Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Strain Cultivation
2.2. Minimal Salt Medium (MSM) and Substrate Preparation
2.3. Substrate Preparation
2.4. Analytical Methods
3. Results
3.1. Substrate Consumption, Cell Growth and PHAs Accumulation in Synthetic VFAs Media
3.2. Substrate Consumption, Cell Growth and PHAs Accumulation in VFAs-Rich Streams Media
Substrate Consumption in Cultivation Media at Varied Concentrations
3.3. PHAs Characterization
4. Discussion of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purushothaman, M.; Anderson, R.; Narayana, S.; Jayaraman, V. Industrial byproducts as cheaper medium components influencing the production of polyhydroxyalkanoates (PHA) biodegradable plastics. Bioprocess Biosyst. Eng. 2001, 24, 131–136. [Google Scholar]
- Lau, N.S.; Tsuge, T.; Sudesh, K. Formation of new polyhydroxyalk anoate containing 3-hydroxy-4-methylvalerate monomer in Burkholderia species. Appl. Microbiol. Biotechnol. 2011, 89, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.D.; Ferreira, A.R.; Costa, N.; Freitas, F.; Reis, M.A.; Coelhoso, I.M. Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 2011, 83, 1582–1590. [Google Scholar] [CrossRef]
- Akaraonye, E.; Keshavarz, T.; Roy, I. Production of Polyhydroxyalkanoates: The Future Green Materials of Choice. J. Chem. Technol. Biotechnol. 2010, 85, 732–743. [Google Scholar] [CrossRef]
- Gunaratne, L.M.W.K.; Shanks, R.A. Multiple melting behavior of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur. Polym. J. 2005, 41, 2980–2988. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Kim, S.H.; Pandey, A. Microbial Strategies for Bio-transforming Food Waste into Resources. Bioresour. Technol. 2020, 299, 122580. [Google Scholar] [CrossRef] [PubMed]
- Radhika, D.; Murugesan, A.G. Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresour. Technol. 2012, 121, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, Y.; Wang, F. Chiral Compounds from Bacterial Polyesters: Sugars to Plastics to Fine Chemicals. Biotechnol. Bioengin. 1999, 65, 363–368. [Google Scholar] [CrossRef]
- Khan, M.A.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Nghiem, L.D.; Hai, F.I.; Deng, L.J.; Wang, J.; Wu, Y. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour. Technol. 2016, 219, 738–748. [Google Scholar] [CrossRef]
- Kiran, G.S.; Lipton, A.N.; Priyadharshini, S. Antiadhesive activity of poly-hydroxybutyrate biopolymer from a marine Brevibacterium casei MS104 against shrimp pathogenic vibrios. Cell Factories 2014, 13, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favaro, L.; Basaglia, M.; Casella, S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A review. Biofuels Bioprod. Biorefin. 2019, 13, 208–227. [Google Scholar] [CrossRef] [Green Version]
- Eryildiz, B.; Taherzadeh, M.J. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresour. Technol. 2020, 302, 122800. [Google Scholar] [CrossRef]
- FAO. The Global Potato Economy (Potato Production Worldwide from 2002 to 2019); FAO: Rome, Italy, 2019; Available online: http://faostat3.fao.org (accessed on 25 August 2021).
- Saratale, R.G.; Cho, S.K.; Saratale, G.D.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Bharagava, R.N.; Kumar, G.; Kim, D.S.; Mulla, S.I.; et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.; Ismail, N. Anaerobic digestion of cow dung for biogas production. ARPN J. Eng. Appl. Sci. 2012, 7, 169–172. [Google Scholar]
- Taherzadeh, M.J. Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered 2019, 10, 698–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debruyn, J.; Hilborn, D. Anaerobic Digestion Basics; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2007.
- Brandl, H.; Gross, R.A.; Lenz, R.W.; Fuller, R.C. Pseudomonas oleovorans as a Source of Poly(P-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Appl. Environ. Microbiol. 1988, 54, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, S.; Sarkar, O.; Swamy, Y.V.; Mohan, S.V. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef]
- Saranya, V.; Shenbagarathai, R. Production and characterization of PHA from recombinant E. coli harbouring Phac1 gene of indigenous Pseudomonas sp. Ldc-5 using molasses. Braz. J. Microbiol. 2011, 42, 1109–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, D.M.; Mahboubi, A.; Wainaina, S.; Qiao, W.; Taherzadeh, M.J. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. Bioresour. Technol. 2021, 330, 124992. [Google Scholar] [CrossRef]
- Aremu, M.O.; Layokun, S.K.; Solomon, B.O. Production of Poly (3-hydroxybutyrate) from cassava starch hydrolysate by Pseudomonas aeruginosa NCIB 950. Am. J. Sci. Ind. Res. 2010, 1, 421–426. [Google Scholar] [CrossRef]
- Vu, D.H.; Wainaina, S.; Taherzadeh, M.J.; Åkesson, D.; Ferreira, J.A. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered 2021, 12, 2480–2498. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.B.T.; Raposo, R.S.; de Almeida, M.D.; Cesario, M.T.; Sevrin, C.; Grandfils, C.; da Fonseca, M.M.R. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly (3- hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour. Technol. 2012, 111, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Gogolewski, S.; Jovanovic, M.; Perren, S.M.; Dillon, J.G.; Hughes, M.K. Tissue Response and in-vivo degradation of selected polyhydroxyacids polylactides (PLA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J. Biomed. Mater. Res. 1993, 27, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.D.; Anderson, W.A.; Ayorinde, F.O.; Eribo, B.E. Biosynthesis and characterization of copolymer poly(3HB-co-3HV) from saponiWed Jatropha curcas oil by Pseudomonas oleovorans. J. Ind. Microbiol. Biotechnol. 2010, 37, 849–856. [Google Scholar] [CrossRef]
- Santhanam, A.; Sasidharan, S. Microbial production of polyhydroxyalkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr. J. Biotechnol. 2010, 9, 3144–3150. [Google Scholar]
- Mozumder, M.S.I.; Goormachtigh, L.; Garcia-Gonzalez, L.; De Wever, H.; Volcke, E.I. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB). Bioresour. Technol. 2014, 155, 272–280. [Google Scholar] [CrossRef]
- Castillo, R.F.; Valera, F.R.; Ramos, J.G.; Berraquero, F.R. Accumulation of Poly(hydroxybutyrate) by Halobacteria. Appl. Environ. Microbiol. 1986, 51, 214–216. [Google Scholar] [CrossRef] [Green Version]
- De Smet, M.J.; Eggin, G.; Witholt, K.B.; Kingma, J.; Wynberg, H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J. Bacteriol. 1983, 154, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Kosseva, M.R.; Rusbandi, E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int. J. Biol. Macromol. 2018, 107, 762–778. [Google Scholar] [CrossRef] [PubMed]
- Sajid, A.; Sabu, T.; Sandeep, K.P.; Nandakumar, K.; Jini, V.; Srinivasarao, Y. Polymers for Packaging Applications; Taylor and Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Jeon, J.M.; Brigham, C.J.; Kim, Y.H.; Kim, H.J.; Kim, D.H.; Yi, H.; Kim, C.; Rha AJSinskey, Y.H.; Yang, Y.H. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 2014, 98, 5461–5469. [Google Scholar] [CrossRef]
- Feldmann, M. The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Compos. Part A Appl. Sci. Manuf. 2016, 87, 146–152. [Google Scholar] [CrossRef]
- Yasuniwa, M.; Satou, T.J. Multiple melting behavior of poly (butylene succinate): Thermal analysis of melt-crystallized samples. J. Polym. Sci. Polym. Phys. 2002, 40, 2411–2420. [Google Scholar] [CrossRef]
Substrates | Dry Cell Weight (g/L) | PHAs (g/L) | PHAs Content (g/g) | PHAs Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Time (h) | 24 | 48 | 72 | 24 | 48 | 72 | 24 h | 48 | 72 | 24, 48, 72 |
Glucose | 0.53 | 1.45 | 0.96 | 0.15 | 0.16 | 0.10 | 0.28 | 0.11 | 0.10 | 28, 11, 10 |
Acetic | 0.42 | 0.95 | 0.79 | 0.11 | 0.12 | 0.09 | 0.26 | 0.13 | 0.11 | 26, 13, 11 |
Butyric | 0.36 | 0.85 | 0.72 | 0.08 | 0.11 | 0.06 | 0.22 | 0.12 | 0.08 | 22, 12, 8 |
Propionic | 0.15 | 0.35 | 0.18 | 0.02 | 0.03 | 0.01 | 0.13 | 0.09 | 0.06 | 13, 9, 6 |
Valeric | 0.21 | 0.52 | 0.38 | 0.04 | 0.07 | 0.03 | 0.19 | 0.13 | 0.08 | 19, 13, 8 |
Isovaleric | 0.28 | 0.65 | 0.46 | 0.06 | 0.10 | 0.05 | 0.21 | 0.15 | 0.11 | 21, 15, 11 |
Components | VFAs-CM (g/L) | (%) | VFAs-PP (g/L) | (%) |
---|---|---|---|---|
Acetic acid | 4.789 | 50.82 | 5.718 | 67.85 |
Butyric acid | 1.529 | 16.22 | 1.092 | 12.96 |
Isobutyric acid | 0.0025 | 0.027 | 0.0078 | 0.093 |
Propionic acid | 1.066 | 11.31 | 1.005 | 11.92 |
Valeric acid | 0.069 | 0.73 | 0.038 | 0.45 |
Isovaleric acid | 0.268 | 2.84 | 0.167 | 1.98 |
(NH4+-N) | 1.700 | 18.04 | 0.400 | 4.75 |
Substrates | Dry Cell Weight (g/L) | PHAs (g/L) | PHAs (g/g) | PHAs (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | 24 | 48 | 72 | 24 | 48 | 72 | 24 | 48 | 72 | 24 | 48 | 72 |
VFAs-CM(g/L) | 0.45 | 1.03 | 0.32 | 0.12 | 0.29 | 0.10 | 0.27 | 0.28 | 0.31 | 27 | 28 | 31 |
3 | 0.75 | 1.16 | 1.02 | 0.23 | 0.38 | 0.17 | 0.31 | 0.33 | 0.17 | 31 | 33 | 17 |
5 | 1.24 | 1.64 | 1.45 | 0.20 | 0.58 | 0.21 | 0.16 | 0.35 | 0.14 | 16 | 35 | 14 |
VFAs-PP (g/L) | 0.56 | 1.19 | 0.61 | 0.13 | 0.32 | 0.12 | 0.23 | 0.27 | 0.20 | 23 | 10 | 20 |
3 | 1.1 | 1.62 | 1.3 | 0.11 | 0.39 | 0.25 | 0.01 | 0.24 | 0.19 | 10 | 24 | 19 |
5 | 1.4 | 2.11 | 1.82 | 0.28 | 0.82 | 0.18 | 0.21 | 0.39 | 0.10 | 20 | 39 | 10 |
Polymer Sample | Tm °C | ΔHm | Xc | Suspected PHBV |
---|---|---|---|---|
Commercial PHB | 165.57 | 93.44 | 0.64 | PHB |
PHAs fromSVFAs | 113.84 | 75.92 | 0.52 | PHB8V |
VFAs-CM | 152.70 | 99.28 | 0.68 | PHB5V |
VFAs-PP | 152.92 | 94.9 | 0.65 | PHB5V |
Sample | DehydrationTemperature (°C) | Moisture Loss (Dehydration) (%) | Volatiles Loss (°C) | Volatiles Mass (%) | Thermal Degradation Td (°C) | Mass Loss (%) | Inert Residue (%) |
---|---|---|---|---|---|---|---|
Commercial PHB | - | - | - | - | 271.94 | 58.46 | 10.67 |
PHAs from SVFAs | 138.80 | 6.2 | 382.75 | 7.78 | 382.75 | 84.03 | 2.17 |
PHAs from VFAs-CM | 114.10 | 1.33 | 364.68 | 1.08 | 364.68 | 79.47 | 8.4 |
PHAs from VFAs-PP | 100 | - | 256.33 | 50.02 | 385.50 | 44.89 | - |
S/N | Microorganism | Substrate | Mode | PHA/PHB Yield (%) | Reference |
---|---|---|---|---|---|
1 | P. oleovorans | Glucose | Batch | 28 | This study |
VFAs from Potato peels | Batch | 39 | This study | ||
VFAs from Chicken Manure | Batch | 35 | This study | ||
2 | P. oleovorans | Jatropha Curcas Oil | Batch | 26 | [26] |
3 | P. oleovorans | Glucose | Batch | 6.8 | [27] |
4 | P. oleovorans | Sodium Octanoate | Batch | 13 | [8] |
5 | P. oleovorans | n-alkanoic acid | Batch | 30 | [18] |
6 | C. necator | Glucose | Fed-batch | 15 | [28] |
7 | C. necator | Waste Glycerol | Fed-batch | 14 | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aremu, M.O.; Ishola, M.M.; Taherzadeh, M.J. Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans. Fermentation 2021, 7, 287. https://doi.org/10.3390/fermentation7040287
Aremu MO, Ishola MM, Taherzadeh MJ. Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans. Fermentation. 2021; 7(4):287. https://doi.org/10.3390/fermentation7040287
Chicago/Turabian StyleAremu, Mujidat O., Mofoluwake M. Ishola, and Mohammad J. Taherzadeh. 2021. "Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans" Fermentation 7, no. 4: 287. https://doi.org/10.3390/fermentation7040287
APA StyleAremu, M. O., Ishola, M. M., & Taherzadeh, M. J. (2021). Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans. Fermentation, 7(4), 287. https://doi.org/10.3390/fermentation7040287