Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes
Abstract
:1. Introduction
2. Materials and Methods
Analytical Techniques
3. Results and Discussions
3.1. Batch Digestion Assays
3.2. Semi-Continuous Digestion Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandeno, C.; Wolf, G.; Drake, T.; Reicks, M. Behavioral Strategies to Increase Fruit and Vegetable Intake by Fourth-through Sixth-Grade Students. J. Am. Diet Assoc. 2000, 100, 828–830. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.S.; Porteous, L.; Foster, E.; Higgins, C.; Stead, M.; Hetherington, M.; Ha, M.-A.; Adamson, A.J. The Impact of a School-Based Nutrition Education Intervention on Dietary Intake and Cognitive and Attitudinal Variables Relating to Fruits and Vegetables. Public Health Nutr. 2005, 8, 650–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar Saeed, M.; Ma, H.; Yue, S.; Wang, Q.; Tu, M. Concise Review on Ethanol Production from Food Waste: Development and Sustainability. Environ. Sci. Pollut. Res. 2018, 25, 28851–28863. [Google Scholar] [CrossRef] [PubMed]
- Prasoulas, G.; Gentikis, A.; Konti, A.; Kalantzi, S.; Kekos, D.; Mamma, D. Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium Oxysporum F3 and Mixed Microbial Cultures. Fermentation 2020, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Schiel-Bengelsdorf, B.; Montoya, J.; Linder, S.; Dürre, P. Butanol Fermentation. Environ. Technol. 2013, 34, 1691–1710. [Google Scholar] [CrossRef]
- Qureshi, N.; Lin, X.; Liu, S.; Saha, B.C.; Mariano, A.P.; Polaina, J.; Ezeji, T.C.; Friedl, A.; Maddox, I.S.; Klasson, K.T.; et al. Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. Fermentation 2020, 6, 58. [Google Scholar] [CrossRef]
- Gómez, X.; Fernández, C.; Fierro, J.; Sánchez, M.E.; Escapa, A.; Morán, A. Hydrogen Production: Two Stage Processes for Waste Degradation. Bioresour. Technol. 2011, 102, 8621–8627. [Google Scholar] [CrossRef]
- Akinbomi, J.; Taherzadeh, M.J. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. Energies 2015, 8, 4253–4272. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, F.; Cavinato, C. Anaerobic Digestion of Bio-Waste: A Mini-Review Focusing on Territorial and Environmental Aspects. Waste Manag. Res. 2015, 33, 429–438. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; García-Cascallana, J.; Gómez, X. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels 2021, 2, 144–167. [Google Scholar] [CrossRef]
- Gómez, X.; Cuetos, M.J.; Tartakovsky, B.; Martínez-Núñez, M.F.; Morán, A. A Comparison of Analytical Techniques for Evaluating Food Waste Degradation by Anaerobic Digestion. Bioprocess Biosyst. Eng. 2010, 33, 427–438. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Anwar, N.; Ma, Z.; Liu, G.; Zhang, R. Effect of Organic Loading Rate on Anaerobic Digestion of Food Waste under Mesophilic and Thermophilic Conditions. Energy Fuels 2017, 31, 2976–2984. [Google Scholar] [CrossRef]
- Lukitawesa; Patinvoh, R.J.; Millati, R.; Sárvári-Horváth, I.; Taherzadeh, M.J. Factors Influencing Volatile Fatty Acids Production from Food Wastes via Anaerobic Digestion. Bioengineered 2019, 11, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Hegde, S.; Trabold, T.A. Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates. Sustainability 2019, 11, 3875. [Google Scholar] [CrossRef] [Green Version]
- Molinuevo-Salces, B.; Gómez, X.; Morán, A.; García-González, M.C. Anaerobic Co-Digestion of Livestock and Vegetable Processing Wastes: Fibre Degradation and Digestate Stability. Waste Manag. 2013, 33, 1332–1338. [Google Scholar] [CrossRef]
- Baek, G.; Kim, D.; Kim, J.; Kim, H.; Lee, C. Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect. Int. J. Environ. Res. Public Health 2020, 17, 4737. [Google Scholar] [CrossRef]
- Xu, S.; Bi, G.; Liu, X.; Yu, Q.; Li, D.; Yuan, H.; Chen, Y.; Xie, J. Anaerobic Co-Digestion of Sugarcane Leaves, Cow Dung and Food Waste: Focus on Methane Yield and Synergistic Effects. Fermentation 2022, 8, 399. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, Z.; Isaguirre, C.; Liu, Y.; Liao, W. Fungal Fermentation on Anaerobic Digestate for Lipid-Based Biofuel Production. Biotechnol. Biofuels 2016, 9, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ujor, V.C.; Okonkwo, C.C.; Rush, B.B.; McCrea, G.E.; Ezeji, T.C. Harnessing the Residual Nutrients in Anaerobic Digestate for Ethanol Fermentation and Digestate Remediation Using Saccharomyces Cerevisiae. Fermentation 2020, 6, 52. [Google Scholar] [CrossRef]
- Musatti, A.; Ficara, E.; Mapelli, C.; Sambusiti, C.; Rollini, M. Use of Solid Digestate for Lignocellulolytic Enzymes Production through Submerged Fungal Fermentation. J. Environ. Manag. 2017, 199, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mejias, L.; Estrada, M.; Barrena, R.; Gea, T. A Novel Two-Stage Aeration Strategy for Bacillus Thuringiensis Biopesticide Production from Biowaste Digestate through Solid-State Fermentation. Biochem. Eng. J. 2020, 161, 107644. [Google Scholar] [CrossRef]
- Pastor-Bueis, R.; Mulas, R.; Gómez, X.; González-Andrés, F. Innovative Liquid Formulation of Digestates for Producing a Biofertilizer Based on Bacillus Siamensis: Field Testing on Sweet Pepper. J. Plant Nutr. Soil Sci. 2017, 180, 748–758. [Google Scholar] [CrossRef]
- Opatokun, S.A.; Lopez-Sabiron, A.M.; Ferreira, G.; Strezov, V. Life cycle analysis of energy production from food waste through anaerobic digestion, pyrolysis and integrated energy system. Sustainability 2017, 9, 1804. [Google Scholar] [CrossRef] [Green Version]
- Dussan, K.; Monaghan, R.F. Integrated thermal conversion and anaerobic digestion for sludge management in wastewater treatment plants. Waste Biomass Valori. 2018, 9, 65–85. [Google Scholar] [CrossRef]
- Wang, S.; Wen, Y.; Shi, Z.; Zaini, I.N.; Jönsson, P.G.; Yang, W. Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste. Energy Convers. Manag. 2022, 252, 115042. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gómez, X.; Otero, M.; Morán, A. Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 2008, 40, 99–106. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2005. [Google Scholar]
- González, R.; Peña, D.C.; Gómez, X. Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Appl. Sci. 2022, 12, 8884. [Google Scholar] [CrossRef]
- Koch, K.; Helmreich, B.; Drewes, J.E. Co-Digestion of Food Waste in Municipal Wastewater Treatment Plants: Effect of Different Mixtures on Methane Yield and Hydrolysis Rate Constant. Appl. Energy 2015, 137, 250–255. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ammar, M.; Zou, D.; Korai, R.M.; Li, X.J. An Insight into the Anaerobic Co-Digestion of Municipal Solid Waste and Food Waste: Influence of Co-Substrate Mixture Ratio and Substrate to Inoculum Ratio on Biogas Production. Appl. Biochem. Biotechnol. 2019, 187, 1356–1370. [Google Scholar] [CrossRef]
- Keucken, A.; Habagil, M.; Batstone, D.; Jeppsson, U.; Arnell, M. Anaerobic Co-Digestion of Sludge and Organic Food Waste—Performance, Inhibition, and Impact on the Microbial Community. Energies 2018, 11, 2325. [Google Scholar] [CrossRef]
- Liu, X.; Lee, C.; Kim, J.Y. Thermal Hydrolysis Pre-Treatment Combined with Anaerobic Digestion for Energy Recovery from Organic Wastes. J. Mater. Cycles Waste Manag. 2020, 22, 1370–1381. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Lokshina, L.Y.; Jokela, J.P.Y.; Rintala, J.A. Modeling Solid Waste Decomposition. Bioresour. Technol. 2004, 94, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Iacovidou, E.; Ohandja, D.-G.; Voulvoulis, N. Food waste co-digestion with sewage sludge—Realising its potential in the UK. J. Environ. Manag. 2012, 112, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef]
- Sosnowski, P.; Klepacz-Smolka, A.; Kaczorek, K.; Ledakowicz, S. Kinetic investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid wastes. Bioresour. Technol. 2008, 99, 5731–5737. [Google Scholar] [CrossRef]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 10, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Akturk, A.S.; Demirer, G.N. Improved food waste stabilization and valorization by anaerobic digestion through supplementation of conductive materials and trace elements. Sustainability 2020, 12, 5222. [Google Scholar] [CrossRef]
- Malika, A.; Jacques, N.; Jaafar, E.F.; Fatima, B.; Mohammed, A. Pyrolysis Investigation of Food Wastes by TG-MS-DSC Technique. Biomass Convers. Biorefin. 2016, 6, 161–172. [Google Scholar] [CrossRef]
- Kumar, M.; Srivastava, N.; Upadhyay, S.N.; Mishra, P.K. Thermal Degradation of Dry Kitchen Waste: Kinetics and Pyrolysis Products. Biomass Convers. Biorefin. 2021, 1–18. [Google Scholar] [CrossRef]
- Syguła, E.; Świechowski, K.; Hejna, M.; Kunaszyk, I.; Białowiec, A. Municipal Solid Waste Thermal Analysis—Pyrolysis Kinetics and Decomposition Reactions. Energies 2021, 14, 4510. [Google Scholar] [CrossRef]
- Jo, J.H.; Kim, S.S.; Shim, J.W.; Lee, Y.E.; Yoo, Y.S. Pyrolysis Characteristics and Kinetics of Food Wastes. Energies 2017, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Soltan, M.; Elsamadony, M.; Mostafa, A.; Awad, H.; Tawfik, A. Harvesting Zero Waste from Co-Digested Fruit and Vegetable Peels via Integrated Fermentation and Pyrolysis Processes. Environ. Sci. Pollut. Res. 2019, 26, 10429–10438. [Google Scholar] [CrossRef] [PubMed]
- González-Arias, J.; Gil, M.V.; Fernández, R.Á.; Martínez, E.J.; Fernández, C.; Papaharalabos, G.; Gómez, X. Integrating Anaerobic Digestion and Pyrolysis for Treating Digestates Derived from Sewage Sludge and Fat Wastes. Environ. Sci. Pollut. Res. 2020, 27, 32603–32614. [Google Scholar] [CrossRef]
- González, R.; González, J.; Rosas, J.G.; Smith, R.; Gómez, X. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C 2020, 6, 43. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, C.; Zhang, Z. Effect of Inherent Minerals on Sewage Sludge Pyrolysis: Product Characteristics, Kinetics and Thermodynamics. Waste Manag. 2018, 80, 175–185. [Google Scholar] [CrossRef]
Parameter | Inoculum |
---|---|
Total solids (TS, g/L) | 28.0 ± 0.6 |
Volatile solids (VS, g/L) | 15.4 ± 0.4 |
Alkalinity (mg/L) | 4316 ± 65 |
NH4+ (mg/L) | 2376 ± 14 |
pH | 7.2 ± 0.4 |
C/N | 4.7 |
Component | Concentration (g/L) |
---|---|
NH4Cl | 200 |
KH2PO4 | 100 |
FeCl3·6H2O | 8.83 |
MnCl2·4H2O | 0.36 |
CoCl2·6H2O | 4.03 |
CaCl2·2H2O | 0.10 |
ZnCl2 | 10.41 |
H3BO3 | 0.57 |
Na2MoO4·H2O | 0.024 |
NiCl2·6H2O | 2.282 |
Chemical Parameter | Value |
---|---|
TS (g/L) | 124.3 ± 1.68 |
VS | 116.1 ± 0.36 |
C (%) | 45.8 ± 0.77 |
H (%) | 6.1 ± 0.52 |
N (%) | 1.57 ± 0.13 |
S (%) | 0.17 ± 0.011 |
pH | 4.2 ± 0.1 |
Model parameters | |
A1 | 1.15 ± 0.07 |
A2 | 79.52 ± 0.10 |
To | 338.54 ± 0.31 |
p | 11.63 ± 0.11 |
R2 adj | 0.99823 |
Methane Yields (mL CH4/g VS) | Main Characteristics | Reference |
---|---|---|
410 | Batch experiment. Mesophilic conditions (35 °C). Food wastes containing 22.8% of fat (d.b) | [35] |
347 | Semi-continuous experiment. Mesophilic conditions (35 °C). OLR of 8 g VS/Lr d. Increments in OLR caused a decrease in methane yield under semi-continuous conditions | [35] |
435 | Batch Thermophilic conditions (50 °C). Food wastes collected from different sources: restaurants and food markets | [36] |
234 1 | Batch experiment using a 40 L reactor. Mesophilic conditions (Food wastes) | [37] |
398 | Large scale digestion plant. Digester volume of 900 m3. Mesophilic conditions (42 °C) | [38] |
Feed composed of a mixture of kitchen and garden wastes | ||
527.5 | Batch experiment. Mesophilic conditions (35 °C). Food wastes collected from a cafeteria | [16] |
288.5 | Batch experiment. Mesophilic conditions (35 °C). Food wastes collected from university campus | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, E.J.; González, R.; Ellacuriaga, M.; Gómez, X. Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes. Fermentation 2022, 8, 744. https://doi.org/10.3390/fermentation8120744
Martínez EJ, González R, Ellacuriaga M, Gómez X. Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes. Fermentation. 2022; 8(12):744. https://doi.org/10.3390/fermentation8120744
Chicago/Turabian StyleMartínez, Elia Judith, Rubén González, Marcos Ellacuriaga, and Xiomar Gómez. 2022. "Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes" Fermentation 8, no. 12: 744. https://doi.org/10.3390/fermentation8120744
APA StyleMartínez, E. J., González, R., Ellacuriaga, M., & Gómez, X. (2022). Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes. Fermentation, 8(12), 744. https://doi.org/10.3390/fermentation8120744