Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Brewing and Addition of Chlorella vulgaris Powder
2.3. Physicochemical Analyses
2.4. Phytochemical Analysis
2.5. Antioxidant Analyses
2.5.1. In Vitro DPPH Antioxidant Activity by Electron Paramagnetic Resonance (EPR)
2.5.2. Hydrogen Peroxide (H2O2) Scavenging Activity
2.6. Analysis of Volatile Organic Compounds
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Analysis
3.2. Phytochemical Composition and Antioxidant Activity of Beer Samples
3.3. Volatile Composition of Beer Samples
3.4. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, M. The Barbarian’s Beverage: A History of Beer in Ancient Europe; Routledge: Oxford, UK, 2005; ISBN 020330912X. [Google Scholar]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Díaz, L.E.; Montero, A.; González-Gross, M.; Vallejo, A.I.; Romeo, J.; Marcos, A. Influence of alcohol consumption on immunological status: A review. Eur. J. Clin. Nutr. 2002, 56, S50–S53. [Google Scholar] [CrossRef] [PubMed]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Abeille d’Or Corporation Sdn Bhd. Chlorella—The Most Exciting Nutritional Discovery on Planet Earth; Abeille d’Or Corporation Sdn Bhd: Kuala Lumpur, Malaysia, 2014; pp. 1–51. [Google Scholar]
- Dantas, D.M.M.; Cahu, T.B.; Oliveira, C.Y.B.; Abadie-Guedes, R.; Roberto, N.A.; Santana, W.M.; Galvez, A.O.; Guedes, R.C.A.; Bezerra, R.S. Chlorella vulgaris functional alcoholic beverage: Effect on propagation of cortical spreading depression and functional properties. PLoS ONE 2021, 16, e0255996. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal. Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Morimoto, T.; Nagatsu, A.; Murakami, N.; Sakakibara, J.; Tokuda, H.; Nishino, H.; Iwashima, A. Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochem 1995, 40, 1433–1437. [Google Scholar] [CrossRef]
- Singh, A.; Singh, S.P.; Bamezai, R. Perinatal influence of Chlorella vulgaris (E-25) on hepatic drug metabolizing enzymes and lipid peroxidation. Anticancer Res. 1998, 18, 1509–1514. [Google Scholar]
- Alberding, B.F. What If You Could Detox from Drinking Beer? Available online: https://www.vice.com/en/article/bmp4vm/what-if-you-could-detox-from-drinking-beer (accessed on 9 November 2021).
- Carnovale, G.; Leivers, S.; Rosa, F.; Norli, H.-R.; Hortemo, E.; Wicklund, T.; Horn, S.J.; Skjånes, K. Starch-rich microalgae as an active ingredient in beer brewing. Foods 2022, 11, 1449. [Google Scholar] [CrossRef]
- Essiedu, J.A.; Adadi, P.; Kovaleva, E.G. Production, and characterization of beer supplemented with Hibiscus sabdariffa (Malvaceae). Food Front. 2021, 3, 328–338. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.G.; Glukhareva, T.V.; Shatunova, S.A. Biotechnological production of non-traditional beer. AIP Conf. Proc. 2017, 1886, 020098. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.G.; Glukhareva, T.V.; Barakova, N.V. Production and investigations of antioxidant rich beverage: Utilizing Monascus purpureus IHEM LY2014-0696 and various malts. Agron. Res. 2018, 16, 1312–1321. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.G.; Glukhareva, T.V.; Shatunova, S.A.; Petrov, A.S. Production and analysis of non-traditional beer supplemented with Sea Buckthorn. Agron. Res. 2017, 15, 1831–1845. [Google Scholar] [CrossRef]
- American Society of Brewing Chemists (ASBC). ASBC Methods of Analysis; The American Society of Brewing Chemists: Saint Paul, MN, USA, 2009. [Google Scholar]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Huang, R.; Wu, W.; Shen, S.; Fan, J.; Chang, Y.; Chen, S.; Ye, X. Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse. Anal. Methods 2018, 10, 2575–2587. [Google Scholar] [CrossRef]
- Haida, Z.; Hakiman, M. A Comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Adadi, P. The Effect of Audible Sound on Fermentation and the Abundance of Volatile Organic Compounds of Beer. Ph.D. Dissertation, University of Otago, Dunedin, New Zealand, June 2022. Available online: http://hdl.handle.net/10523/13698 (accessed on 15 August 2022).
- Adadi, P.; Harris, A.; Bremer, P.; Silcock, P.; Ganley, A.R.D.; Jeffs, A.G.; Eyres, G.T. The effect of sound frequency and intensity on yeast growth, fermentation performance and volatile composition of beer. Molecules 2021, 26, 7239. [Google Scholar] [CrossRef]
- Maršálková, B.; Širmerová, M.; Kuřec, M.; Brányik, T.; Brányiková, I.; Melzoch, K.; Zachleder, V. Microalgae Chlorella sp. as an alternative source of fermentable sugars. Chem. Eng. Trans. 2010, 21, 1279–1284. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; da Silva Bon, E.P. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res. 2011, 2011, 405603. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Zhang, Y.; Wu, X.; Gong, X.; Wang, Q. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour. Technol. 2011, 102, 10158–10161. [Google Scholar] [CrossRef]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a dietary supplement to promote human health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Widyaningrum, D.; Prianto, A.D. Chlorella as a source of functional food ingredients: Short review. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012148. [Google Scholar] [CrossRef]
- Hill, A.E.; Stewart, G.G. Free amino nitrogen in brewing. Fermentation 2019, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.G.; Hill, A.E.; Russell, I. 125th anniversary review: Developments in brewing and distilling yeast strains. J. Inst. Brew. 2013, 119, 202–220. [Google Scholar] [CrossRef]
- Dinev, T.; Tzanova, M.; Velichkova, K.; Dermendzhieva, D.; Beev, G. Antifungal and antioxidant potential of methanolic extracts from Acorus Calamus l., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Appl. Sci. 2021, 11, 4745. [Google Scholar] [CrossRef]
- Jayshree, A.; Jayashree, S.; Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: Effective antioxidant, antibacterial, and anticancer mediators. Indian J. Pharm. Sci. 2016, 78, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Mtaki, K.; Kyewalyanga, M.S.; Mtolera, M.S.P. Assessment of antioxidant contents and free radical-scavenging capacity of Chlorella vulgaris cultivated in low-cost media. Appl. Sci. 2020, 10, 8611. [Google Scholar] [CrossRef]
- Bustos, L.; Soto, E.; Parra, F.; Echiburu-Chau, C.; Parra, C. Brewing of a Porter craft beer enriched with the plant Parastrephia lucida: A promising source of antioxidant compounds. J. Am. Soc. Brew. Chem. 2019, 77, 261–266. [Google Scholar] [CrossRef]
- Ambra, R.; Pastore, G.; Lucchetti, S. The role of bioactive phenolic compounds on the impact of beer on health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.C.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Zainasheff, J. Yeast: The Practical Guide to Beer Fermentation (Brewing Elements); Brewers Publications: Boulder, CO, USA, 2010; ISBN 9781938469060. [Google Scholar]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation, and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Ravasio, D.; Carlin, S.; Boekhout, T.; Groenewald, M.; Vrhovsek, U.; Walther, A.; Wendland, J. Adding flavor to beverages with non-conventional yeasts. Fermentation 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Baky, H.H.; Shallan, M.A.; El-Baroty, G.; El-Baz, F.K. Volatile compounds of the Microalga Chlorella vulgaris and Their phytotoxic effect. Pak. J. Biol. Sc. 2001, 5, 61–65. [Google Scholar] [CrossRef] [Green Version]
- van Durme, J.; Goiris, K.; de Winne, A.; de Cooman, L.; Muylaert, K. Evaluation of the volatile composition and sensory properties of five species of microalgae. J. Agric. Food Chem. 2013, 61, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Lafarge, C.; Cayot, N. Insight on a comprehensive profile of volatile compounds of Chlorella vulgaris extracted by two “Green” methods. Food Sci. Nutr. 2019, 7, 918–929. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, Á.S.; Vieira, K.R.; Pinheiro, P.N.; Caetano, P.A.; Wagner, R.; Lopes, E.J.; Zepka, L.Q. Study of the volatile profile of the microalgal biomass of Chlorella vulgaris estudo do perfil volátil da biomassa microalgal de Chlorella vulgaris. Braz. J. Dev. 2021, 7, 53630–53646. [Google Scholar] [CrossRef]
Samples | pH | FG (°Bx) | ABV (%) | Bitterness (BU) | Color (EBC) | TA (%) | FAN |
---|---|---|---|---|---|---|---|
CGB1 | 3.98 a ± 0.03 | 5.80 b ± 0.10 | 3.51 b ± 0.20 | 17.50 c ± 0.10 | 7.7 c ± 0.01 | 0.22 a ± 0.01 | 114.84 b ± 5.35 |
CGB2 | 4.03 a ± 0.03 | 5.80 b ± 0.40 | 3.51 b ± 0.03 | 18.60 b ± 0.10 | 8.5 b ± 0.30 | 0.22 a ± 0.03 | 131.21 b ± 6.93 |
CGB3 | 4.05 a ± 0.03 | 5.86 a ± 0.06 | 3.72 a ± 0.12 | 11.43 d ± 0.42 | 9.2 a ± 0.08 | 0.23 a ± 0.01 | 162.51 b ± 22.5 |
GPB | 4.03 a ± 0.05 | 5.40 c ± 0.02 | 3.49 b ± 0.03 | 20.17 a ± 0.29 | 7.1 d ± 0.03 | 0.21 a ± 0.02 | 116.84 b ± 2.88 |
Wort | _ | _ | _ | _ | _ | _ | 396.23 a ± 75 |
Samples | Total Flavonoid Content (mg QE/L) | Total Polyphenol Content (mg GAE/L) | EPR Antioxidant Activity (10−2 M-eqv) | H2O2 Scavenging Activity (%) |
---|---|---|---|---|
CGB 1 | 201.96 ab ± 13.98 | 257.81 b ± 15.20 | 4.39 c ± 0.20 | 88.86 c ± 0.15 |
CGB 2 | 200.1 ab ± 9.10 | 328 ab ± 10.60 | 4.64 b ± 0.03 | 89.18 b ± 0.14 |
CGB 3 | 242.7 a ± 16.04 | 442.02 a ± 15.20 | 4.66 a ± 0.01 | 89.98 a ± 0.04 |
GPB | 185.3 b ± 25.70 | 257.8 b ± 30.40 | 3.79 d ± 0.20 | 88.86 c ± 0.13 |
Peak# | Compounds | Abundance (TIC) × 106 | p-Value | |||
---|---|---|---|---|---|---|
CGB1 | CGB2 | CGB3 | GPB | |||
1 | Ethanol | 2360.8 ab ± 57.3 | 2256.5 b ± 60.1 | 2570.9 a ± 42.9 | 2452.1 ab ± 58.3 | 0.02 |
2 | 3-Methyl-1-butanol | 9.21 a ± 0.54 | 9.12 a ± 0.16 | 10.47 a ± 0.10 | 9.86 a ± 0.31 | 0.06 |
3 | 1-Hydroxy-2-propanone | 34.64 a ± 1.77 | 13.79c ± 0.76 | 24.51 b ± 2.11 | 22.94 b ± 1.50 | 0.01 |
4 | Acetic acid | 54.53 b ± 0.71 | 38.56 c ± 1.4 | 53.20 b ± 1.22 | 60.40 a ± 1.15 | 0.01 |
5 | Ethyl acetate | 114.33 b ± 1.25 | 67.20 c ± 5.41 | 111.05 b ± 1.83 | 121.57 a ± 1.25 | 0.01 |
6 | 2,3-Butanediol | 13.70 ab ± 0.70 | 11.85 b ± 0.92 | 15.30 ab ± 0.4 | 16.20 a ± 1.37 | 0.03 |
7 | (R-(R*,R*))-2,3-butanediol | 3.89 ab ± 0.41 | 3.46 b ± 0.53 | 5.73 a ± 0.71 | 4.94 ab ± 0.42 | 0.04 |
8 | 2-Hexanol | 2.27 a ± 0.55 | 3.32 a ± 0.81 | 3.62 a ± 0.87 | 3.27 a ± 0.65 | 0.40 |
9 | Isomaltol | 1.61 a ± 0.52 | 0.0 b ± 0.00 | 0.96 ab ± 0.08 | 1.77 a ± 0.51 | 0.03 |
10 | 2-Furanmethanol | 110.38 b ± 1.63 | 84.55 c ± 1.01 | 109.73 b ± 2.13 | 126.47 a ± 6.72 | 0.01 |
11 | 1,2-Cyclopentanedione | 6.96 ab ± 0.10 | 5.08 b ± 0.33 | 7.710 a ± 0.71 | 8.46 a ± 0.93 | 0.02 |
12 | 2(5H)-furanone | 3.75 a ± 0.69 | 2.76 a ± 0.33 | 3.63 a ± 0.67 | 4.28 a ± 0.86 | 0.29 |
13 | 2-Cyclohexen-1-ol | n.d. | 4.95 b ± 0.40 | 7.69 a ± 0.62 | n.d. | 0.01 |
14 | 6-Oxabicyclo (3.1.0)hexan-3-one | 7.35 ab ± 0.29 | 5.85 b ± 0.32 | n.d. | 8.09 a ± 0.64 | 0.01 |
15 | Phenylethyl alcohol | 7.46 a ± 0.49 | 5.81 a ± 0.81 | 7.18 a ± 0.57 | 7.80 a ± 0.37 | 0.09 |
16 | Maltol | 37.79 bc ± 0.60 | 35.54 c ± 0.95 | 41.18 ab ± 0.38 | 43.26 a ± 1.31 | 0.01 |
17 | 2H-pyran-2,6(3H)-dione | 1.72 ab ± 0.45 | n.d. | 2.31 a ± 0.39 | 3.21 a ± 0.10 | 0.02 |
18 | Dihydroxyacetone | 12.90 bc ± 0.28 | 10.88 c ± 0.50 | 16.38 a ± 0.75 | 14.80 ab ± 0.83 | 0.01 |
19 | Cyclopropyl carbinol | 28.37 a ± 1.64 | 16.30 b ± 1.29 | 30.91 a ± 1.12 | 33.77 a ± 2.04 | 0.01 |
20 | (S)-(+)-2′,3′-Dideoxyribonolactone | 22.04 ab ± 0.43 | 14.58 c ± 1.24 | 19.29 b ± 1.34 | 23.215 a ± 0.43 | 0.01 |
21 | 2-Hydroxy-gamma-butyrolactone | 7.30 a ± 0.93 | 4.48 a ± 1.03 | 8.03 a ± 1.35 | 6.03 a ± 0.79 | 0.09 |
22 | 1,2,3-Propanetriol-1-acetate | 5.13 a ± 1.53 | 2.25 a ± 0.75 | 4.02 a ± 0.13 | 2.91 a ± 0.37 | 0.10 |
23 | Ethyl caprylate | 8.59 ab ± 0.89 | 6.38 b ± 0.73 | 8.02 ab ± 0.28 | 10.37 a ± 1.22 | 0.40 |
24 | Glycerin | 248.50 ab ± 9.81 | 203.51 b ± 6.05 | 291.27 a ± 14.09 | 267.70 a ± 14.7 | 0.01 |
25 | 2-Furancarboxylic acid | 2.13 a ± 0.26 | n.d. | n.d. | 3.09 a ± 0.00 | 0.01 |
26 | 2-Methylbutyl isobutyrate | 13.69 bc ± 0.79 | 11.10 c ± 0.93 | 15.35 ab ± 0.74 | 17.83 a ± 0.71 | 0.01 |
27 | Dihydro-4-hydroxy-2-(3H)-furanone | 10.46 ab ± 1.9 | 8.64 b ± 0.30 | 12.82 ab ± 0.59 | 14.96 a ± 1.32 | 0.02 |
28 | Catechol | 6.20 a ± 1.11 | 2.08 b ± 1.07 | 4.06 ab ± 0.87 | 7.42 a ± 1.00 | 0.02 |
Samples | Foam | Flavor | Clarity | Bitterness | Color | Alcohol Strength | Mouthfeel | Overall Acceptability |
---|---|---|---|---|---|---|---|---|
CGB1 | 7.7 a ± 0.68 | 7.7 a ± 0.82 | 6.7 a ± 1.64 | 7.1 a ± 1.52 | 7.5 a ± 0.97 | 6.5 a ± 1.96 | 7.3 a ± 0.95 | 7.5 a ± 0.71 |
CGB2 | 7.3 a ± 1.25 | 7.2 a ± 1.23 | 6.3 a ± 1.70 | 6.4 a ± 1.58 | 7 a ± 1.33 | 6.8 a ± 1.81 | 7 a ± 1.23 | 6.7 a ± 1.70 |
CGB3 | 6.9 a ± 1.20 | 6.9 a ± 1.10 | 6.1 a ± 1.85 | 6.7 a ± 1.57 | 7 a ± 1.41 | 6.4 a ± 1.51 | 6.6 a ± 0.84 | 6.6 a ± 1.43 |
GPB | 6.8 a ± 1.55 | 7.8 a ± 0.79 | 7 a ± 1.63 | 7.1 a ± 1.60 | 7.5a ± 0.97 | 6.7 a ± 1.95 | 7.2 a ± 1.03 | 7.2 a ± 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okechukwu, Q.N.; Adadi, P.; Kovaleva, E.G. Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder. Fermentation 2022, 8, 581. https://doi.org/10.3390/fermentation8110581
Okechukwu QN, Adadi P, Kovaleva EG. Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder. Fermentation. 2022; 8(11):581. https://doi.org/10.3390/fermentation8110581
Chicago/Turabian StyleOkechukwu, Queency N., Parise Adadi, and Elena G. Kovaleva. 2022. "Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder" Fermentation 8, no. 11: 581. https://doi.org/10.3390/fermentation8110581
APA StyleOkechukwu, Q. N., Adadi, P., & Kovaleva, E. G. (2022). Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder. Fermentation, 8(11), 581. https://doi.org/10.3390/fermentation8110581