Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Self-Made Na2CO3 Solution
2.2. Biomass Pretreatment
2.3. FTIR-ATR
2.4. Enzymatic Hydrolysis
3. Results and Discussion
3.1. Self-Made Na2CO3 Solution
3.2. Biomass Pretreatment
3.3. Fourier-Transform Infrared Spectroscopy Analysis
3.4. Enzymatic Hydrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaring
Abbreviations
CS | Corn stover |
HPLC | High-performance liquid chromatography |
NREL | National Renewable Energy Laboratory |
FTIR | Fourier-transform infrared spectroscopy |
References
- Kartal, M.T.; Kılıç Depren, S.; Ayhan, F.; Depren, Ö. Impact of renewable and fossil fuel energy consumption on environmental degradation: Evidence from USA by nonlinear approaches. Int. J. Sustain. Dev. World Ecol. 2022, 29, 733–755. [Google Scholar] [CrossRef]
- Deshavath, N.N.; Mogili, N.V.; Dutta, M.; Goswami, L.; Kushwaha, A.; Veeranki, V.D.; Goud, V.V. Role of lignocellulosic bioethanol in the transportation sector: Limitations and advancements in bioethanol production from lignocellulosic biomass. In Waste-to-Energy Approaches towards Zero Waste; Elsevier: Amsterdam, The Netherlands, 2022; pp. 57–85. [Google Scholar]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2021, 28, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Lei, T.; Guan, D.; Shan, Y.; Zheng, B.; Liang, X.; Meng, J.; Zhang, Q.; Tao, S. Adaptive CO2 emissions mitigation strategies of global oil refineries in all age groups. One Earth 2021, 4, 1114–1126. [Google Scholar] [CrossRef]
- Quadrelli, R.; Peterson, S. The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 2007, 35, 5938–5952. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Naims, H. Economics of carbon dioxide capture and utilization–A supply and demand perspective. Environ. Sci. Pollut. Res. 2016, 23, 22226–22241. [Google Scholar] [CrossRef] [Green Version]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Kumar, G.; Karthikeyan, O.P.; Varjani, S. Lignocellulosic biomass as an optimistic feedstock for the production of biofuels as valuable energy source: Techno-economic analysis, environmental impact analysis, breakthrough and perspectives. Environ. Technol. Innov. 2021, 24, 102080. [Google Scholar]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 2016, 66, 751–774. [Google Scholar] [CrossRef]
- Tse, T.J.; Wiens, D.J.; Chicilo, F.; Purdy, S.K.; Reaney, M.J. Value-added products from ethanol fermentation—A review. Fermentation 2021, 7, 267. [Google Scholar] [CrossRef]
- Rajeswari, S.; Baskaran, D.; Saravanan, P.; Rajasimman, M.; Rajamohan, N.; Vasseghian, Y. Production of ethanol from biomass—Recent research, scientometric review and future perspectives. Fuel 2022, 317, 123448. [Google Scholar] [CrossRef]
- Hoang, T.D.; Nghiem, N. Recent developments and current status of commercial production of fuel ethanol. Fermentation 2021, 7, 314. [Google Scholar] [CrossRef]
- Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef]
- Vamvakas, S.S.; Kapolos, J. Factors affecting yeast ethanol tolerance and fermentation efficiency. World J. Microbiol. Biotechnol. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Chandel, H.; Kumar, P.; Chandel, A.K.; Verma, M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefinery 2022, 1–23. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Swain, M.R. Bioethanol production from corn and wheat: Food, fuel, and future. In Bioethanol Production from Food Crops; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–59. [Google Scholar]
- Ruan, Z.; Wang, X.; Liu, Y.; Liao, W. Corn. In Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier: Amsterdam, The Netherlands, 2019; pp. 59–72. [Google Scholar]
- Aghaei, S.; Alavijeh, M.K.; Shafiei, M.; Karimi, K. A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives. Biomass Bioenergy 2022, 161, 106447. [Google Scholar] [CrossRef]
- Demirbas, A. Conversion of corn stover to chemicals and fuels. Energy Sources Part A 2008, 30, 788–796. [Google Scholar] [CrossRef]
- Bothast, R.; Schlicher, M. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 2005, 67, 19–25. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Z.; Liu, L.; Chen, S.; Wang, S.; Jin, M. Process integration for ethanol production from corn and corn stover as mixed substrates. Bioresour. Technol. 2019, 279, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, D.; Zhang, M.; Huang, H.; Wang, D. Enzymatic hydrolysis and fermentation of corn stover liquor from magnesium oxide pretreatment without detoxification. Ind. Crops Prod. 2019, 140, 111728. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Lu, M.; Han, L. Comparison and intrinsic correlation analysis based on composition, microstructure and enzymatic hydrolysis of corn stover after different types of pretreatments. Bioresour. Technol. 2019, 293, 122016. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Yang, J.; Liang, Y. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2007, 30, 938–944. [Google Scholar] [CrossRef]
- Chen, Y.; Stevens, M.A.; Zhu, Y.; Holmes, J.; Xu, H. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol. Biofuels 2013, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, Y.; Wang, H.; Li, B.; Liu, C.; Yu, G.; Mu, X. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresour. Technol. 2012, 125, 193–199. [Google Scholar] [CrossRef]
- Banerjee, G.; Car, S.; Scott-Craig, J.S.; Hodge, D.B.; Walton, J.D. Alkaline peroxide pretreatment of corn stover: Effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 2011, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Modenbach, A.A.; Nokes, S.E. Effects of sodium hydroxide pretreatment on structural components of biomass. Trans. Am. Soc. Agric. Biol. Eng. 2014, 57, 1187–1198. [Google Scholar]
- Singh, B.; Kumar, A. Process development for sodium carbonate pretreatment and enzymatic saccharification of rice straw for bioethanol production. Biomass Bioenergy 2020, 138, 105574. [Google Scholar]
- Mirmohamadsadeghi, S.; Chen, Z.; Wan, C. Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresour. Technol. 2016, 209, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Molaverdi, M.; Karimi, K.; Mirmohamadsadeghi, S.; Galbe, M. High efficient ethanol production from corn stover by modified mild alkaline pretreatment. Renew. Energy 2021, 170, 714–723. [Google Scholar] [CrossRef]
- Kim, I.; Rehman, M.S.U.; Han, J.I. Enhanced glucose yield and structural characterization of corn stover by sodium carbonate pretreatment. Bioresour. Technol. 2014, 152, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, N.P.; Toht, M.J. Pretreatment of sweet sorghum bagasse for ethanol production using Na2CO3 obtained by NaOH absorption of CO2 generated in sweet sorghum juice ethanol fermentation. Fermentation 2019, 5, 91. [Google Scholar] [CrossRef] [Green Version]
- Olugbemide, A.D.; Oberlintner, A.; Novak, U.; Likozar, B. Lignocellulosic corn stover biomass pre-treatment by deep eutectic solvents (DES) for biomethane production process by bioresource anaerobic digestion. Sustainability 2021, 13, 10504. [Google Scholar] [CrossRef]
- Faix, O. Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry; Springer: Berlin/Heidelberg, Germany, 1992; pp. 83–109. [Google Scholar]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of potential contaminants in processed biomass using Fourier transform infrared spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
Sample | Cellulose% | Hemicellulose% | Lignin% | Ash% |
---|---|---|---|---|
CS-untreated | 34.50 | 21.95 | 25.50 | 3.47 |
CS-pretreated | 40.96 | 18.35 | 16.50 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Negrón, V.; Toht, M.J. Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2. Fermentation 2022, 8, 600. https://doi.org/10.3390/fermentation8110600
García-Negrón V, Toht MJ. Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2. Fermentation. 2022; 8(11):600. https://doi.org/10.3390/fermentation8110600
Chicago/Turabian StyleGarcía-Negrón, Valerie, and Matthew J. Toht. 2022. "Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2" Fermentation 8, no. 11: 600. https://doi.org/10.3390/fermentation8110600
APA StyleGarcía-Negrón, V., & Toht, M. J. (2022). Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2. Fermentation, 8(11), 600. https://doi.org/10.3390/fermentation8110600