The Effects of Two-Stage Fermented Feather Meal-Soybean Meal Product on Growth Performance, Blood Biochemistry, and Immunity of Nursery Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Stage Fermented Product (TSFP) Preparation
2.2. The Physiochemical Characterizations and Nutrient Composition of TSFP
2.3. Animal Management and Experimental Design
2.4. Feed Composition Analysis
2.5. Growth Performance
2.6. Blood Biochemistry
2.7. Immune Characteristics
2.8. Statistical Analysis
3. Results
3.1. Trial 1, the Effects of Modified TSFP on the Growth Performance and Blood Biochemistry of Nursery Pigs
3.1.1. Physiochemical Analysis on TSFP with Different Fermentation Times at First Stage
3.1.2. Growth Performance
3.1.3. Blood Biochemistry
3.2. Trial 2, Different Supplementation Levels of TSFP on the Growth Performance and Immune Characteristics of Nursery Pigs
3.2.1. Growth Performance
3.2.2. Immune Characteristics
4. Discussion
4.1. Trial 1, the Effects of Modified TSFP on the Growth Performance and Blood Biochemistry of Nursery Pigs
4.1.1. Physiochemical Analysis
4.1.2. Growth Performance
4.1.3. Blood Biochemistry
4.2. Trial 2, Different Supplementation Levels of TSFP on the Growth Performance and Immune Characteristics of Nursery Pigs
4.2.1. Growth Performance
4.2.2. Immune Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, E.; Junqueira, O.; Duarte, K.; Nunes, R.; Francelino, A. Dried Whey and Fish Meal+lactose in Diets with Two Protein Levels for Starter Piglets. Cienc. Anim. Bras. 2007, 8, 217–226. [Google Scholar]
- Kim, S.W.; van Heugten, E.; Ji, F.; Lee, C.H.; Mateo, R.D. Fermented Soybean Meal as a Vegetable Protein Source for Nursery Pigs: I. Effects on Growth Performance of Nursery Pigs. J. Anim. Sci. 2010, 88, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal Availability in the Scenarios of Climate Change: Inevitability of Fishmeal Replacement in Aquafeeds and Approaches for the Utilization of Plant Protein Sources. Aquacult. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, C.; Wang, C.; Lu, Z.; Wang, F.; Feng, J.; Wang, Y. Effect of Soybean Meal Fermented with Bacillus subtilis BS12 on Growth Performance and Small Intestinal Immune Status of Piglets. Food Agric. Immunol. 2018, 29, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Chiba, L.I. By Product Feeds: Animal Origin. In Encyclopedia of Animal Science; CRC Press: New York, NY, USA, 2018; pp. 169–174. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Moritz, J.S.; Latshaw, J.D. Indicators of Nutritional Value of Hydrolyzed Feather Meal1. Poult. Sci. 2001, 80, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Gessesse, A.; Hatti-Kaul, R.; Gashe, B.A.; Mattiasson, B. Novel Alkaline Proteases from Alkaliphilic Bacteria Grown on Chicken Feather. Enzyme Microb. Technol. 2003, 32, 519–524. [Google Scholar] [CrossRef]
- Hung, P. List of Feed Ingredients (Including Additives); Zuo Huo Dou Zhen Publishing House: Tainan, Taiwan, 2003. [Google Scholar]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-State Fermentation of Corn-Soybean Meal Mixed Feed with Bacillus Subtilis and Enterococcus Faecium for Degrading Antinutritional Factors and Enhancing Nutritional Value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Yeh, R.H.; Hsieh, C.W.; Chen, K.L. Screening Lactic Acid Bacteria to Manufacture Two-Stage Fermented Feed and Pelleting to Investigate the Feeding Effect on Broilers. Poult. Sci. 2018, 97, 236–246. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Guo, G.; Chu, J.; Wang, J.; He, Q.; Liu, K. A Two-Step Biotechnological Process for Improving Nutrition Value of Feather Meal by Bacillus Licheniformis S6. J. Northeast. Agric. Univ. Engl. Ed. 2013, 20, 71–77. [Google Scholar]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Effective Biodegradation of Chicken Feather Waste by Co-Cultivation of Keratinase Producing Strains. Microb. Cell Fact. 2019, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, B.; Nyachoti, C.M. Husbandry Practices and Gut Health Outcomes in Weaned Piglets: A Review. Anim. Nutr. 2017, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Sinn, S.M.; Gibbons, W.R.; Brown, M.L.; DeRouchey, J.M.; Levesque, C.L. Evaluation of Microbially Enhanced Soybean Meal as an Alternative to Fishmeal in Weaned Pig Diets. Animal 2017, 11, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chang, J.; Yin, Q.; Lu, M.; Di, Y.; Wang, P.; Wang, Z.; Wang, E.; Lu, F. Fermented Soybean Meal Improves the Growth Performance, Nutrient Digestibility, and Microbial Flora in Piglets. Anim. Nutr. 2017, 3, 19–24. [Google Scholar] [CrossRef]
- Huang, H.J.; Weng, B.C.; Hsuuw, Y.D.; Lee, Y.S.; Chen, K.L. Dietary Supplementation of Two-Stage Fermented Feather-Soybean Meal Product on Growth Performance and Immunity in Finishing Pigs. Animals 2021, 11, 1527. [Google Scholar] [CrossRef]
- Chen, K.L.; Kho, W.L.; You, S.H.; Yeh, R.H.; Tang, S.W.; Hsieh, C.W. Effects of Bacillus Subtilis Var. Natto and Saccharomyces Cerevisiae Mixed Fermented Feed on the Enhanced Growth Performance of Broilers. Poult. Sci. 2009, 88, 309–315. [Google Scholar] [CrossRef]
- Goto, A.; Kunioka, M. Biosynthesis and Hydrolysis of Poly(γ-Glutamic Acid) from Bacillus Subtilis IF03335. Biosci. Biotechnol. Biochem. 1992, 56, 1031–1035. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Huang, H.J.; Wang, H.S.; Lee, H.L.; Hsu, C.B.; Wang, C.H.; Lin, C.Y.; Hsuuw, Y.D.; Weng, B.C.; Chen, K.L. Effects of Dietary Inclusion of Two Stage Mix-Probiotics Fermented Feedstuff on Growth Performances and Immune Response of Growing Pigs. J. Taiwan Livest. Res. 2014, 47, 239–250. [Google Scholar]
- Tomas, L. Tomas Clinical Laboratory Diagnostics, 1st ed.; TH-Books Verlagsgesellschaft: Frankfurt, Germany, 1998. [Google Scholar]
- Moss, D.W.; Henderson, A.R. Tietz Textbook of Clinical Chemistry, 3rd ed.; Saunders: Philadephia, PA, USA, 1999. [Google Scholar]
- Rifai, N.; Tracy, R.P.; Ridker, P.M. Clinical Efficacy of an Automated High-Sensitivity C-Reactive Protein Assay. Clin. Chem. 1999, 45, 2136–2141. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS/STAT User’s Guide: Statistics, 1st ed.; Version 9; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Elliott, A.C.; Hynan, L.S. A SAS(®) Macro Implementation of a Multiple Comparison Post Hoc Test for a Kruskal-Wallis Analysis. Comput. Methods Programs Biomed. 2011, 102, 75–80. [Google Scholar] [CrossRef]
- Schleifer, K.H. Phylum XIII. Gibbons and Murray 1978, 5 ([Sic] Gibbons and Murray 1978, 5). In Bergey’s Manual® of Systematic Bacteriology; Springer: New York, NY, USA, 2011; pp. 33–34. [Google Scholar]
- Sini, T.K.; Santhosh, S.; Mathew, P.T. Study on the Production of Chitin and Chitosan from Shrimp Shell by Using Bacillus subtilis Fermentation. Carbohydr. Res. 2007, 342, 2423–2429. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.S.; Ramamurthi, K.S. Spore Formation in Bacillus subtilis. Environ Microbiol. Rep. 2014, 6, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; He, P.; Lu, X.; Zhu, C.; Zhu, J.; Zhan, Y.; Wang, Q.; Wen, Z.; Chen, S. A Novel Approach to Improve Poly-γ-Glutamic Acid Production by NADPH Regeneration in Bacillus Licheniformis WX-02. Sci. Rep. 2017, 7, 43404. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Y.; Jiang, L.; Ding, S.; Chen, G.; Liang, Z.; Zeng, W. Effects of Cell Physiological Structure on the Fermentation Broth Viscosity during Poly-γ-Glutamic Acid Production by Bacillus Subtilis GXA-28. Appl. Biochem. Biotechnol. 2021, 193, 271–280. [Google Scholar] [CrossRef]
- Dai, Z.L.; Li, X.L.; Xi, P.B.; Zhang, J.; Wu, G.; Zhu, W.Y. Metabolism of Select Amino Acids in Bacteria from the Pig Small Intestine. Amino Acids 2012, 42, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Neis, E.P.J.G.; Dejong, C.H.C.; Rensen, S.S. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef] [Green Version]
- Bastos, T.S.; de Lima, D.C.; Souza, C.M.M.; Maiorka, A.; de Oliveira, S.G.; Bittencourt, L.C.; Félix, A.P. Bacillus subtilis and Bacillus licheniformis Reduce Faecal Protein Catabolites Concentration and Odour in Dogs. BMC Vet. Res. 2020, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Jin, J.Q.; Yang, P.; Yu, B.; He, J.; Mao, X.B.; Yu, J.; Chen, D.W. Fermented Soybean Meal Increases Nutrient Digestibility via the Improvement of Intestinal Function, Anti-Oxidative Capacity and Immune Function of Weaned Pigs. Animal 2022, 16, 100557. [Google Scholar] [CrossRef]
- Peh, H.C.; Huang, S.Y.; Lin, R.S. Livestock Clinical Blood Biochemistry, 1st ed.; Liyu Publishing House: Taichung, Taiwan, 1996. [Google Scholar]
- Gershwin, L.J. Clinical Veterinary Immunology. In Clinical Biochemistry of Domestic Animals; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 157–172. [Google Scholar]
- Tizard, I.R. An Introduction. In Veterinary Immunology; Elsevier (Saunders): Philadelphia, PA, USA, 2008. [Google Scholar]
Ingredients (%) | 5% Fish Meal | Fermented time, h | |||
---|---|---|---|---|---|
0 | 32 | 40 | 48 | ||
Corn meal | 61.82 | 58.84 | 58.84 | 58.84 | 58.84 |
Soybean, full fat, cooked, 38% CP | 6.0 | 7.2 | 7.2 | 7.2 | 7.2 |
Soybean oil | 0.62 | 1.35 | 1.35 | 1.35 | 1.35 |
Soybean meal dehulled, solvent, 47.8% CP | 21.8 | 21.8 | 21.8 | 21.8 | 21.8 |
Skim milk, dried | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Fish meal (Peru), 65% CP | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
TSFP 1, 62% CP | 0.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Dicalcium phosphate | 0.46 | 1.27 | 1.27 | 1.27 | 1.27 |
Limestone, pulverized | 0.75 | 0.8 | 0.8 | 0.8 | 0.8 |
Salt | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
L-Lys·HCl | 0.0 | 0.13 | 0.13 | 0.13 | 0.13 |
DL-Met | 0.0 | 0.06 | 0.06 | 0.06 | 0.06 |
Choline chloride, 50% | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Vitamin premix 2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Mineral premix 3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Total | 100 | 100 | 100 | 100 | 100 |
Calculated chemical components | |||||
ME, kcal/kg | 3265 | 3265 | 3265 | 3265 | 3265 |
CP(%) | 20.9 | 20.9 | 20.9 | 20.9 | 20.9 |
Ca(%) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
P(%) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Total Lys% | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 |
Total Met% | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Analyzed chemical components | |||||
CP(%) | 20.32 | 20.81 | 20.52 | 20.78 | 20.78 |
Ca(%) | 0.68 | 0.69 | 0.69 | 0.71 | 0.70 |
P(%) | 0.57 | 0.58 | 0.61 | 0.59 | 0.59 |
Ingredients (%) | 5% Fish Meal | TSFP, % | ||
---|---|---|---|---|
0 | 2.5 | 5 | ||
Corn meal | 62.3 | 58.26 | 58.37 | 58.84 |
Soybean, full fat, cooked, 38% CP | 6.0 | 10 | 10 | 10 |
Soybean oil | 0.61 | 0.82 | 0.98 | 1.07 |
Soybean meal dehulled, solvent, 47.8% CP | 21.8 | 24.8 | 22.4 | 19.8 |
Skim milk, dried | 2.5 | 2.5 | 2.5 | 2.5 |
Fish meal (Peru), 65% CP | 5.0 | 0.0 | 0.0 | 0.0 |
TSFP 1, 62% CP | 0.0 | 0.0 | 2.5 | 5.0 |
Dicalcium phosphate | 0.47 | 1.15 | 1.24 | 1.25 |
Limestone, pulverized | 0.77 | 0.82 | 0.8 | 0.8 |
Salt | 0.25 | 0.25 | 0.25 | 0.25 |
L-Lys·Hcl | 0.0 | 0.04 | 0.1 | 0.12 |
DL-Met | 0.0 | 0.06 | 0.06 | 0.07 |
Choline chloride, 50% | 0.1 | 0.1 | 0.1 | 0.1 |
Vitamin premix 2 | 0.1 | 0.1 | 0.1 | 0.1 |
Mineral premix 3 | 0.1 | 0.1 | 0.1 | 0.1 |
Total | 100 | 100 | 100 | 100 |
Calculated chemical components | ||||
ME, kcal/kg | 3265 | 3265 | 3265 | 3265 |
CP(%) | 20.9 | 20.9 | 20.9 | 20.9 |
Ca(%) | 0.7 | 0.7 | 0.7 | 0.7 |
P(%) | 0.6 | 0.6 | 0.6 | 0.6 |
Lys% | 1.22 | 1.22 | 1.22 | 1.22 |
Met% | 0.4 | 0.4 | 0.4 | 0.4 |
Analyzed chemical components | ||||
CP(%) | 20.73 | 20.80 | 20.75 | 20.77 |
Ca(%) | 0.69 | 0.68 | 0.67 | 0.70 |
P(%) | 0.58 | 0.57 | 0.60 | 0.59 |
Items | 1st Stage Fermented Time, h 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | 32 | 40 | 48 | |||
First-stage fermentation | ||||||
pH | 5.67 d | 7.55 c | 7.8 b | 8.1 a | 0.04 | <0.0001 |
Bacillus-like, log CFU/g | 1.04 c | 8.35 ab | 8.42 a | 8.2 b | 0.04 | <0.0001 |
Viscosity (score) | 1.2 d | 3.0 c | 3.8 b | 4.5 a | - | <0.0001 |
Odor (score) | 1.4 d | 2.7 c | 3.5 b | 4.4 a | - | <0.0001 |
γ-PGA, % | ND 3 | 2.1 c | 3.8 b | 5.3 a | 0.02 | <0.0001 |
Second-stage fermentation | ||||||
pH | - | 5.13 b | 5.78 a | 5.85 a | 0.03 | <0.0001 |
Bacillus-like, log CFU/g | - | 8.21 | 8.30 | 8.27 | 0.03 | 0.1174 |
Yeast-like, log CFU/g | - | 7.94 a | 7.86 a | 7.54 b | 0.02 | <0.0001 |
Dry product | ||||||
pH | - | 5.50 b | 5.71 a | 5.78 a | 0.03 | 0.0008 |
Bacillus-like, log CFU/g | - | 7.62 a | 7.51 b | 7.41 b | 0.03 | 0.0031 |
Nutrient composition of dry product | ||||||
Moisture, % | 9.50 | 9.61 | 9.48 | 9.45 | 0.05 | 0.1744 |
Crude ash,%/DM | 4.63 | 4.62 | 4.65 | 4.63 | 0.09 | 0.9956 |
Crude protein, %/DM | 62.0 | 62.5 | 62.3 | 62.7 | 0.80 | 0.9337 |
Gross energy, kcal/kg/DM | 3165 | 3160 | 3148 | 3156 | 16.74 | 0.9048 |
Calcium, Ca %/DM | 0.24 | 0.25 | 0.24 | 0.25 | 0.02 | 0.9722 |
Total phosphate, TP %/DM | 0.55 | 0.56 | 0.55 | 0.54 | 0.02 | 0.9792 |
Period, WK. | 5% Fish Meal | 1st Stage Fermented Time of 5% TSFP, h 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
0 | 32 | 40 | 48 | ||||
Body weight (BW), kg | |||||||
0 | 8.85 | 8.88 | 8.84 | 8.90 | 8.92 | 0.18 | 0.9979 |
3 | 19.38 ab | 18.68 b | 19.96 a | 20.03 a | 20.07 a | 0.31 | 0.0069 |
5 | 27.66 ab | 26.50 b | 28.59 a | 28.52 a | 28.69 a | 0.41 | 0.0007 |
Average daily gain (ADG), kg | |||||||
0–3 | 0.50 ab | 0.47 b | 0.53 a | 0.53 a | 0.53 a | 0.01 | 0.0001 |
3–5 | 0.59 ab | 0.56 b | 0.62 a | 0.61 ab | 0.62 a | 0.01 | 0.0274 |
0–5 | 0.54 ab | 0.50 b | 0.56 a | 0.56 a | 0.57 a | 0.01 | <0.0001 |
Average daily feed intake (ADFI), kg | |||||||
0–3 | 0.75 | 0.71 | 0.74 | 0.74 | 0.73 | 0.01 | 0.2750 |
3–5 | 1.25 | 1.29 | 1.30 | 1.27 | 1.30 | 0.02 | 0.1142 |
0–5 | 0.95 | 0.94 | 0.96 | 0.95 | 0.96 | 0.01 | 0.6317 |
Feed conversion rate (FCR), ADFI/ADG | |||||||
0–3 | 1.50 ab | 1.52 a | 1.42 b | 1.41 b | 1.40 b | 0.03 | 0.0211 |
3–5 | 2.05 b | 2.32 a | 2.15 ab | 2.11 ab | 2.18 ab | 0.06 | 0.0111 |
0–5 | 1.77 ab | 1.88 a | 1.72 b | 1.71 b | 1.72 b | 0.03 | 0.0002 |
Mortality (%) | |||||||
0–5 | 7.14 | 0.00 | 0.00 | 3.57 | 7.14 | - | 0.3939 |
Production efficiency factor (PEF), survival rate (%) × BW (kg))/(age (day) × FCR) × 100 | |||||||
0–5 | 4193 | 4052 | 4804 | 4593 | 4394 | 205 | 0.0756 |
Items 3 | 5% Fish Meal | 1st Stage Fermented Time of 5% TSFP, h 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
0 | 32 | 40 | 48 | ||||
ALT (U/L) | 37.2 | 37.2 | 36.0 | 37.0 | 38.4 | 1.42 | 0.8424 |
AST (U/L) | 18.0 | 17.5 | 17.0 | 16.8 | 16.9 | 0.51 | 0.4542 |
ALP (U/L) | 51.5 | 50.0 | 50.4 | 52.3 | 53.9 | 1.95 | 0.6427 |
LDH (U/L) | 653 | 626 | 626 | 637 | 643 | 18.0 | 0.8185 |
TP (g/dL) | 7.80 | 7.73 | 7.85 | 7.75 | 7.79 | 0.15 | 0.9854 |
BUN (U/L) | 29.2 | 27.2 | 27.8 | 28.6 | 29.1 | 1.09 | 0.6529 |
TG (mg/dL) | 50.8 | 50.5 | 50.1 | 51.9 | 51.7 | 1.56 | 0.9087 |
CHOL (mg/dL) | 93.6 | 93.8 | 91.4 | 94.4 | 93.9 | 2.74 | 0.9468 |
HDL-C (mg/dL) | 42.2 | 43.5 | 42.4 | 42.1 | 42.0 | 1.26 | 0.9217 |
LDL-C (mg/dL) | 41.0 | 41.2 | 41.7 | 41.7 | 41.5 | 1.24 | 0.9933 |
Period, WK. | 5% Fish Meal | TSFP, % | SEM | p-Value | Polynomial Contrasts | |||
---|---|---|---|---|---|---|---|---|
0 | 2.5 | 5 | Linear | Quadratic | ||||
Body weight (BW), kg | ||||||||
0 | 9.16 | 9.13 | 9.11 | 9.17 | 0.20 | 0.9963 | 0.7648 | 0.6170 |
3 | 19.31 | 18.48 | 19.35 | 19.68 | 0.34 | 0.0776 | 0.0112 | 0.8183 |
5 | 27.03 ab | 25.90 b | 27.21 ab | 27.97 a | 0.41 | 0.0068 | 0.0010 | 0.9936 |
Average daily gain (ADG), kg | ||||||||
0–3 | 0.48 ab | 0.45 b | 0.49 ab | 0.50 a | 0.01 | 0.0176 | 0.0120 | 0.7243 |
3–5 | 0.55 | 0.53 | 0.56 | 0.59 | 0.02 | 0.0621 | 0.0079 | 0.7844 |
0–5 | 0.51 ab | 0.48 b | 0.52 ab | 0.54 a | 0.01 | 0.0023 | 0.0008 | 0.9756 |
Average daily feed intake (ADFI), kg | ||||||||
0–3 | 0.73 | 0.73 | 0.74 | 0.75 | 0.01 | 0.0983 | 0.0150 | 0.8259 |
3–5 | 1.27 | 1.24 | 1.25 | 1.26 | 0.01 | 0.4419 | 0.9962 | 0.9132 |
0–5 | 0.94 | 0.93 | 0.94 | 0.96 | 0.01 | 0.1494 | 0.0711 | 0.6755 |
Feed conversion rate (FCR), ADFI/ADG | ||||||||
0–3 | 1.54 | 1.65 | 1.55 | 1.52 | 0.04 | 0.1008 | 0.0674 | 0.8053 |
3–5 | 2.33 | 2.35 | 2.29 | 2.19 | 0.06 | 0.2447 | 0.0245 | 0.7149 |
0–5 | 1.88 ab | 1.96 a | 1.85 ab | 1.79 b | 0.04 | 0.0125 | 0.0014 | 0.8536 |
Mortality (%) | ||||||||
0–5 | 10.71 | 14.29 | 7.14 | 3.57 | - | 0.5422 | 0.1853 | 0.8894 |
Production efficiency factor (PEF), survival rate (%) × BW (kg))/(age (day) × FCR) × 100 | ||||||||
0–5 | 3656 ab | 3196 b | 3919 ab | 4354 a | 256 | 0.0164 | 0.0049 | 0.9253 |
Items 2 | 5% Fish Meal | TSFP, % | SEM | p-Value | Polynomial Contrasts | |||
---|---|---|---|---|---|---|---|---|
0 | 2.5 | 5 | Linear | Quadratic | ||||
Lymphoblastogenesis, specific fluorescence | ||||||||
LPS | 315 b | 319 ab | 338 ab | 339 a | 6.48 | 0.0135 | 0.0314 | 0.2578 |
CON A | 195 b | 200 ab | 212 ab | 217 a | 5.39 | 0.0200 | 0.0508 | 0.6115 |
PMA/ION | 267 | 269 | 278 | 288 | 7.39 | 0.1594 | 0.0980 | 0.9538 |
Cytokine, pg/mL | ||||||||
Interferon-γ | 108 b | 111 ab | 118 ab | 119 a | 2.92 | 0.0150 | 0.0449 | 0.3613 |
Mean fluorescence intensity | ||||||||
Phagocytosis | 74.0 | 73.4 | 76.3 | 78.2 | 1.80 | 0.2231 | 0.0462 | 0.8053 |
Oxidative burst | 509 bc | 492 c | 546 ab | 562 a | 10.6 | <0.0001 | <0.0001 | 0.1493 |
Immunoglobulin, mg/dL | ||||||||
IgA | 1.27 | 1.27 | 1.30 | 1.32 | 0.04 | 0.7507 | 0.359 | 0.9689 |
IgM | 1.68 | 1.67 | 1.73 | 1.74 | 0.04 | 0.5033 | 0.1991 | 0.7098 |
IgG | 20.1 b | 20.1 b | 21.1 ab | 22.0 a | 0.49 | 0.0204 | 0.0153 | 0.9233 |
Blood T-lymphocyte subsets, % | ||||||||
CD 3 | 71.7 | 73.7 | 72.4 | 71.2 | 1.47 | 0.6603 | 0.2526 | 0.9745 |
CD 4 | 22.6 | 24.1 | 24.1 | 22.7 | 0.84 | 0.4333 | 0.3013 | 0.5843 |
CD 8 | 36.6 | 38.0 | 41.3 | 39.7 | 2.32 | 0.2109 | 0.2097 | 0.2154 |
CD3+ CD4+ | 23.0 | 23.9 | 24.3 | 22.6 | 0.93 | 0.5632 | 0.3437 | 0.3809 |
CD3+ CD8+ | 32.2 | 31.1 | 34.3 | 33.5 | 1.56 | 0.4766 | 0.3177 | 0.3257 |
CD4+ CD8+ | 8.2 | 8.9 | 9.6 | 8.2 | 0.63 | 0.3375 | 0.3972 | 0.1686 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-J.; Weng, B.-C.; Lee, Y.-S.; Lin, C.-Y.; Hsuuw, Y.-D.; Chen, K.-L. The Effects of Two-Stage Fermented Feather Meal-Soybean Meal Product on Growth Performance, Blood Biochemistry, and Immunity of Nursery Pigs. Fermentation 2022, 8, 634. https://doi.org/10.3390/fermentation8110634
Huang H-J, Weng B-C, Lee Y-S, Lin C-Y, Hsuuw Y-D, Chen K-L. The Effects of Two-Stage Fermented Feather Meal-Soybean Meal Product on Growth Performance, Blood Biochemistry, and Immunity of Nursery Pigs. Fermentation. 2022; 8(11):634. https://doi.org/10.3390/fermentation8110634
Chicago/Turabian StyleHuang, Hsien-Juang, Bor-Chun Weng, Yueh-Sheng Lee, Cheng-Yung Lin, Yan-Der Hsuuw, and Kuo-Lung Chen. 2022. "The Effects of Two-Stage Fermented Feather Meal-Soybean Meal Product on Growth Performance, Blood Biochemistry, and Immunity of Nursery Pigs" Fermentation 8, no. 11: 634. https://doi.org/10.3390/fermentation8110634
APA StyleHuang, H. -J., Weng, B. -C., Lee, Y. -S., Lin, C. -Y., Hsuuw, Y. -D., & Chen, K. -L. (2022). The Effects of Two-Stage Fermented Feather Meal-Soybean Meal Product on Growth Performance, Blood Biochemistry, and Immunity of Nursery Pigs. Fermentation, 8(11), 634. https://doi.org/10.3390/fermentation8110634