 2015, 93, 2616–2625. [Google Scholar] [CrossRef] [PubMed]
- Casperson, B.A.; Wertz-Lutz, A.E.; Dunn, J.L.; Donkin, S.S. Inclusion of calcium hydroxide-treated corn stover as a partial forage replacement in diets for lactating dairy cows. J. Dairy Sci. 2018, 101, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunun, N.; Wanapat, M.; Gunun, P.; Cherdthong, A.; Khejornsart, P.; Kang, S. Effect of treating sugarcane bagasse with urea and calcium hydroxide on feed intake, digestibility, and rumen fermentation in beef cattle. Trop. Anim. Health Prod. 2016, 48, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Castañón-Rodríguez, J.; Welti-Chanes, J.; Palacios, A.; Torrestiana-Sanchez, B.; Ramírez de León, J.; Velázquez, G.; Aguilar-Uscanga, M. Influence of high pressure processing and alkaline treatment on sugarcane bagasse hydrolysis. CyTA-J. Food 2015, 13, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Martín-García, I.; Jiménez, E.; Jonsson, N.N.; Yañez-Ruiz, D.R. A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep. J. Sci. Food Agric. 2021, 101, 5541–5549. [Google Scholar] [CrossRef]
- Thoh, D.; Pakdeechanuan, P.; Chanjula, P. Effect of supplementary glycerin on milk composition and heat stability in dairy goats. Asian Australas. J. Anim. Sci. 2017, 30, 1711–1717. [Google Scholar] [CrossRef] [Green Version]
- Hamchara, P.; Chanjula, P.; Cherdthong, A.; Wanapat, M. Digestibility, ruminal fermentation, and nitrogen balance with various feeding levels of oil palm fronds treated with Lentinus sajor-caju in goats. Asian Australas. J. Anim. Sci. 2018, 31, 1619–1626. [Google Scholar] [CrossRef]
- Mookiah, S.; Mohamed, W.N.W.; Noh, M.; Ibrahim, N.A.; Fuat, M.A.; Ramiah, S.K.; Chung, E.L.T.; Dian, N.L.H.M. Treated oil palm frond and its utilisation as an improved feedstuff for ruminants–An overview. Asian Australas. J. Anim. Sci. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Dahlan, I.; Islam, M.; Rajion, M.A. Nutrient Intake and Digestibility of Fresh, Ensiled and Pelleted Oil Palm (Elaeis guineensis) Frond by Goats. Asian Australas. J. Anim. Sci. 2000, 13, 1407–1413. [Google Scholar] [CrossRef]
- Mason, V.; Cook, J.; Dhanoa, M.; Keene, A.; Hoadley, C.; Hartley, R. Chemical composition, digestibility in vitro and bio-degradability of grass hays oven-treated with different amounts of ammonia. Anim. Feed Sci. Technol. 1990, 29, 237–249. [Google Scholar] [CrossRef]
- Son, A.-R.; Kim, S.-H.; Valencia, R.; Jeong, C.-D.; Islam, M.; Yang, C.-J.; Lee, S.-S. Kimchi cabbage (Brassica rapa L.) by-products treated or untreated with calcium oxide and alkaline hydrogen peroxide as substitutional ingredient of total mixed ration for Holstein steers. J. Anim. Sci. Technol. 2021, 63, 841. [Google Scholar] [CrossRef] [PubMed]
- Rusli, N.D.; Ghani, A.A.A.; Mat, K.; Yusof, M.T.; Zamri-Saad, M.; Abu Hassim, H. The potential of pretreated oil palm frond in enhancing rumen degradability and growth performance: A review. Adv. Anim. Vet. Sci. 2020, 9. [Google Scholar] [CrossRef]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Wanapat, M.; Mapato, C.; Pilajun, R.; Toburan, W. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest. Sci. 2011, 135, 32–37. [Google Scholar] [CrossRef]
- Hung, L.; Wanapat, M.; Cherdthong, A. Effects of Leucaena leaf pellet on bacterial diversity and microbial protein synthesis in swamp buffalo fed on rice straw. Livest. Sci. 2013, 151, 188–197. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Babiker, S.A.; Fadel Elseed, A.; Mohammed, A.M. Effect of urea-treatment on nutritive value of sugarcane bagasse. ARPN J. Eng. Appl. Sci. 2013, 3, 834–838. [Google Scholar]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Supapong, C.; Cherdthong, A. Effect of sulfur and urea fortification of fresh cassava root in fermented total mixed ration on the improvement milk quality of tropical lactating cows. Vet. Sci. 2020, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, M. The effects of amofer palm oil waste-based complete feed to blood profiles and liver function on local sheep. Int. J. Sci. Eng. 2012, 3, 17–21. [Google Scholar]
- Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weil, P.A. Harper’s Illustrated Biochemistry, 26th ed.; Medical Publishing Division: New York, NY, USA; Chicago, IL, USA; San Francisco, CA, USA, 2003. [Google Scholar]
- Allen, M.S.; Bradford, B.; Oba, M. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [PubMed]
- Jiwuba, P.-D.C.; Ahamefule, F.O.; Okechukwu, O.S.; Ikwunze, K. Feed intake, body weight changes and haematology of West African dwarf goats fed dietary levels of Moringa oleifera leaf meal. Agricultura 2016, 13, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Kraiprom, T.; Jantarat, S. Effects of by-products from oil palm in total mixed ration (TMR) in goat feed for nutrient utili-zation, volatile fatty acid and blood metabolize. Princess Naradhiwas Univ. J. 2018, 10, 171–183. [Google Scholar]
- Zhang, X.; Medrano, R.J.; Wang, M.; Beauchemin, K.A.; Ma, Z.; Wang, R.; Wen, J.; Bernard, L.A.; Tan, Z. Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats. J. Anim. Sci. Biotechnol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanjula, P.; Petcharat, V.; Cherdthong, A. Rumen characteristics and feed utilization in goats fed with biologically treated oil palm fronds as roughage in a total mixed ration. S. Afr. J. Anim. Sci. 2018, 48. [Google Scholar] [CrossRef]
- Gunun, P.; Gunun, N.; Wanapat, M.; Cherdthong, A.; Polyorach, S.; Sirilaophaisan, S.; Wachirapakorn, C.; Kang, S. In vitro rumen fermentation and methane production as affected by rambutan pee powder. J. App. Anim. Res. 2018, 46, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian Australas. J. Anim. Sci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Wanapat, M.; Cherdthorng, A. Effect of banana flower powder supplementation as a rumen buffer on rumen fermentation efficiency and nutrient digestibility in dairy steers fed a high-concentrate diet. Anim. Feed. Sci. Technol. 2014, 196, 32–41. [Google Scholar] [CrossRef]
- Gabriel, O.S.; Fajemisin, A.N.; Onyekachi, D.E. Nutrients digestibility, nitrogen balance and blood profile of West African dwarf (Wad) goats fed Cassava peels with urea-molasses multi-nutrient block (UMMB) Supplements. Asian Res. J. Agric. 2018, 9, 1–11. [Google Scholar] [CrossRef]
Items | EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% |
---|---|---|---|---|
Ingredients, % | ||||
EOPF | 40 | 0 | 0 | 0 |
E-UOPF 5.0% | 0 | 40 | 0 | 0 |
E-CaOPF 5.0% | 0 | 0 | 40 | 0 |
E-UCOPF 2.5% | 0 | 0 | 0 | 40 |
Ground corn | 35.8 | 35.8 | 35.8 | 35.8 |
Soybean meal | 7.9 | 7.9 | 7.9 | 7.9 |
Fish meal | 0.4 | 0.4 | 0.4 | 0.4 |
Leucaena leave meal | 5.4 | 5.4 | 5.4 | 5.4 |
Oil palm meal | 7.2 | 7.2 | 7.2 | 7.2 |
Molasses | 2.2 | 2.2 | 2.2 | 2.2 |
Dicalcium phosphate | 0.3 | 0.3 | 0.3 | 0.3 |
Salt | 0.2 | 0.2 | 0.2 | 0.2 |
Mineral and vitamin mix | 0.6 | 0.6 | 0.6 | 0.6 |
Chemical composition | ||||
Dry matter, % | 97.7 | 97.2 | 97.9 | 97.6 |
% dry matter | ||||
Organic matter | 93.8 | 94.6 | 91.4 | 92.6 |
Crude protein | 12.6 | 17.8 | 12.0 | 15.1 |
Ether extract | 2.36 | 2.45 | 2.59 | 2.47 |
Non-structural carbohydrate | 21.0 | 17.5 | 18.2 | 19.1 |
Neutral detergent fiber | 57.8 | 56.8 | 58.6 | 55.9 |
Acid detergent fiber | 31.9 | 32.7 | 32.6 | 31.4 |
Acid detergent lignin | 9.6 | 10.0 | 10.2 | 10.1 |
Hemicellulose | 25.9 | 24.1 | 26.1 | 24.5 |
Cellulose | 22.2 | 22.7 | 22.3 | 21.4 |
Total digestible nutrient, % | 64.5 | 65.5 | 63.6 | 65.9 |
Gross energy, Mcal/kg DM | 4.33 | 4.3 | 4.09 | 4.21 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Dry matter, % | 37.1 a | 31.3 c | 34.3 b | 34.0 b | 0.31 | <0.01 |
% of DM | ||||||
Organic matter | 92.6 a | 93.1 a | 86.3 c | 90.1 b | 0.52 | 0.02 |
Crude protein | 7.90 c | 16.3 a | 5.61 d | 12.1 b | 0.26 | <0.01 |
Ether extract | 0.78 | 0.88 | 0.89 | 0.88 | 0.07 | 0.34 |
Neutral detergent fiber | 82.2 a | 78.9 ab | 67.3 c | 74.3 b | 1.87 | <0.01 |
Acid detergent fiber | 66.5 a | 65.6 a | 56.6 b | 63.5 a | 1.73 | <0.01 |
Acid detergent lignin | 26.5 a | 24.3 a | 19.4 b | 22.8 ab | 1.28 | 0.03 |
Gross energy, Mcal/kg DM | 4.14 | 4.26 | 3.61 | 3.59 | 0.26 | 0.45 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Total dry matter intake, kg/d | 1.10 | 1.05 | 1.13 | 1.11 | 0.04 | 0.41 |
Dry matter intake, %BW | 2.98 | 2.81 | 3.16 | 2.99 | 0.16 | 0.54 |
Dry matter intake, g/kg W0.75 | 73.52 | 69.39 | 77.09 | 73.08 | 3.69 | 0.50 |
Nutrients intake (kg/d) | ||||||
Organic matter | 1.035 | 0.965 | 1.015 | 1.007 | 0.03 | 0.64 |
Crude protein | 0.140 b | 0.182 a | 0.135 b | 0.165 ab | 0.01 | 0.04 |
Neutral detergent fiber | 0.632 | 0.577 | 0.652 | 0.607 | 0.03 | 0.45 |
Acid detergent fiber | 0.350 | 0.335 | 0.365 | 0.342 | 0.01 | 0.46 |
Acid detergent lignin | 0.115 | 0.100 | 0.112 | 0.107 | 0.006 | 0.41 |
Energy intake | ||||||
Metabolizable energy, Mcal/d | 2.50 | 2.37 | 2.58 | 2.58 | 0.10 | 0.44 |
Metabolizable energy, Mcal/kg DM | 2.28 b | 2.33 ab | 2.32 ab | 2.39 a | 0.010 | 0.02 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Apparent total tract digestibility, % | ||||||
Dry matter | 62.09 c | 62.89 bc | 63.60 b | 65.14 a | 0.38 | <0.01 |
Organic matter | 64.03 b | 64.78 b | 67.01 a | 67.96 a | 0.35 | <0.01 |
Crude protein | 56.04 b | 67.09 a | 61.18 ab | 65.60 a | 2.11 | 0.03 |
Ether extract | 55.98 | 56.51 | 65.48 | 63.42 | 3.19 | 0.17 |
Neutral detergent fiber | 55.25 b | 56.24 ab | 61.31 a | 60.72 a | 1.46 | 0.04 |
Acid detergent fiber | 36.31 | 38.63 | 42.41 | 41.66 | 2.33 | 0.22 |
Acid detergent lignin | 23.99 | 21.19 | 32.31 | 25.97 | 3.37 | 0.30 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Ruminal pH | ||||||
0 h post feeding | 6.59 b | 6.69 ab | 6.732 ab | 6.94 a | 0.08 | 0.03 |
4 h post feeding | 6.38 | 6.53 | 6.51 | 6.50 | 0.08 | 0.54 |
Mean | 6.49 b | 6.61 ab | 6.62 ab | 6.72 a | 0.04 | 0.05 |
Ammonia nitrogen mg/dL | ||||||
0 h post feeding | 12.14 b | 17.50 a | 11.43 b | 13.57 b | 0.91 | <0.01 |
4 h post feeding | 12.86 c | 22.86 a | 13.21 c | 16.43 b | 0.64 | <0.01 |
Mean | 12.50 c | 20.18 a | 12.32 c | 15.00 b | 0.60 | <0.01 |
Blood urea nitrogen, mg/dL | ||||||
0 h post feeding | 14.74 b | 27.04 a | 14.00 b | 24.92 b | 0.96 | <0.01 |
4 h post feeding | 14.81 b | 28.01 a | 14.79 b | 25.31 a | 0.92 | <0.01 |
Mean | 14.78 b | 27.53 a | 14.39 b | 25.12 a | 0.90 | <0.01 |
Glucose, mg/dL | ||||||
0 h post feeding | 62.25 | 64.75 | 60.00 | 63.00 | 1.28 | 0.07 |
4 h post feeding | 61.50 b | 64.25 ab | 62.50 ab | 65.00 a | 0.91 | 0.03 |
Mean | 61.88 | 64.50 | 61.25 | 64.00 | 0.92 | 0.09 |
Packed cell volume, % | ||||||
0 h post feeding | 29.00 a | 27.00 b | 27.75 ab | 26.50 b | 0.40 | 0.02 |
4 h post feeding | 26.00 | 26.25 | 27.00 | 25.75 | 1.21 | 0.89 |
Mean | 27.50 | 26.62 | 25.37 | 26.12 | 0.76 | 0.58 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Total VFA, mmol/L | ||||||
0 h post feeding | 107.56 | 114.36 | 116.45 | 120.53 | 5.52 | 0.46 |
4 h post feeding | 101.90 b | 113.45 a | 115.04 a | 122.08 a | 3.16 | 0.02 |
Mean | 104.73 b | 113.90 ab | 115.74 a | 121.31 a | 3.06 | 0.04 |
Proportion of individual VFA, % | ||||||
Acetate (C2) | ||||||
0 h post feeding | 60.74 a | 61.97 a | 55.27 b | 58.52 ab | 1.38 | 0.04 |
4 h post feeding | 58.34 ab | 63.98 a | 55.87 b | 54.23 b | 2.04 | 0.02 |
Mean | 59.54 ab | 62.98 a | 55.57 b | 56.37 b | 1.12 | <0.01 |
Propionate (C3) | ||||||
0 h post feeding | 24.42 | 25.80 | 27.59 | 28.58 | 0.51 | 0.28 |
4 h-post feeding | 29.06 | 24.88 | 30.10 | 31.10 | 0.58 | 0.07 |
Mean | 26.74 bc | 25.34 c | 28.85 ab | 29.84 a | 0.47 | 0.02 |
Butyrate (C4) | ||||||
0 h post feeding | 14.83 | 12.22 | 17.13 | 12.89 | 1.95 | 0.36 |
4 h post feeding | 12.59 | 11.12 | 14.02 | 14.66 | 1.00 | 0.16 |
Mean | 13.71 | 11.67 | 15.57 | 13.77 | 1.40 | 0.36 |
Acetate: propionate ratio (C2:C3) | ||||||
0 h post feeding | 2.51 | 2.43 | 2.03 | 2.07 | 0.14 | 0.10 |
4 h post feeding | 2.05 | 2.67 | 1.86 | 1.75 | 0.20 | 0.07 |
Mean | 2.28 a | 2.55 a | 1.94 b | 1.91 b | 0.07 | 0.02 |
Estimated methane production (CH4) | ||||||
0 h post feeding | 26.98 | 26.14 | 24.63 | 24.14 | 0.97 | 0.23 |
4 h post feeding | 23.82 | 26.84 | 23.01 | 22.27 | 1.00 | 0.07 |
Mean | 25.40 ab | 26.49 a | 23.82 bc | 23.21 c | 0.48 | 0.02 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Total direct count Bacteria (×1010 cell/mL) | ||||||
0 h post feeding | 3.89 | 4.04 | 3.01 | 3.56 | 0.31 | 0.19 |
4 h post feeding | 4.07 | 4.28 | 4.74 | 4.76 | 0.45 | 0.65 |
Mean | 3.98 | 4.15 | 3.88 | 4.16 | 0.26 | 0.85 |
Fungal zoospores (×106 cell/mL) | ||||||
0 h post feeding | 5.79 | 2.54 | 3.00 | 3.99 | 0.68 | 0.06 |
4 h post feeding | 4.78 | 3.99 | 3.79 | 3.78 | 0.54 | 0.55 |
Mean | 5.29 | 3.27 | 3.39 | 3.89 | 0.47 | 0.08 |
Total Protozoa (×106 cell/mL) | ||||||
0 h post feeding | 1.56 | 1.31 | 1.96 | 1.90 | 0.39 | 0.64 |
4 h post feeding | 2.00 | 2.26 | 2.22 | 2.23 | 0.46 | 0.97 |
Mean | 1.78 | 1.79 | 2.09 | 2.06 | 0.35 | 0.86 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
EOPF | E-UOPF 5.0% | E-CaOPF 5.0% | E-UCOPF 2.5% | |||
Total N intake, g/d | 22.09 b | 29.12 a | 21.26 b | 26.03 ab | 1.73 | 0.04 |
N excretion, g/d | ||||||
Fecal N | 9.74 | 9.46 | 8.24 | 9.10 | 0.38 | 0.12 |
Urinary N | 1.24 b | 4.04 a | 1.06 b | 4.15 a | 0.54 | <0.01 |
Total N excretion | 10.98 ab | 13.50 a | 9.31 b | 13.25 a | 0.82 | 0.03 |
N absorption, g/d | 12.35 b | 19.65 a | 13.02 b | 16.93 ab | 1.55 | 0.04 |
N retention, g/d | 11.11 | 15.61 | 11.95 | 12.78 | 1.52 | 0.27 |
N-absorption/N intake, % | 55.96 b | 67.02 a | 61.11 ab | 65.46 a | 2.15 | 0.03 |
N-retention/N intake, % | 50.52 | 53.46 | 56.16 | 50.31 | 3.18 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanjula, P.; Suntara, C.; Cherdthong, A. The Effects of Oil Palm Fronds Silage Supplemented with Urea-Calcium Hydroxide on Rumen Fermentation and Nutrient Digestibility of Thai Native-Anglo Nubian Goats. Fermentation 2021, 7, 218. https://doi.org/10.3390/fermentation7040218
Chanjula P, Suntara C, Cherdthong A. The Effects of Oil Palm Fronds Silage Supplemented with Urea-Calcium Hydroxide on Rumen Fermentation and Nutrient Digestibility of Thai Native-Anglo Nubian Goats. Fermentation. 2021; 7(4):218. https://doi.org/10.3390/fermentation7040218
Chicago/Turabian StyleChanjula, Pin, Chanon Suntara, and Anusorn Cherdthong. 2021. "The Effects of Oil Palm Fronds Silage Supplemented with Urea-Calcium Hydroxide on Rumen Fermentation and Nutrient Digestibility of Thai Native-Anglo Nubian Goats" Fermentation 7, no. 4: 218. https://doi.org/10.3390/fermentation7040218
APA StyleChanjula, P., Suntara, C., & Cherdthong, A. (2021). The Effects of Oil Palm Fronds Silage Supplemented with Urea-Calcium Hydroxide on Rumen Fermentation and Nutrient Digestibility of Thai Native-Anglo Nubian Goats. Fermentation, 7(4), 218. https://doi.org/10.3390/fermentation7040218