Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Batch Assays
2.2. Inoculum
2.3. Stock Solution Preparation
2.4. Experimental Design and Procedure
2.5. Analyses of Recorded Data
3. Results and Discussion
3.1. Control Substrates
3.2. Furanic Compounds
3.3. Acidic Compounds
3.4. Phenolic Compounds
3.5. Process-wastewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations:
AD | anaerobic digestion |
BMP | biochemical methane potential |
COD | chemical oxygen demand |
DOC | dissolved organic carbon |
5-HMF | 5-hydroxymethylfurfural |
FM | fresh mass |
HBT | Hohenheim biogas yield test |
HTC | hydrothermal carbonization |
HRT | hydraulic retention time |
HTL | hydrothermal liquefaction |
IC50 | half maximal inhibitory concentration |
MAE | mean absolute error |
MGM | modified Gompertz model |
SMY | specific methane yield |
TCC | thermochemical conversion |
TGM | two-phase Gompertz model |
TS | total solids |
VDI | association of German engineers |
VFA | volatile fatty acid |
VS | volatile solids |
References
- Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustain. Chem. Eng. 2018, 6, 8064–8092. [Google Scholar] [CrossRef]
- Kohli, K.; Prajapati, R.; Sharma, B.K. Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries. Energies 2019, 12, 233. [Google Scholar] [CrossRef]
- Krawielitzki, S.; Kläusli, T.M. Modified Hydrothermal Carbonization Process for Producing Biobased 5-HMF Platform Chemical. Ind. Biotechnol. 2015, 11, 6–8. [Google Scholar] [CrossRef]
- Wang, Y.; Brown, C.A.; Chen, R. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF). AIMS Microbiol. 2018, 4, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Van Putten, R.-J.; Van Der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; De Vries, J.G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. [Google Scholar] [CrossRef] [PubMed]
- Świątek, K.; Olszewski, M.P.; Kruse, A. Continuous synthesis of 5-hydroxymethylfurfural from biomass in on-farm biorefinery. GCB Bioenergy 2022, 14, 681–693. [Google Scholar] [CrossRef]
- Yu, I.K.M.; Tsang, D.C.W. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour. Technol. 2017, 238, 716–732. [Google Scholar] [CrossRef]
- Steinbach, D.; Klier, A.; Kruse, A.; Sauer, J.; Wild, S.; Zanker, M. Isomerization of Glucose to Fructose in Hydrolysates from Lignocellulosic Biomass Using Hydrotalcite. Processes 2020, 8, 644. [Google Scholar] [CrossRef]
- Moreau, C.; Belgacem, M.N.; Gandini, A. Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers. Top. Catal. 2004, 27, 11–30. [Google Scholar] [CrossRef]
- Si, B.; Li, J.; Zhu, Z.; Shen, M.; Lu, J.; Duan, N.; Zhang, Y.; Liao, Q.; Huang, Y.; Liu, Z. Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. Sci. Total Environ. 2018, 630, 1124–1132. [Google Scholar] [CrossRef]
- Stökle, K.; Hülsemann, B.; Steinbach, D.; Cao, Z.; Oechsner, H.; Kruse, A. A biorefinery concept using forced chicory roots for the production of biogas, hydrochar, and platform chemicals. Biomass Convers. Biorefinery 2021, 11, 1453–1463. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Leong, H.Y.; Chang, C.-K.; Khoo, K.S.; Chew, K.W.; Chia, S.R.; Lim, J.W.; Chang, J.-S.; Show, P.L. Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels 2021, 14, 87. [Google Scholar] [CrossRef]
- de Jong, E.; Higson, A.; Walsh, P.; Wellisch, M. Bio-based Chemicals Value Added Products from Biorefineries. IEA Bioenergy Task42 Biorefinery 2012, 34, 1–36. [Google Scholar]
- Dittmer, C.; Krümpel, J.; Lemmer, A. Power demand forecasting for demand-driven energy production with biogas plants. Renew. Energy 2021, 163, 1871–1877. [Google Scholar] [CrossRef]
- Dias, M.E.; Oliveira, G.H.D.; Couto, P.T.; Dussán, K.J.; Zaiat, M.; Ribeiro, R.; Stablein, M.J.; Watson, J.T.; Zhang, Y.; Tommaso, G. Anaerobic digestion of hydrothermal liquefaction wastewater from spent coffee grounds. Biomass Bioenergy 2021, 148, 106030. [Google Scholar] [CrossRef]
- Ghimire, N.; Bakke, R.; Bergland, W.H. Thermophilic Methane Production from Hydrothermally Pretreated Norway Spruce (Picea abies). Appl. Sci. 2020, 10, 4989. [Google Scholar] [CrossRef]
- van der Wijst, C.; Ghimire, N.; Bergland, W.H.; Toven, K.; Bakke, R.; Eriksen, Ø. Improving carbon product yields in biocarbon production by combining pyrolysis and anaerobic digestion. BioResources 2021, 16, 3964–3977. [Google Scholar] [CrossRef]
- Erdogan, E.; Atila, B.; Mumme, J.; Reza, M.T.; Toptas, A.; Elibol, M.; Yanik, J. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 2015, 196, 35–42. [Google Scholar] [CrossRef]
- Marin-Batista, J.D.; Villamil, J.A.; Qaramaleki, S.V.; Coronella, C.J.; Mohedano, A.F.; de la Rubia, M.A. Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renew. Energy 2020, 160, 623–632. [Google Scholar] [CrossRef]
- Ipiales, R.P.; Mohedano, A.F.; Diaz, E.; de la Rubia, M.A. Energy recovery from garden and park waste by hydrothermal carbonisation and anaerobic digestion. Waste Manag. 2022, 140, 100–109. [Google Scholar] [CrossRef]
- Lucian, M.; Volpe, M.; Merzari, F.; Wüst, D.; Kruse, A.; Andreottola, G.; Fiori, L. Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour. Technol. 2020, 314, 123734. [Google Scholar] [CrossRef]
- Kambo, H.S.; Minaret, J.; Dutta, A. Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product? Waste Biomass Valorization 2018, 9, 1181–1189. [Google Scholar] [CrossRef]
- Khan, M.T.; Krümpel, J.; Wüst, D.; Lemmer, A. Anaerobic Degradation of Individual Components from 5-Hydroxymethylfurfural Process-Wastewater in Continuously Operated Fixed Bed Reactors. Processes 2021, 9, 677. [Google Scholar] [CrossRef]
- Ipiales, R.P.; de la Rubia, M.A.; Diaz, E.; Mohedano, A.F.; Rodriguez, J.J. Integration of Hydrothermal Carbonization and Anaerobic Digestion for Energy Recovery of Biomass Waste: An Overview. Energy Fuels 2021, 35, 17032–17050. [Google Scholar] [CrossRef]
- Ghimire, N.; Bakke, R.; Bergland, W.H. Liquefaction of lignocellulosic biomass for methane production: A review. Bioresour. Technol. 2021, 332, 125068. [Google Scholar] [CrossRef]
- De la Rubia, M.A.; Villamil, J.A.; Rodriguez, J.J.; Mohedano, A.F. Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge. Renew. Energy 2018, 127, 697–704. [Google Scholar] [CrossRef]
- Almeida, J.R.M.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340–349. [Google Scholar] [CrossRef]
- McCarty, P.L. Anaerobic Waste Treatment Fundamentals, Part 3: Toxic materials and their control. Public Work. 1964, 95, 91–94. [Google Scholar]
- Ibraheem, O.; Ndimba, B.K. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-derived Inhibitory Compounds. Int. J. Biol. Sci. 2013, 9, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.M.; Bertilsson, M.; Gorwa-Grauslund, M.F.; Gorsich, S.; Lidén, G. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 2009, 82, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Helffrich, D.; Oechsner, H. The Hohenheim biogas yield test: Comparison of different laboratory techniques for the digestion of biomass. Agrartech. Forsch. 2003, 9, 27–30. [Google Scholar]
- Mittweg, G.; Oechsner, H.; Hahn, V.; Lemmer, A.; Reinhardt-Hanisch, A. Repeatability of a laboratory batch method to determine the specific biogas and methane yields. Eng. Life Sci. 2012, 12, 270–278. [Google Scholar] [CrossRef]
- VDI. VDI 4630–Fermentation of organic materials: Characterization of the substrate, sampling, collection of material data, fermentation tests. In VDI-Handbuch Energietechnik; Beuth Verlag GmbH: Berlin, Germany, 2006; pp. 44–59. [Google Scholar]
- Rivard, C.J.; Grohmann, K. Degradation of furfural (2-furaldehyde) to methane and carbon dioxide by an anaerobic consortium. Appl. Biochem. Biotechnol. 1991, 28–29, 285–295. [Google Scholar] [CrossRef]
- Boopathy, R.; Daniels, L. Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester. Curr. Microbiol. 1991, 23, 327–332. [Google Scholar] [CrossRef]
- Götz, M.; Rudi, A.; Heck, R.; Schultmann, F.; Kruse, A. Processing Miscanthus to high-value chemicals: A techno-economic analysis based on process simulation. GCB Bioenergy 2022, 14, 447–462. [Google Scholar] [CrossRef]
- Ghasimi, D.S.M.; Aboudi, K.; de Kreuk, M.; Zandvoort, M.H.; van Lier, J.B. Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chem. Eng. J. 2016, 295, 181–191. [Google Scholar] [CrossRef]
- Hülsemann, B.; Zhou, L.; Merkle, W.; Hassa, J.; Müller, J.; Oechsner, H. Biomethane Potential Test: Influence of Inoculum and the Digestion System. Appl. Sci. 2020, 10, 2589. [Google Scholar] [CrossRef]
- Chala, B.; Oechsner, H.; Müller, J. Introducing Temperature as Variable Parameter into Kinetic Models for Anaerobic Fermentation of Coffee Husk, Pulp and Mucilage. Appl. Sci. 2019, 9, 412. [Google Scholar] [CrossRef]
- Cao, Z.; Hülsemann, B.; Wüst, D.; Illi, L.; Oechsner, H.; Kruse, A. Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy Convers. Manag. 2020, 222, 113218. [Google Scholar] [CrossRef]
- Gomes, C.S.; Strangfeld, M.; Meyer, M. Diauxie Studies in Biogas Production from Gelatin and Adaptation of the Modified Gompertz Model: Two-Phase Gompertz Model. Appl. Sci. 2021, 11, 1067. [Google Scholar] [CrossRef]
- Nielfa, A.; Cano, R.; Vinot, M.; Fernández, E.; Fdz-Polanco, M. Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Saf. Environ. Prot. 2015, 94, 180–187. [Google Scholar] [CrossRef]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef]
- Benjamin, M.; Woods, S.; Ferguson, J. Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res. 1984, 18, 601–607. [Google Scholar] [CrossRef]
- Gutiérrez, T.; Buszko, M.L.; Ingram, L.O.; Preston, J.F. Reduction of Furfural to Furfuryl Alcohol by Ethanologenic Strains of Bacteria and Its Effect on Ethanol Production from Xylose. Appl. Biochem. Biotechnol. 2002, 98–100, 327–340. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J.-P.; Carrère, H. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol. Adv. 2014, 32, 934–951. [Google Scholar] [CrossRef]
- Badshah, M. Evaluation of Process Parameters and Treatments of Different Raw Materials for Biogas Production; Lund University: Lund, Sweden, 2012. [Google Scholar]
- Park, J.-H.; Yoon, J.-J.; Park, H.-D.; Lim, D.J.; Kim, S.-H. Anaerobic digestibility of algal bioethanol residue. Bioresour. Technol. 2012, 113, 78–82. [Google Scholar] [CrossRef]
- Boopathy, R.; Bokang, H.; Daniels, L. Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. Biotechnol. 1993, 11, 147–150. [Google Scholar] [CrossRef]
- Ran, H.; Zhang, J.; Gao, Q.; Lin, Z.; Bao, J. Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol. Biofuels 2014, 7, 1–12. [Google Scholar] [CrossRef]
- Wierckx, N.; Koopman, F.; Ruijssenaars, H.J.; De Winde, J.H. Microbial degradation of furanic compounds: Biochemistry, genetics, and impact. Appl. Microbiol. Biotechnol. 2011, 92, 1095–1105. [Google Scholar] [CrossRef]
- Habe, H.; Sato, S.; Morita, T.; Fukuoka, T.; Kirimura, K.; Kitamoto, D. Bacterial production of short-chain organic acids and trehalose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. Bioresour. Technol. 2015, 177, 381–386. [Google Scholar] [CrossRef]
- Rand, J.M.; Pisithkul, T.; Clark, R.L.; Thiede, J.M.; Mehrer, C.R.; Agnew, D.E.; Campbell, C.E.; Markley, A.L.; Price, M.N.; Ray, J.; et al. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat. Microbiol. 2017, 2, 1624–1634. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, S.-H.; Park, H.-D.; Lim, D.J.; Yoon, J.-J. Feasibility of anaerobic digestion from bioethanol fermentation residue. Bioresour. Technol. 2013, 141, 177–183. [Google Scholar] [CrossRef]
- Krümpel, J.; Schäufele, F.; Schneider, J.; Jungbluth, T.; Zielonka, S.; Lemmer, A. Kinetics of biogas production in Anaerobic Filters. Bioresour. Technol. 2016, 200, 230–234. [Google Scholar] [CrossRef]
- Krümpel, J.H.; Illi, L.; Lemmer, A. Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply. Environ. Technol. 2017, 39, 558–565. [Google Scholar] [CrossRef]
- Hafner, S.D.; Koch, K.; Carrere, H.; Astals, S.; Weinrich, S.; Rennuit, C. Software for biogas research: Tools for measurement and prediction of methane production. SoftwareX 2018, 7, 205–210. [Google Scholar] [CrossRef]
- Barakat, A.; Monlau, F.; Steyer, J.-P.; Carrere, H. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour. Technol. 2012, 104, 90–99. [Google Scholar] [CrossRef]
- Zaldivar, J.; Martinez, A.; Ingram, L.O. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 1999, 65, 24–33. [Google Scholar] [CrossRef]
- Fang, H.; Liang, D.; Zhang, T.; Liu, Y. Anaerobic treatment of phenol in wastewater under thermophilic condition. Water Res. 2006, 40, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Elshahed, M.S.; Bhupathiraju, V.K.; Wofford, N.Q.; Nanny, M.A.; McInerney, M.J. Metabolism of Benzoate, Cyclohex-1-ene Carboxylate, and Cyclohexane Carboxylate by “Syntrophus aciditrophicus” Strain SB in Syntrophic Association with H2-Using Microorganisms. Appl. Environ. Microbiol. 2001, 67, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Levén, L.; Nyberg, K.; Schnürer, A. Conversion of phenols during anaerobic digestion of organic solid waste–A review of important microorganisms and impact of temperature. J. Environ. Manag. 2012, 95, S99–S103. [Google Scholar] [CrossRef] [PubMed]
- Levén, L.; Schnürer, A. Effects of temperature on biological degradation of phenols, benzoates and phthalates under methanogenic conditions. Int. Biodeterior. Biodegrad. 2005, 55, 153–160. [Google Scholar] [CrossRef]
- Al-Khalid, T.; El-Naas, M.H. Aerobic Biodegradation of Phenols: A Comprehensive Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1631–1690. [Google Scholar] [CrossRef]
- Chapleur, O.; Madigou, C.; Civade, R.; Rodolphe, Y.; Mazéas, L.; Bouchez, T. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities. Biodegradation 2016, 27, 15–27. [Google Scholar] [CrossRef]
- Poirier, S.; Bize, A.; Bureau, C.; Bouchez, T.; Chapleur, O. Community shifts within anaerobic digestion microbiota facing phenol inhibition: Towards early warning microbial indicators? Water Res. 2016, 100, 296–305. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Eklund, R.; Gustafsson, L.; Niklasson, A.C.; Lidén, G. Characterization and Fermentation of Dilute-Acid Hydrolyzates from Wood. Ind. Eng. Chem. Res. 1997, 36, 4659–4665. [Google Scholar] [CrossRef]
Parameter | Thermophilic | Mesophilic |
---|---|---|
g/L | g/L | |
Total organic carbon (TOC) | 19.92 | 20.81 |
Inorganic carbon (IC) | 3.58 | 3.76 |
Dissolved organic carbon (DOC) | 7.94 | 9.52 |
Total nitrogen (TN) | 5.48 | 5.59 |
Dissolved nitrogen (DN) | 5.01 | 5.46 |
Total solids, (% FM) | 6.14 | 6.07 |
Volatile solids, (% FM) | 3.95 | 3.91 |
Volatile solids, (% TS) | 64.28 | 64.46 |
pH | 8.57 | 8.50 |
Test Component | IUPAC Name | Molecular Formula | Molecular Mass |
---|---|---|---|
g/mol | |||
5-Hydroxymethylfurfural | 5-(hydroxymethyl)furan-2-carbaldehyde | C6H6O3 | 126.11 |
Furfural | Furan-2-carbaldehyde | C5H4O2 | 96.08 |
Furfuryl alcohol | Furan-2-ylmethanol | C5H6O2 | 98.1 |
Furoic acid | Furan-2-carboxylic acid | C5H4O3 | 112.08 |
Levulinic acid | 4-Oxopentanoic acid | C5H8O3 | 116.11 |
Glycolic acid | 2-hydroxyacetic acid | C2H4O3 | 76.05 |
Syringaldehyde | 4-hydroxy-3,5-dimethoxybenzaldehyde | C9H10O4 | 182.17 |
Vanillin | 4-hydroxy-3-methoxybenzaldehyde | C8H8O3 | 152.15 |
Phenol | Phenol | C6H6O | 94.11 |
Component Conc. | Stock Solution | Inoculum | Distilled Water | Working Vol. |
---|---|---|---|---|
gCOD/L | mL | mL | mL | mL |
2 | 1.5 | 35 | 13.5 | 50 |
4 | 3 | 35 | 12 | 50 |
6 | 4.5 | 35 | 10.5 | 50 |
8 | 6 | 35 | 9 | 50 |
Control Substrate | Temperature | Mass | Methane Yield | |
---|---|---|---|---|
Measured | Specific | |||
[°C] | [g] | [mL] | [mL/gVS] | |
Inoculum | 37 | 50 | 87.6 ± 4.9 | 44.8 ± 2.5 |
53 | 50 | 98.3 ± 2.5 | 49.8 ± 1.3 | |
Concentrate | 37 | 0.4 | 115.9 ± 4.1 | 354.1 ± 12.5 |
53 | 0.4 | 107.9 ± 10.2 | 326.1 ± 30.8 | |
Hay | 37 | 0.4 | 115.1 ± 3.3 | 351.3 ± 10.0 |
53 | 0.4 | 87.3 ± 3.4 | 266.2 ± 10.4 |
Test Component | Temperature | Concentration | Methane Yield | Kinetic Parameter | R2 | MAE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Measured | Specific | Estimated | a | b | c | |||||
[°C] | [gCOD/L] | [mL] | [mL/gCOD] | [mL/gCOD] | [mL/gCOD] | [mL/gCOD d] | [d] | |||
5-Hydroxy- methyl-furfural | 37 | 2 | 35.5 ± 15.5 | 355.2 ± 155.1 ab | 355.9 ± 92.4 | 356.3 ± 93.0 | 30.2 ± 11.2 | 4.2 ± 1.6 | 0.944 | 22.79 |
4 | 76.9 ± 10.8 | 384.4 ± 54.2 a | 337.4 ± 28.0 | 337.4 ± 28.0 | 34.4 ± 3.7 | 13.0 ± 0.4 | 0.967 | 20.35 | ||
6 | 46.0 ± 9.8 | 153.4 ± 32.7 c | 145.2 ± 29.8 | 145.3 ± 30.0 | 15.2 ± 1.3 | 26.0 ± 1.0 | 0.885 | 16.41 | ||
8 | 69.3 ± 23.0 | 173.4 ± 57.4 bc | 169.3 ± 52.6 | 175.9 ± 49.5 | 15.1 ± 9.6 | 36.9 ± 1.7 | 0.860 | 18.67 | ||
53 | 2 | 28.9 ± 4.9 | 289.0 ± 48.8 abc | 284.9 ± 23.2 | 284.9 ± 23.2 | 28.5 ± 0.3 | 10.6 ± 0.4 | 0.989 | 9.51 | |
4 | 41.5 ± 1.74 | 207.3 ± 8.7 abc | 181.9 ± 1.9 | 181.9 ± 1.9 | 37.8 ± 16.6 | 24.2 ± 2.2 | 0.885 | 25.49 | ||
6 | 61.0 ± 5.8 | 203.4 ± 19.4 abc | 189.2 ± 14.8 | 189.2 ± 14.8 | 21.4 ± 2.4 | 22.6 ± 2.1 | 0.952 | 14.05 | ||
8 | 62.3 ± 14.9 | 155.9 ± 37.3 c | 149.8 ± 37.8 | 150.0 ± 38.0 | 15.0 ± 3.1 | 28.0 ± 2.2 | 0.932 | 11.30 | ||
Furfural | 37 | 2 | 49.5 ± 7.3 | 495.0 ± 73.2 a | 434.7 ± 38.3 | 434.7 ± 38.3 | 61.6 ± 11.5 | 3.0 ± 0.4 | 0.965 | 23.45 |
4 | 67.7 ± 8.3 | 338.5 ± 41.7 b | 322.7 ± 34.2 | 322.7 ± 34.2 | 35.4 ± 1.2 | 5.2 ± 0.1 | 0.992 | 9.50 | ||
6 | 97.7± 7.8 | 325.8 ± 25.9 b | 312.3 ± 21.4 | 312.3 ± 21.4 | 24.5 ± 1.8 | 7.4 ± 0.4 | 0.991 | 8.74 | ||
8 | 92.5 ± 0.9 | 231.2 ± 2.2 b | 215.4 ± 4.7 | 221.5 ± 4.7 | 17.7 ± 1.6 | 9.6 ± 0.7 | 0.987 | 8.58 | ||
53 | 2 | 34.6 ± 7.0 | 346.1 ± 69.7 b | 339.2 ± 32.9 | 339.2 ± 32.9 | 76.0 ± 9.5 | 2.6 ± 0.2 | 0.982 | 13.61 | |
4 | 66.0 ± 1.2 | 329.9 ± 6.1 b | 307.2 ± 2.1 | 307.2 ± 2.1 | 53.0 ± 4.1 | 3.7 ± 0.2 | 0.987 | 10.06 | ||
6 | 83.1 ± 7.2 | 277.0 ± 23.9 b | 273.6 ± 16.3 | 273.6 ± 16.3 | 42.7 ± 2.3 | 5.8 ± 0.5 | 0.992 | 7.55 | ||
8 | 103.6 ± 7.2 | 259.1 ± 18.1 b | 252.0 ± 7.3 | 252.0 ± 7.3 | 34.4 ± 1.6 | 9.1 ± 0.4 | 0.991 | 7.74 | ||
Furfuryl alcohol | 37 | 2 | 59.7 ± 4.2 | 597.0 ± 42.5 a | 512.1 ± 21.9 | 512.1 ± 21.9 | 77.3 ± 4.0 | 2.3 ± 0.0 | 0.966 | 25.55 |
4 | 91.5 ± 1.1 | 457.4 ± 5.3 b | 435.2 ± 5.7 | 435.2 ± 5.7 | 57.3 ± 1.3 | 2.6 ± 0.1 | 0.993 | 12.19 | ||
6 | 125.0 ± 15.6 | 416.6 ± 51.2 bc | 397.9 ± 22.5 | 397.9 ± 22.5 | 44.0 ± 1.5 | 3.0 ± 0.1 | 0.985 | 14.39 | ||
8 | 160.7 ± 7.6 | 401.6 ± 18.9 bc | 398.4 ± 13.0 | 398.4 ± 13.0 | 37.6 ± 1.3 | 3.4 ± 0.1 | 0.983 | 15.01 | ||
53 | 2 | 42.1 ± 7.6 | 421.5 ± 75.9 bc | 410.5 ± 24.5 | 410.5 ± 24.5 | 95.3 ± 7.7 | 1.7 ± 0.1 | 0.980 | 16.24 | |
4 | 74.6 ± 7.4 | 373.2 ± 36.9 bc | 367.6 ± 24.1 | 367.6 ± 24.1 | 72.5 ± 7.9 | 2.0 ± 0.2 | 0.992 | 10.20 | ||
6 | 98.6 ± 13.6 | 328.7 ± 45.2 c | 332.9 ± 34.0 | 332.9 ± 34.0 | 61.6 ± 3.0 | 2.3 ± 0.2 | 0.994 | 7.16 | ||
8 | 146.7 ± 7.7 | 366.7 ± 19.4 bc | 367.8 ± 7.7 | 367.8 ± 7.7 | 68.4 ± 10.2 | 2.7 ± 0.1 | 0.994 | 8.45 |
Test Component | Temperature | Concentration | Methane yield | Kinetic parameter | R2 | MAE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Measured | Specific | Estimated | a | b | c | |||||
[°C] | [gCOD L−1] | [mL] | [mL/gCOD] | [mL/gCOD] | [mL/gCOD] | [mL/gCOD d] | [d] | |||
Furoic acid | 37 | 2 | 53.0 ± 4.1 | 530.4 ± 40.6 a | 481.5 ± 39.5 | 481.5 ± 39.5 | 71.9 ± 7.0 | 3.1 ± 0.3 | 0.987 | 15.24 |
4 | 83.3 ± 0.9 | 416.4 ± 4.7 b | 400.2 ± 6.1 | 400.2 ± 6.1 | 60.8 ± 0.8 | 4.1 ± 0.0 | 0.993 | 10.83 | ||
6 | 120.0 | 399.9 b | 395.0 | 395.0 | 47.8 | 5.4 | 0.992 | 10.02 | ||
8 | 148.0 ± 4.9 | 370.1 ± 12.3 b | 363.7 ± 3.4 | 363.7 ± 3.4 | 39.9 ± 2.0 | 6.5 ± 0.0 | 0.991 | 10.64 | ||
53 | 2 | 38.3 ± 1.3 | 382.9 ± 13.0 b | 337.2 ± 12.0 | 337.2 ± 12.0 | 70.8 ± 5.2 | 2.2 ± 0.1 | 0.972 | 16.10 | |
4 | 57.5 ± 7.9 | 287.7 ± 39.3 c | 290.2 ± 22.1 | 290.2 ± 22.1 | 71.5 ± 0.9 | 2.5 ± 0.3 | 0.993 | 6.93 | ||
6 | 77.8 ± 5.7 | 259.2 ± 19.1 c | 264.8 ± 12.3 | 264.8 ± 12.3 | 56.5 ± 2.1 | 3.0 ± 0.0 | 0.997 | 4.35 | ||
8 | 108.5 ± 9.5 | 271.1 ± 23.7 c | 267.1 ± 5.5 | 267.1 ± 5.5 | 47.8 ± 1.0 | 3.8 ± 0.2 | 0.993 | 6.91 | ||
Levulinic acid | 37 | 2 | 49.6 ± 6.7 | 496.1 ± 66.9 a | 507.3 ± 69.9 | 651.4 ± 109.5 | 12.1 ± 1.8 | 12.0 ± 4.5 | 0.982 | 19.71 |
4 | 69.1 ± 18.6 | 345.5 ± 93.1 ab | 359.4 ± 98.4 | 432.2 ± 142.5 | 10.5 ± 2.2 | 17.4 ± 5.2 | 0.971 | 16.50 | ||
6 | 94.9 ± 13.6 | 316.3 ± 45.4 b | 331.0 ± 48.3 | 508.7 ± 172.2 | 8.1 ± 1.4 | 15.7 ± 1.6 | 0.969 | 15.02 | ||
8 | 124.8 ± 3.8 | 312.1 ± 9.5 b | 322.8 ± 13.4 | 369.6 ± 67.1 | 17.3 ± 12.4 | 13.3 ± 1.8 | 0.983 | 11.67 | ||
53 | 2 | 35.4 ± 6.2 | 354.4 ± 61.6 ab | 347.1 ± 64.1 | 347.9 ± 63.7 | 42.4 ± 13.7 | 14.8 ± 3.3 | 0.978 | 15.46 | |
4 | 66.1 ± 9.8 | 330.7 ± 49.0 b | 327.8 ± 39.2 | 327.8 ± 39.2 | 30.6 ± 3.1 | 16.5 ± 0.3 | 0.978 | 15.31 | ||
6 | 103.9 ± 3.0. | 346.4 ± 10.0 ab | 347.2 ± 7.4 | 347.2 ± 7.4 | 30.4 ± 4.4 | 16.7 ± 0.2 | 0.972 | 17.15 | ||
8 | 134.8 ± 6.5 | 336.9 ± 16.2 b | 336.5 ± 10.6 | 336.6 ± 10.6 | 35.1 ± 7.0 | 17.3 ± 1.3 | 0.979 | 14.56 | ||
Glycolic acid | 37 | 2 | 48.7 ± 0.9 | 486.9 ± 8.9 a | 439.4 ± 16.3 | 439.9 ± 17.0 | 29.1 ± 7.9 | 8.6 ± 1.0 | 0.954 | 33.10 |
4 | 54.1 ± 11.6 | 270.3 ± 58.1 b | 271.1 ± 33.9 | 274.9 ± 31.2 | 29.7 ± 18.0 | 14.1 ± 2.2 | 0.971 | 15.14 | ||
6 | 89.6 ± 5.3 | 298.5 ± 17.6 b | 276.8 ± 20.3 | 279.9 ± 21.7 | 18.2 ± 6.8 | 14.6 ± 0.6 | 0.967 | 16.41 | ||
8 | 116.3 ± 18.2 | 290.6 ± 45.4 b | 291.4 ± 52.2 | 292.6 ± 53.8 | 23.7 ± 10.9 | 20.7 ± 8.7 | 0.964 | 17.06 | ||
53 | 2 | 34.9 ± 7.5 | 348.7 ± 75.5 b | 345.2 ± 72.3 | 237.7 ± 32.1 * | 48.1 ± 24.7 * | 33.1 ± 1.8 * | 0.961 | 14.65 | |
4 | 48.1 ± 6.2 | 240.7 ± 31.1 b | 239.6 ± 33.0 | 77.3 ± 41.0 * | 15.4 ± 10.5 * | 40.0 ± 2.3 * | 0.964 | 13.18 | ||
6 | 92.3 ± 4.7 | 307.7 ± 15.7 b | 307.1 ± 14.7 | 69.5 ± 15.9 * | 5.8 ± 0.8 * | 36.2 ± 4.5 * | 0.986 | 9.04 | ||
8 | 114.0 ± 4.6 | 285.0 ± 11.5 b | 285.0 ± 11.5 | 54.8 ± 16.3 * | 5.2 ± 1.4 * | 37.5 ± 1.4 * | 0.996 | 4.58 |
Test Component | Temperature | Concentration | Methane Yield | Kinetic Parameter | R2 | MAE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Measured | Specific | Estimated | a | b | c | |||||
[°C] | [gCOD/L] | [mL] | [mL/gCOD] | [mL/gCOD] | [mL/gCOD] | [mL/gCOD d] | [d] | |||
Syring-aldehyde | 37 | 2 | 40.9 ± 2.3 | 409.1 ± 22.5 a | 390.3 ± 11.0 | 390.3 ± 11.0 | 45.2 ± 10.7 | 4.8 ± 0.4 | 0.994 | 9.11 |
4 | 65.9 ± 3.6 | 329.6 ± 18.1 a | 321.6 ± 12.1 | 321.6 ± 12.1 | 36.5 ± 3.0 | 6.7 ± 0.3 | 0.995 | 7.48 | ||
6 | 90.6 ± 1.5 | 301.9 ± 4.9 a | 292.3 ± 10.8 | 292.5 ± 10.7 | 23.9 ± 10.6 | 6.7 ± 1.4 | 0.994 | 6.54 | ||
8 | 117.2 ± 6.1 | 293.1 ± 15.2 a | 281.7 ± 26.5 | 281.8 ± 26.3 | 24.7 ± 12.9 | 8.7 ± 1.2 | 0.988 | 9.02 | ||
53 | 2 | 33.5 ± 19.4 | 335.0 ± 193.9 a | 309.5 ± 115.8 | 309.5 ± 115.8 | 49.2 ± 21.2 | 2.3 ± 0.8 | 0.956 | 17.67 | |
4 | 58.7 ± 8.9 | 293.4 ± 44.5 a | 294.2 ± 25.5 | 294.2 ± 25.5 | 41.6 ± 3.5 | 3.7 ± 0.2 | 0.989 | 8.66 | ||
6 | 70.3 ± 1.9 | 234.3 ± 6.3 a | 247.1 ± 1.4 | 247.1 ± 1.4 | 26.4 ± 5.5 | 5.8 ± 1.0 | 0.975 | 11.82 | ||
8 | 81.2 ± 12.5 | 202.9 ± 31.4 a | 206.6 ± 21.3 | 206.6 ± 21.3 | 36.5 ± 11.8 | 7.9 ± 1.8 | 0.983 | 7.76 | ||
Vanillin | 37 | 2 | 43.9 ± 9.2 | 439.0 ± 91.9 a | 439.7 ± 75.5 | 452.6 ± 86.6 | 15.0 ± 1.1 | 4.7 ± 0.1 | 0.982 | 16.54 |
4 | 77.3 ± 11.2 | 386.7 ± 56.2 ab | 375.8 ± 51.5 | 299.5 ± 87.6 * | 15.5 ± 3.5 * | 22.0 ±4.7 * | 0.993 | 8.06 | ||
6 | 80.0 ± 9.5 | 266.7 ± 31.5 b | 267.1 ± 32.1 | 195.5 ± 30.4 * | 31.8 ± 2.5 * | 39.3 ± 2.3 * | 0.996 | 3.27 | ||
8 | 21.2 ± 14.5 | 53.1 ± 36.2 c | 44.2 ± 7.9 | 44.2 ± 7.9 | 12.6 ± 1.1 | 3.9 ± 0.2 | 0.774 | 6.80 | ||
53 | 2 | 24.8 ± 4.3 | 248.4 ± 43.1 b | 307.1 ± 35.8 | 307.1 ± 35.8 | 45.0 ± 1.9 | 3.0 ± 0.6 | 0.924 | 24.72 | |
4 | 59.2 ± 1.9 | 296.1 ± 9.4 ab | 304.7 ± 7.1 | 304.7 ± 7.1 | 26.5 ± 1.7 | 3.4 ± 0.4 | 0.990 | 9.50 | ||
6 | −2.9 ± 17.8 | −9.8 ± 59.2 c | - | - | - | - | - | - | ||
8 | −0.9 ± 1.2 | −2.3 ± 2.9 c | - | - | - | - | - | - | ||
Phenol | 37 | 2 | 43.0 ± 1.0 | 430.5 ± 9.7 a | 421.2 ± 17.0 | 421.7 ± 17.9 | 48.4 ± 16.6 | 22.1 ± 0.9 | 0.996 | 7.74 |
4 | −15.7 ± 17.7 | −78.5 ± 88.6 b | - | - | - | - | - | - | ||
6 | −38.1 ± 0.7 | −127.0 ± 2.3 b | - | - | - | - | - | - | ||
8 | −58.9 ± 1.6 | −147.3 ± 3.9 b | - | - | - | - | - | - | ||
53 | 2 | −13.5 ± 12.2 | −134.9 ± 126.2 b | - | - | - | - | - | - | |
4 | −12.3 ± 2.1 | −61.5 ± 10.6 b | - | - | - | - | - | - | ||
6 | −59.2 ± 1.0 | −197.3 ± 3.5 b | - | - | - | - | - | - | ||
8 | −66.2 ± 2.2 | −165.5 ± 5.5 b | - | - | - | - | - | - |
Test Component | Temperature | Concentration | Methane Yield | ||
---|---|---|---|---|---|
Measured | Specific | Estimated | |||
[°C] | [gCOD/L] | [mL] | [mL/gCOD] | [mL/gCOD] | |
Wastewater | 37 | 2 | 33.9 ± 5.0 | 339.3 ± 49.7 a | 302.6 ± 47.9 |
4 | 49.8 ± 1.9 | 249.0 ± 9.5 abc | 226.1 ± 13.2 | ||
6 | 61.8 ± 7.9 | 206.1 ± 26.3 bcd | 193.4 ± 22.8 | ||
8 | 62.3 ± 9.6 | 155.6 ± 24.1 cd | 149.1 ± 22.6 | ||
53 | 2 | 25.5 ± 4.8 | 254.8 ± 48.2 ab | 247.3 ± 20.6 | |
4 | 42.9 ± 3.5 | 214.6 ± 17.5 bcd | 205.8 ± 6.0 | ||
6 | 44.0 ± 13.1 | 146.8 ± 43.6 d | 163.9 ± 24.0 | ||
8 | 65.7 ± 6.1 | 164.3 ± 15.2 bcd | 162.8 ± 6.0 |
Test Component | Temperature | Concentration | Kinetic Parameter | R2 | MAE | ||
---|---|---|---|---|---|---|---|
a | b | c | |||||
[°C] | [gCOD/L] | [mL/gCOD] | [mL/gCOD d] | [d] | |||
Wastewater | 37 | 2 | 302.6 ± 48.0 | 23.1 ± 2.2 | 2.2 ± 1.0 | 0.973 | 17.56 |
4 | 226.2 ± 13.2 | 15.3 ± 1.8 | 2.7 ± 0.7 | 0.982 | 9.24 | ||
6 | 193.4 ± 22.8 | 12.3 ± 1.3 | 5.5 ± 0.4 | 0.988 | 6.84 | ||
8 | 149.2 ± 22.7 | 8.6 ± 1.3 | 10.1 ± 1.9 | 0.994 | 3.42 | ||
53 | 2 | 247.3 ± 20.6 | 28.9 ± 4.0 | 2.0 ± 0.4 | 0.978 | 10.85 | |
4 | 205.8 ± 6.0 | 17.8 ± 2.4 | 2.7 ± 0.2 | 0.994 | 4.21 | ||
6 | 164.0 ± 24.2 | 12.4 ± 3.1 | 7.4 ± 3.7 | 0.975 | 7.02 | ||
8 | 162.9 ± 6.0 | 15.4 ± 4.0 | 18.8 ± 0.7 | 0.984 | 7.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.T.; Huelsemann, B.; Krümpel, J.; Wüst, D.; Oechsner, H.; Lemmer, A. Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures. Fermentation 2022, 8, 476. https://doi.org/10.3390/fermentation8100476
Khan MT, Huelsemann B, Krümpel J, Wüst D, Oechsner H, Lemmer A. Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures. Fermentation. 2022; 8(10):476. https://doi.org/10.3390/fermentation8100476
Chicago/Turabian StyleKhan, Muhammad Tahir, Benedikt Huelsemann, Johannes Krümpel, Dominik Wüst, Hans Oechsner, and Andreas Lemmer. 2022. "Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures" Fermentation 8, no. 10: 476. https://doi.org/10.3390/fermentation8100476
APA StyleKhan, M. T., Huelsemann, B., Krümpel, J., Wüst, D., Oechsner, H., & Lemmer, A. (2022). Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures. Fermentation, 8(10), 476. https://doi.org/10.3390/fermentation8100476