Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Experimental Design
2.3. Analysis of Nutritional Indexes
2.4. Determination of pH, Ammonia Nitrogen, and Organic Acids
2.5. Determination of Microbial Population
2.6. Determination of Anti-nutritional Factors
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition, Microbial Characteristics and Anti-nutritional Factors of Fresh Paper Mulberry
3.2. Dynamic Changes of Fermentation Characteristics of Paper Mulberry in the Ensiling Process
3.3. Effects of Different Factors on the Microbial Characteristics of Ensiled Paper Mulberry
3.4. Effects of Different Factor Levels on Anti-Nutritional Factors of Ensiled Paper Mulberry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Payacan, C.; Moncada, X.; Rojas, G.; Clarke, A.; Chung, K.-F.; Allaby, R.; Seelenfreund, D.; Seelenfreund, A. Phylogeography of herbarium specimens of asexually propagated paper mulberry [Broussonetia papyrifera (L.) L’Hér. ex Vent. (Moraceae)] reveals genetic diversity across the Pacific. Ann. Bot. 2017, 120, 387–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Liu, H.; Chen, P.; Tang, F.; Hu, Y.; Wang, F.; Pi, Z.; Zhao, M.; Chen, N.; Chen, H.; et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. Mol. Plant. 2019, 12, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shui, S.; Chai, M.; Wang, D.; Su, Y.; Wu, H.; Sui, X.; Yin, Y. Effects of Paper Mulberry (Broussonetia papyrifera) Leaf Extract on Growth Performance and Fecal Microflora of Weaned Piglets. BioMed Res. Int. 2020, 2020, 6508494. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 732–741. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, D.X.; Wang, X.K.; Lin, Y.L.; Zhang, Q.; Chen, X.Y.; Yang, F.Y. Fermentation dynamics and diversity of bacterial community in four typical woody forages. Ann. Microbiol. 2019, 69, 233–240. [Google Scholar] [CrossRef]
- Tang, T.; Bai, J.; Ao, Z.; Wei, Z.; Hu, Y.; Liu, S. Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella). Animals 2021, 11, 1655. [Google Scholar] [CrossRef]
- An, X.; Zhang, S.; Li, T.; Chen, N.; Wang, X.; Zhang, B.; Ma, Y. Transcriptomics analysis reveals the effect of Broussonetia papyrifera L. fermented feed on meat quality traits in fattening lamb. PeerJ 2021, 9, e11295. [Google Scholar] [CrossRef]
- Tao, T.; Tong, F.; Zhao, S.; Bai, J.; Wei, Z.; Hu, Y.; Liu, S. Effects of fermented Broussonetia papyrifera on growth, intestinal antioxidant, inflammation and microbiota of grass carp (Ctenopharyngodon idella)—ScienceDirect. Aquacult. Rep. 2021, 20, 100673. [Google Scholar]
- Chikwanha, O.; Muchenje, V.; Nolte, J.E.; Dugan, M.E.; Mapiye, C. Grape pomace (Vitis vinifera L. cv. Pinotage) supplementation in lamb diets: Effects on growth performance, carcass and meat quality. Meat Sci. 2018, 147, 6–12. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Shao, T. Effect of storage time on the fermentation quality, bacterial community structure and metabolic profiles of napiergrass (Pennisetum purpureum Schum.) silage. Arch. Microbiol. 2021, 204, 1–11. [Google Scholar] [CrossRef]
- Gefrom, A.; Ott, E.M.; Hoedtke, S.; Zeyner, A. Effect of ensiling moist field bean (Vicia faba), pea (Pisum sativum) and lupine (Lupinus spp.) grains on the contents of alkaloids, oligosaccharides and tannins. J. Anim. Physiol Anim. Nutr. 2013, 97, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Rinne, M.; Manni, K.; Kuoppala, K.; Niemi, T.; Koivunen, E.; Kahala, M.; Jalava, T. Ensiling of crimped faba beans decreased selected antinutritional factors. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26 July 2018. [Google Scholar]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Association of Official Analysis Chemists; Horwits, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Jung, J.S.; Ravindran, B.; Soundharrajan, I.; Awasthi, M.K.; Choi, K.C. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages. Bioresour. Technol. 2021, 345, 126485. [Google Scholar] [CrossRef]
- Broderick, G.; Kang, J. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Xu, J.; Guo, L.L.; Xiong, Y.; Lin, L.; Ni, K.; Yang, F. Exploring the Addition of Herbal Residues on Fermentation Quality, Bacterial Communities, and Ruminal Greenhouse Gas Emissions of Paper Mulberry Silage. Front. Microbiol. 2022, 12, 4379. [Google Scholar] [CrossRef]
- He, L.; Lv, H.; Wang, C.; Zhou, W.; Pian, R.; Zhang, Q.; Chen, X. Dynamics of fermentation quality, physiochemical property and enzymatic hydrolysis of high-moisture corn stover ensiled with sulfuric acid or sodium hydroxide. Bioresour. Technol. 2019, 298, 122510. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Vanillin-HCl method for condensed tannins: Effect of organic solvents used for extraction of tannins. J. Chem. Ecol. 1993, 19, 613–621. [Google Scholar] [CrossRef]
- Terrill, S.B.; Berthold, P. Ecophysiological aspects of rapid population growth in a novel migratory blackcap (Sylvia atricapilla) population: An experimental approach. Oecologia 1990, 85, 266–270. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar]
- Carneiro, J.M.T.; Zagatto, E.A.G.; Santos, J.L.M.; Lima, J.L.F.C. Spectrophotometric determination of phytic acid in plant extracts using a multi-pumping flow system. Anal. Chim. Acta 2002, 474, 161–166. [Google Scholar] [CrossRef]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Medica 1976, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Wang, X.K.; Li, D.X.; Lin, Y.L.; Yang, F.Y.; Ni, K.K. Impact of wilting and additives on fermentation quality and carbohydrate composition of mulberry silage. Asian-Australas. J. Anim. Sci. 2020, 33, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Sun, L.; Chen, C.; Lin, J.; Yang, F.; Cai, Y. Exploring microbial community structure and metabolic gene clusters during silage fermentation of paper mulberry, a high-protein woody plant. Anim. Feed Sci. Technol. 2020, 275, 114766. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Effect of ensiling corn stover with legume herbages in different proportions on fermentation characteristics, nutritive quality andin vitrodigestibility on the Tibetan Plateau. Grassl. Sci. 2017, 63, 236–244. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, Y.; Bai, S.; Chen, L.; You, M.; Zhang, K.; Li, P.; Chen, C. Study on the bacterial community structure and fermentation characteristics of fresh and ensiled paper mulberry. Anim. Sci. J. 2021, 92, 13656. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Lin, Y.; Yang, X.; Ni, K.; Yang, F. Microorganisms that are critical for the fermentation quality of paper mulberry silage. Food Energy Secur. 2021, 10, e304. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lee, Y.H.; Lee, W.H.; Oh, Y.-K.; Park, K.; Kwak, W.S. Long-term anaerobic conservation of fruit and vegetable discards without or with moisture adjustment after aerobic preservation with sodium metabisulfite. Waste Manag. 2019, 87, 258–267. [Google Scholar] [CrossRef]
- Guo, L.; Yao, D.; Li, D.; Lin, Y.; Bureenok, S.; Ni, K.; Yang, F. Effects of Lactic Acid Bacteria Isolated From Rumen Fluid and Feces of Dairy Cows on Fermentation Quality, Microbial Community, and in vitro Digestibility of Alfalfa Silage. Front. Microbiol. 2020, 10, 2998. [Google Scholar] [CrossRef]
- Li, D.-X.; NI, K.-K.; Zhang, Y.-C.; Lin, Y.-L.; Yang, F.-Y. Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality. J. Integr. Agric. 2018, 17, 2768–2782. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, L.; Xing, Y.; Zheng, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Dynamics of Bacterial Community and Fermentation Quality during Ensiling of Wilted and Unwilted Moringa oleifera Leaf Silage with or without Lactic Acid Bacterial Inoculants. Msphere 2019, 4, e00341-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Diarra, S.S. Prospects for the utilization of Senna obtuse folia products as protein supplements for poultry. Poult. Sci. 2021, 100, 101245. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Juillerat, M.A.; Barclay, D.; Hurrell, R.F. The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J. Food Sci. 2002, 67, 5. [Google Scholar] [CrossRef]
- Hassan, Z.M.; Manyelo, T.G.; Selaledi, L.; Mabelebele, M. The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules 2020, 25, 4680. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Su, B.; Chen, X.; Pian, R. Solid state fermentation of Moringa oleifera leaf meal by mixed strains for the protein enrichment and the improvement of nutritional value. PeerJ 2020, 8, e10358. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Stochmal, A.; Cieslak, A.; Kozłowska, M.; Kuznicki, D.; Kowalczyk, M.; Oleszek, W. Structural and quantitative changes of saponins in fresh alfalfa compared to alfalfa silage. J. Sci. Food Agric. 2018, 99, 2243–2250. [Google Scholar] [CrossRef]
- Estrella, D.P.S.; Torri, L.; Pagani, M.A.; Marti, A. Quinoa bitterness: Causes and solutions for improving product acceptability. J. Sci. Food Agric. 2018, 98, 4033–4041. [Google Scholar] [CrossRef]
- Rollán, G.C.; Gerez, C.L.; Leblanc, J.G. Lactic Fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tian, J.; Zhang, Q.; Jiang, Y.; Hou, J.; Wu, Z.; Yu, Z. Effects of applying Lactobacillus plantarum and Chinese gallnut tannin on the dynamics of protein degradation and proteases activity in alfalfa silage. Grass Forage Sci. 2018, 73, 648–659. [Google Scholar] [CrossRef]
- Li, R.; Zheng, M.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Replacing Alfalfa with Paper Mulberry in Total Mixed Ration Silages: Effects on Ensiling Characteristics, Protein Degradation, and In Vitro Digestibility. Animals 2021, 11, 1273. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Rouzbehan, Y.; Rezaei, J.; Jacobsen, S.-E. The effect of lactic acid bacteria inoculation, molasses, or wilting on the fermentation quality and nutritive value of amaranth (Amaranthus hypochondriaus) silage1. J. Anim. Sci. 2018, 96, 3983–3992. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadambaleaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef]
- Peng, K.; Huang, Q.; Xu, Z.; McAllister, T.A.; Acharya, S.; Mueller-Harvey, I.; Drake, C.; Cao, J.; Huang, Y.; Sun, Y.; et al. Characterization of Condensed Tannins from Purple Prairie Clover (Dalea purpurea Vent.) Conserved as either Freeze-Dried Forage, Sun-Cured Hay or Silage. Molecules 2018, 23, 586. [Google Scholar] [CrossRef] [Green Version]
- Jeanne, E.; Laurent, S.; Johanne, M.; Desrosiers, T. Beneficial changes and drawbacks of a traditional fermentation process on chemical composition and antinutritional factors of yellow maize (Zea mays). J. Biol. Sci. 2005, 5, 590–596. [Google Scholar]
- Makkar, H.; Becker, K. Degradation of quillaja saponins by mixed culture of rumen microbes. Lett. Appl. Microbiol. 1997, 25, 243–245. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, I.; Hamonangan, R.; Azizi, M.S.; Cahyanur, R.; Wirawan, F.; Fatya, A.I.; Budiananti, A.; Winston, K. Diagnostic Value of Neutrophil Lymphocyte Ratio and D-Dimer as Biological Markers of Deep Vein Thrombosis in Patients Presenting with Unilateral Limb Edema. J. Blood Med. 2021, 12, 313–325. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef]
- Tian, J.; Na, R.; Yu, Z.; Liu, Z.; Liu, Z.; Yu, Y. Inoculant effects on the fermentation quality, chemical composition and saponin content of lucerne silage in a mixture with wheat bran or corn husk. Anim. Prod. Sci. 2018, 58, 2249–2257. [Google Scholar] [CrossRef]
Items | Content |
---|---|
DM% | 34.16 ± 1.95 |
CP g·kg−1 DM | 131.62 ± 14.80 |
EE g·kg−1 DM | 88.89 ± 2.57 |
WSC g·kg−1 DM | 32.83 ± 0.72 |
NDF g·kg−1 DM | 550.54 ± 14.04 |
ADF g·kg−1 DM | 259.91 ± 8.56 |
HT g·kg−1 DM | 3.13 ± 0.07 |
CT g·kg−1 DM | 13.79 ± 1.23 |
TT g·kg−1 DM | 16.92 ± 1.29 |
OA g·kg−1 DM | 0.89 ± 0.09 |
PA g·kg−1 DM | 1.27 ± 0.03 |
SA g·kg−1 DM | 24.05 ± 0.24 |
LAB log cfu·g−1 FM | 5.47 ± 0.07 |
YEAST log cfu·g−1 FM | 2.47 ± 0.81 |
CB log cfu·g−1 FM | 5.44 ± 0.07 |
Items | Treatment (T) | Days (D) | SEM | p-Value | T | D | T × D | |||
---|---|---|---|---|---|---|---|---|---|---|
7 d | 15 d | 30 d | 60 d | |||||||
DM | CK | 34.78 ± 1.76 Aa | 32.39 ± 1.04 Bb | 31.61 ± 0.49 Cb | 34.44 ± 0.65 Ba | 0.49 | 0.013 | * | * | * |
GX | 35.00 ± 1.07 Aa | 34.79 ± 0.53 Aa | 36.44 ± 0.41 Ba | 35.65 ± 1.20 Ba | 0.29 | |||||
GZ | 35.62 ± 0.96 Aa | 34.26 ± 0.95 Ab | 36.96 ± 0.24 Aa | 39.90 ± 3.75 Aa | 0.80 | |||||
pH | CK | 6.19 ± 0.04 Aa | 5.92 ± 0.19 Aa | 5.95 ± 0.04 Aa | 4.92 ± 0.36 Ab | 0.16 | 0.003 | ** | ** | ** |
GX | 5.19 ± 0.02 Ba | 4.92 ± 0.16 Bb | 4.59 ± 0.05 Bc | 4.35 ± 0.10 Ad | 0.10 | |||||
GZ | 5.26 ± 0.11 Ba | 4.80 ± 0.04 Bb | 4.69 ± 0.10 Bb | 4.44 ± 0.29 Ab | 0.10 | |||||
CP g·kg−1 DM | CK | 106.96 ± 0.50 Aa | 102.36 ± 5.98 Aa | 100.44 ± 8.77 Aa | 111.61 ± 16.58 Aa | 2.75 | 0.946 | ns | * | ns |
GX | 106.10 ± 8.04 Ab | 98.18 ± 6.54 Ab | 103.35 ± 7.84 Ab | 116.00 ± 3.99 Aa | 2.57 | |||||
GZ | 105.33 ± 3.76 Aa | 100.07 ± 11.91 Aa | 105.48 ± 3.24 Aa | 112.37 ± 1.75 Aa | 2.07 | |||||
NDF g·kg−1 DM | CK | 549.91 ± 45.30 Aa | 505.41 ± 50.03 Aa | 499.33 ± 70.09 Aa | 348.29 ± 32.51 Bb | 26.20 | 0.002 | * | ** | ** |
GX | 445.40 ± 40.10 Ba | 462.03 ± 29.25 ABa | 490.59 ± 53.84 Aa | 467.15 ± 16.65 Aa | 10.45 | |||||
GZ | 437.98 ± 31.99 BAb | 385.61 ± 51.16 Bb | 468.29 ± 13.37 Aa | 421.74 ± 50.72 AAb | 13.33 | |||||
ADF g·kg−1 DM | CK | 335.28 ± 3.07 Aa | 278.56 ± 8.77 Ab | 268.42 ± 36.69 Bb | 209.87 ± 24.23 Bc | 14.51 | 0.009 | ns | * | ** |
GX | 245.54 ± 81.02 Ab | 270.83 ± 26.51 AAb | 348.08 ± 41.18 Aa | 253.46 ± 31.04 ABAb | 17.34 | |||||
GZ | 271.25 ± 31.57 AAb | 252.77 ± 50.9 Ab | 331.22 ± 12.91 ABa | 293.42 ± 42.62 AAb | 12.73 | |||||
EE g·kg−1 DM | CK | 84.30 ± 1.17 Bb | 99.31 ± 6.25 Aa | 96.65 ± 6.99 AAb | 98.16 ± 10.73 AAb | 2.53 | 0.015 | * | * | * |
GX | 93.54 ± 6.49 Aa | 91.78 ± 3.18 Aa | 77.61 ± 6.45 Bb | 92.48 ± 6.97 Aa | 2.45 | |||||
GZ | 92.29 ± 2.03 Aa | 92.82 ± 7.47 Aa | 80.84 ± 3.68 Bb | 87.49 ± 5.11 AAb | 1.90 | |||||
WSC g·kg−1 DM | CK | 34.89 ± 7.49 Aa | 29.23 ± 1.95 Aa | 25.49 ± 5.26 ABa | 24.41 ± 8.29 Aa | 1.97 | 0.117 | ** | * | ns |
GX | 44.40 ± 3.69 Aa | 24.54 ± 4.54 Abc | 27.59 ± 2.14 Ab | 19.91 ± 1.65 Ac | 2.90 | |||||
GZ | 38.18 ± 5.32 Aa | 25.31 ± 7.29 Ab | 17.96 ± 3.67 Bbc | 14.13 ± 3.71 Ac | 3.05 | |||||
LA g·kg−1 DM | CK | 10.00 ± 0.49 Cb | 42.39 ± 10.13 Ba | 46.28 ± 5.61 Aa | 43.16 ± 2.91 Ba | 4.49 | 0.009 | * | ** | ** |
GX | 21.82 ± 0.64 Bb | 46.43 ± 5.15 Ba | 51.68 ± 4.58 Aa | 44.92 ± 2.51 Ba | 3.58 | |||||
GZ | 36.96 ± 5.09 Ac | 66.23 ± 4.85 Aa | 49.83 ± 1.52 Ab | 56.38 ± 1.69 Ab | 3.78 | |||||
AA g·kg−1 DM | CK | 26.76 ± 2.86 Bb | 41.52 ± 5.77 Aa | 38.29 ± 38.29 Aa | 28.87 ± 7.68 Ab | 2.26 | 0.037 | * | ** | ** |
GX | 50.68 ± 3.20 Aa | 29.85 ± 2.60 Bb | 27.11 ± 0.20 Bc | 30.45 ± 2.02 Ab | 2.89 | |||||
GZ | 25.03 ± 4.66 Ab | 41.06 ± 3.87 Aa | 36.22 ± 1.62 Aa | 21.80 ± 4.18 Ab | 2.55 | |||||
PA g·kg−1 DM | CK | 1.74 ± 0.66 Ab | 2.38 ± 0.81 Aa | 1.98 ± 0.34 Bb | 1.10 ± 0.28 Ac | 0.20 | <0.001 | ** | ** | ** |
GX | - | - | - | - | - | |||||
GZ | 2.10 ± 0.10 Ab | 1.14 ± 0.56 Bc | 3.46 ± 2.48 Aa | 1.51 ± 0.62 Ac | 0.42 | |||||
BA g·kg−1 DM | CK | 0.51 ± 0.01 Bc | 1.55 ± 0.28 Bb | 2.10 ± 0.32 Aa | 0.47 ± 0.09 Bc | 0.22 | <0.001 | ** | ** | ** |
GX | 1.78 ± 0.08 Ab | 2.21 ± 0.27 Aa | 0.92 ± 0.03 Bc | 0.76 ± 020 Bc | 0.19 | |||||
GZ | - | - | - | - | 7.92 | |||||
NH3/TNg·kg−1 TN | CK | 3.38 ± 0.42 Ac | 3.56 ± 0.45 Ac | 7.26 ± 0.47 Aa | 5.61 ± 0.15 Ab | 0.49 | 0.029 | ** | ** | ** |
GX | 1.59 ± 0.28 Bc | 2.39 ± 0.15 Bb | 2.40 ± 0.03 Bb | 3.00 ± 0.39 Ba | 0.16 | |||||
GZ | 1.77 ± 0.10 Bb | 2.12 ± 0.16 Bb | 2.10 ± 0.28 Bb | 3.65 ± 0.50 Ba | 0.25 |
Items | Treatments (T) | Days (D) | SEM | p-Value | T | D | T × D | |||
---|---|---|---|---|---|---|---|---|---|---|
7 d | 15 d | 30 d | 60 d | |||||||
LAB | CK | 5.63 ± 0.06 Ac | 7.47 ± 0.07 Aa | 6.69 ± 0.22 Ab | 7.55 ± 0.13 Ba | 0.24 | <0.01 | ** | ** | ns |
GX | 6.82 ± 0.98 Ac | 7.57 ± 0.43 Ab | 7.31 ± 0.64 Ab | 8.58 ± 0.30 Aa | 0.25 | |||||
GZ | 6.95 ± 0.77 Ab | 8.00 ± 0.06 Aa | 6.86 ± 0.05 Ab | 7.73 ± 0.60 Bab | 0.19 | |||||
YEAST | CK | - | - | - | - | - | - | - | - | - |
GX | - | - | - | - | - | - | - | - | - | |
GZ | - | - | - | - | - | - | - | - | - | |
MOULD | CK | - | - | - | - | - | - | - | - | - |
GX | - | - | - | - | - | - | - | - | - | |
GZ | - | - | - | - | - | - | - | - | - | |
CB | CK | - | - | - | - | - | - | - | - | - |
GX | - | - | - | - | - | - | - | - | - | |
GZ | - | - | - | - | - | - | - | - | - |
Items | Treatments (T) | Days (D) | SEM | p-Value | T | D | T × D | |||
---|---|---|---|---|---|---|---|---|---|---|
7 d | 15 d | 30 d | 60 d | |||||||
HT | CK | 0.90 ± 0.06 Cd | 1.97 ± 0.39 Bc | 4.36 ± 0.60 Ab | 10.53 ± 0.79 Aa | 1.13 | 0.001 | ** | ** | ** |
GX | 3.71 ± 0.43 Ac | 5.75 ± 1.01 Ab | 5.58 ± 0.49 Ab | 8.67 ± 0.10 Ba | 0.57 | |||||
GZ | 2.53 ± 0.58 Bc | 4.49 ± 0.44 Ab | 3.91 ± 0.98 Bb | 6.65 ± 0.54 Ca | 0.48 | |||||
CT | CK | 22.32 ± 3.47 Ab | 21.72 ± 0.89 Ab | 28.54 ± 2.00 Aa | 30.74 ± 0.79 Aa | 1.29 | 0.028 | ** | ** | * |
GX | 20.21 ± 2.98 Ab | 19.36 ± 1.66 Ab | 23.09 ± 2.79 Bb | 29.81 ± 5.17 Aa | 1.49 | |||||
GZ | 23.65 ± 3.07 Aa | 19.60 ± 0.95 Ab | 16.77 ± 1.96 Cb | 23.28 ± 1.99 Ba | 3.47 | |||||
TT | CK | 23.22 ± 3.43 Ac | 23.69 ± 0.60 Ac | 32.90 ± 2.32 Ab | 41.27 ± 1.48 Aa | 2.31 | 0.011 | ** | ** | ** |
GX | 23.92 ± 3.40 Ab | 25.12 ± 2.06 Ab | 28.67 ± 2.62 Ab | 38.48 ± 4.26 Aa | 1.90 | |||||
GZ | 26.19 ± 2.73 Aa | 24.09 ± 1.37 Aa | 20.67 ± 2.72 Bb | 29.92 ± 2.11 Ba | 1.116 | |||||
OA | CK | 0.23 ± 0.09 Ba | 0.95 ± 0.08 Aa | 0.38 ± 0.001 Ba | 0.32 ± 0.001 Aa | 0.08 | 0.003 | ** | ** | ** |
GX | 0.44 ± 0.01 Ab | 0.18 ± 0.03 Cc | 0.65 ± 0.10 Aa | 0.18 ± 0.02 Bc | 0.06 | |||||
GZ | 0.43 ± 0.06 Aa | 0.56 ± 0.05 Ba | 0.30 ± 0.06 Cd | 0.34 ± 0.01 Ac | 0.03 | |||||
PA | CK | 1.06 ± 0.06 Ab | 1.31 ± 0.08 Aa | 1.14 ± 0.01 Ab | 1.10 ± 0.08 Ab | 0.03 | 0.001 | ** | ** | ** |
GX | 1.12 ± 0.02 Aa | 0.98 ± 0.04 Bb | 0.82 ± 0.10 Bc | 0.75 ± 0.03 Bc | 0.05 | |||||
GZ | 1.08 ± 0.12 Aa | 0.72 ± 0.04 Cb | 0.76 ± 0.06 Bb | 0.65 ± 0.03 Bb | 0.15 | |||||
SA | CK | 12.92 ± 0.62 Cd | 16.67 ± 0.08 Ab | 14.54 ± 0.43 Ac | 17.72 ± 0.42 Aa | 0.57 | 0.009 | ** | ** | ** |
GX | 17.29 ± 0.92 Aa | 14.53 ± 0.98 Bb | 12.52 ± 0.64 Bc | 16.75 ± 0.43 Aa | 0.60 | |||||
GZ | 14.59 ± 0.83 Bb | 16.48 ± 0.55 Aa | 12.20 ± 1.05 Bc | 14.09 ± 0.64 Bb | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Xiong, Y.; Wang, X.; Guo, L.; Lin, Y.; Ni, K.; Yang, F. Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage. Fermentation 2022, 8, 144. https://doi.org/10.3390/fermentation8040144
Wang N, Xiong Y, Wang X, Guo L, Lin Y, Ni K, Yang F. Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage. Fermentation. 2022; 8(4):144. https://doi.org/10.3390/fermentation8040144
Chicago/Turabian StyleWang, Ningwei, Yi Xiong, Xuekai Wang, Linna Guo, Yanli Lin, Kuikui Ni, and Fuyu Yang. 2022. "Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage" Fermentation 8, no. 4: 144. https://doi.org/10.3390/fermentation8040144
APA StyleWang, N., Xiong, Y., Wang, X., Guo, L., Lin, Y., Ni, K., & Yang, F. (2022). Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage. Fermentation, 8(4), 144. https://doi.org/10.3390/fermentation8040144