Effect of Rhodanese Enzyme Addition on Rumen Fermentation, Cyanide Concentration, and Feed Utilization in Beef Cattle Receiving Various Levels of Fresh Cassava Root
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cattle, Treatments, Experimental Design, and Feeding
2.2. Data Collection and Chemical Analysis
2.3. Statistical Investigation
3. Results and Discussion
3.1. Feed Consumption and Digestibility
3.2. Rumen’s Characteristics and Blood Profiles
3.3. Concentration of Rumen Volatile Fatty Acids (VFA) and their Profiles
3.4. Nitrogen Utilization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanapat, M.; Kang, S. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 2015, 1, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Sumadong, P.; Cherdthong, A.; So, S.; Wanapat, M. Sulfur, fresh cassava root and urea independently enhanced gas production, ruminal characteristics and in vitro degradability. BMC Vet. Res. 2021, 17, 304. [Google Scholar] [CrossRef] [PubMed]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Fresh cassava root replacing cassava chip could enhance milk production of lactating dairy cows fed diets based on high sulfur-containing pellet. Sci. Rep. 2022, 12, 3809. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, J.A.; Oehme, F. Cyanogenic glycosides. In Clinical Veterinary Toxicology; Plumlee, K., Ed.; Mosby: St Louis, MO, USA, 2013; pp. 391–392. [Google Scholar]
- Kutay, Y.; Banu, D.; Remzi, G.; Erman, M.O. Cyanide poisoning in cattle. J. Dairy Vet. Sci. 2017, 1, 555567. [Google Scholar]
- Kennedy, A.; Brennan, A.; Mannion, C.; Sheehan, M. Suspected cyanide toxicity in cattle associated with ingestion of laurel—A case report. Irish Vet. J. 2021, 74, 6. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation, and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Supapong, C.; Cherdthong, A.; Wanapat, M.; Chanjula, P.; Uriyapongson, S. Effects of sulfur levels in fermented total containing fresh cassava root on feed utilization, rumen characteristics, microbial protein synthesis, and blood metabolites in Thai native beef cattle. Animals 2019, 9, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M. Screening of cyanide-utilizing bacteria from rumen and in vitro evaluation of fresh cassava root utilization with pellet containing high sulfur diet. Vet. Sci. 2021, 8, 10. [Google Scholar] [CrossRef]
- Promkot, C.; Wanapat, M.; Wachirapakorn, C.; Navanukraw, C. Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian-Australas. J. Anim. Sci. 2007, 20, 1424–1432. [Google Scholar] [CrossRef]
- Dagaew, G.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Ruminal fermentation, milk production efficiency, and nutrient digestibility of lactating dairy cows receiving fresh cassava root and solid feed-block containing high sulfur. Fermentation 2021, 7, 114. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A. Rhodaneses enzyme addition could reduce cyanide concentration and enhance fiber digestibility via in vitro fermentation study. Fermentation 2021, 7, 207. [Google Scholar] [CrossRef]
- Wu, G.F.; Bazer, W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: Protein synthesis and beyond. Ann. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Castro, D.J.; Cerón-Cucchi, M.E.; Ortiz-Chura, A.; Depetris, G.J.; Irazoqui, J.M.; Amadio, A.F.; Cravero, S.; Cantón, G.J. Ruminal effects of excessive dietary sulphur in feedlot cattle. J. Anim. Physiol. Anim. Nutr. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Cipollone, R.; Ascenzi, P.; Tomao, P.; Imperi, F.; Visca, P. Enzymatic detoxification of cyanide: Clues from Pseudomonas aeruginosa rhodanese. J. Mol. Microbiol. Biotechnol. 2008, 15, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ehsan, M.; Huang, J.; Aimulajiang, K.; Yan, R.F.; Song, X.K.; Xu, L.X.; Li, X.R. Characterization of a rhodanese homologue from Haemonchus contortus and its immune-modulatory effects on goat immune cells in vitro. Parasit. Vectors. 2020, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Aminlari, M.; Li, A.; Kunanithy, V.; Scaman, C.H. Rhodanese distribution in porcine (Sus scrofa) tissues. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 132, 309–313. [Google Scholar] [CrossRef]
- Oyedeji, O.; Kehinde, O.; Okonji, A.E.R.; Olusola., O.O. Characterization of rhodanese produced by Pseudomonas aeruginosa and Bacillus brevis isolated from soil of cassava processing site. Africa. J. Biotechnol. 2013, 12, 1104–1114. [Google Scholar]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Fisher, F.B.; Brown, J.S. Colorimetric determination of cyanide in stack gas and waste water. Anal. Chem. 1952, 24, 1440–1444. [Google Scholar] [CrossRef]
- Lambert, J.L.; Ramasamy, J.; Paukstelis, J.F. Stable reagents for the colorimetric determination of cyanide by modified Konig reactions. Anal. Chem. 1975, 47, 916–918. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian-Australas. J. Anim. Sci. 2013, 26, 1583–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas. J. Anim. Sci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Wanapat, M.; Cherdthong, A. Effect of banana flower powder supplementation as a rumen buffer on rumen fermentation efficiency and nutrient digestibility in dairy steers fed on high concentrate diet. Anim. Feed Sci. Technol. 2014, 196, 32–41. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Kang, S.; Cherdthong, A. Effects of supplementation of Eucalyptus (E. Camaldulensis) leaf meal on feed intake and rumen fermentation efficiency in Swamp buffaloes. Asian-Australas. J. Anim. Sci. 2015, 28, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raybuck, S.A. Microbes and microbial enzymes for cyanide degradation. Biodegradation. 1992, 3, 3–18. [Google Scholar] [PubMed]
- Chanjula, P.; Wanapat, M.; Wachirapakorn, C.; Uriyapongson, S.; Rowlinson, P. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Australas. J. Anim. Sci. 2004, 17, 1400–1410. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Kumar, V.; Kumar, V. Microbial remediation of cyanides. In Bioremediation Current Research and Application; Rathoure, A.K., Ed.; International Publishing House: New Delhi, India, 2017; pp. 88–110. [Google Scholar]
- Tan, N.D.; Wanapat, M.; Uriyapongson, S.; Cherdthong, A.; Pilajun, R. Enhancing mulberry leaf meal with urea by pelleting to improve rumen fermentation in cattle. Asian-Australas. J. Anim. Sci. 2012, 25, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantasook, N.; Wanapat, M.; Gunun, P.; Cherdthong, A. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins. Anim. Sci. J. 2016, 87, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
Item | Concentrate | Fresh Cassava Root | Rice Straw |
---|---|---|---|
Ingredients, % DM | |||
Soybean meal | 9.7 | ||
Palm kernel meal | 10.0 | ||
Corn meal | 62.3 | ||
Rice bran | 15.0 | ||
Molasses | 2.0 | ||
Minerals and vitamins 1 | 1 | ||
Chemical composition | |||
Dry matter, % | 88.2 | 37.1 | 97.2 |
Organic matter, %DM | 90.5 | 38.0 | 90.1 |
Crude protein, %DM | 12.0 | 2.31 | 2.4 |
Neutral detergent fiber, %DM | 44.2 | 72.0 | 65.2 |
Acid detergent fiber, %DM | 9.6 | 47.8 | 55.1 |
Hydrocyanic acid, ppm DM | 5.1 | 100.6 | - |
Item | Level Hydrocyanic Acid in Fresh Cassava Root (ppm) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 300 | 450 | 600 | Linear | Quadratic | ||
DM intake | |||||||
Rice straw | |||||||
kg/day | 2.6 a | 1.9 b | 2.1 ab | 1.8 b | 0.39 | 0.02 | 0.24 |
g/kg BW0.75 | 76.2 a | 54.1 b | 62.5 ab | 51.5 b | 2.30 | 0.03 | 0.33 |
Concentrate | |||||||
kg/day | 1.1 | 1.1 | 1.2 | 1.1 | 0.20 | 0.60 | 0.56 |
g/kg BW0.75 | 33.6 | 31.1 | 32.7 | 32.3 | 0.84 | 0.47 | 0.21 |
Fresh cassava root | |||||||
kg/day | 0.0 a | 3.0 b | 4.5 c | 6.0 d | 0.25 | 0.01 | 0.01 |
g/kg BW0.75 | 0.0 a | 31.9 b | 54.9 c | 66.1 d | 1.40 | 0.01 | 0.01 |
Total intake | |||||||
kg/day | 3.7 a | 4.0 a | 4.8 b | 5.1 b | 0.37 | 0.01 | 0.09 |
g/kg BW0.75 | 109.3 a | 117.2 a | 150.2 b | 149.8 b | 2.26 | 0.01 | 0.45 |
Nutrient intake, kg/d | |||||||
Dry matter | 3.7 a | 4.0 a | 4.8 b | 5.1 b | 0.39 | 0.01 | 0.54 |
Organic matter | 3.0 | 3.2 | 3.3 | 3.3 | 0.42 | 0.67 | 0.30 |
Crude protein | 0.21 a | 0.23 b | 0.25 c | 0.25 c | 0.34 | 0.01 | 0.01 |
Neutral detergent fiber | 2.2 a | 2.43 a | 3.03 b | 3.2 b | 0.36 | 0.01 | 0.71 |
Acid detergent fiber | 1.6 a | 1.6 a | 2.1 b | 2.2 b | 0.32 | 0.01 | 0.73 |
Digestibility coefficients | |||||||
Dry matter | 0.67 | 0.70 | 0.68 | 0.71 | 0.11 | 0.11 | 0.77 |
Organic matter | 0.72 | 0.74 | 0.73 | 0.74 | 0.12 | 0.63 | 0.93 |
Crude protein | 0.60 a | 0.62 ab | 0.63 ab | 0.66 b | 0.08 | 0.03 | 0.06 |
Neutral detergent fiber | 0.61 | 0.62 | 0.63 | 0.61 | 0.14 | 0.12 | 0.46 |
Acid detergent fiber | 0.35 | 0.36 | 0.35 | 0.33 | 0.11 | 0.07 | 0.26 |
Item | Level Hydrocyanic Acid in Fresh Cassava Root (ppm) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 300 | 450 | 600 | Linear | Quadratic | ||
Rumen ecology | |||||||
Ruminal pH | |||||||
0 h post feeding | 7.2 | 7.2 | 7.2 | 7.0 | 0.32 | 0.33 | 0.32 |
4 h post feeding | 6.9 | 6.7 | 6.7 | 6.8 | 0.33 | 053 | 0.22 |
Ruminal temperature, °C | |||||||
0 h post feeding | 39.3 | 39.2 | 39.2 | 39.3 | 0.30 | 0.74 | 0.51 |
4 h post feeding | 39.2 | 39.2 | 39.1 | 39.2 | 0.18 | 0.94 | 0.67 |
NH3-N concentration, mg/dL | |||||||
0 h post feeding | 13.6 | 14.2 | 12.1 | 12.7 | 0.31 | 0.19 | 0.88 |
4 h post feeding | 17.0 a | 16.4 ab | 15.4 ab | 12.9 b | 0.91 | 0.02 | 0.11 |
Cyanide concentration, ppm | |||||||
0 h post feeding | 0.52 | 0.60 | 0.93 | 1.3 | 0.52 | 0.08 | 0.67 |
4 h post feeding | 0.17 a | 0.46 a | 0.79 ab | 1.6 b | 0.55 | 0.02 | 0.46 |
Blood urea-N concentration, mg/dL | |||||||
0 h post feeding | 7.3 | 3.0 | 4.9 | 1.3 | 1.75 | 0.09 | 0.86 |
4 h post feeding | 9.0 a | 4.7 b | 2.3 c | 2.0 c | 0.78 | 0.01 | 0.02 |
Blood thiocyanate concentration, mg/dL | |||||||
0 h post feeding | 3.9 a | 15.5 ab | 14.7 ab | 32.1 b | 2.22 | 0.01 | 0.58 |
4 h post feeding | 4.1 a | 17.2 b | 20.6 bc | 27.9 c | 1.49 | 0.01 | 0.23 |
Item | Level Hydrocyanic Acid in Fresh Cassava Root (ppm) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 300 | 450 | 600 | Linear | Quadratic | ||
Total VFA, mmol/L | |||||||
0 h post feeding | 88.7 | 90.5 | 97.1 | 86.8 | 2.50 | 0.98 | 0.36 |
4 h post feeding | 96.4 | 94.9 | 104.9 | 99.1 | 1.97 | 0.33 | 0.60 |
VFA profiles, mol/100 mol | |||||||
Acetic acid | |||||||
0 h post feeding | 76.9 | 74.3 | 71.9 | 74.6 | 1.26 | 0.24 | 0.15 |
4 h post feeding | 67.9 | 63.5 | 63.6 | 65.6 | 1.31 | 0.41 | 0.11 |
Propionic acid | |||||||
0 h post feeding | 12.1 | 13.9 | 16.6 | 14.9 | 1.30 | 0.19 | 0.34 |
4 h post feeding | 21.9 a | 24.5 ab | 25.7 b | 24.4 ab | 0.88 | 0.04 | 0.05 |
Butyric acid | |||||||
0 h post feeding | 10.9 | 11.7 | 11.5 | 10.4 | 1.24 | 0.80 | 0.57 |
4 h post feeding | 10.3 | 11.9 | 10.8 | 9.9 | 1.06 | 0.68 | 0.31 |
Acetic: Propionic acid ratio | |||||||
0 h post feeding | 6.5 | 5.6 | 4.9 | 5.1 | 0.88 | 0.20 | 0.44 |
4 h post feeding | 3.1 a | 2.6 ab | 2.5 b | 2.7 ab | 0.39 | 0.09 | 0.05 |
Item | Level Hydrocyanic Acid in Fresh Cassava Root (ppm) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 300 | 450 | 600 | Linear | Quadratic | ||
N intake, g/day | 33.5 a | 36.8 b | 40.0 c | 40.0 c | 0.72 | 0.01 | 0.02 |
Total N excretion, g/day | 12.5 a | 14.9 b | 16.8 c | 15.8 bc | 0.62 | 0.01 | 0.01 |
Fecal excretion, g/day | |||||||
Output, kg/day | 1.3 a | 1.2 a | 1.6 b | 1.5 ab | 0.29 | 0.03 | 0.67 |
Total N, g/day | 8.2 | 8.1 | 10.3 | 8.7 | 0.91 | 0.35 | 0.43 |
Total N/N excretion | 65.7 | 53.9 | 61.2 | 60.1 | 2.12 | 0.65 | 0.28 |
Urinary excretion | |||||||
Output, L/day | 1.2 a | 0.85 ab | 0.98 ab | 0.65 b | 0.34 | 0.04 | 0.92 |
Total N, g/day | 4.3 | 6.9 | 6.6 | 6.3 | 0.88 | 0.15 | 0.13 |
Total N/N excretion | 34.3 | 46.1 | 38.8 | 39.9 | 2.16 | 0.65 | 0.28 |
N absorption, g/day | 25.3 a | 28.7 b | 29.8 b | 30.6 b | 0.81 | 0.01 | 0.09 |
N retention, g/day | 20.9 a | 21.9 ab | 23.2 ab | 24.2 b | 0.82 | 0.01 | 0.99 |
Percentage of N retention to N intake | 62.5 | 59.5 | 58.0 | 60.5 | 1.10 | 0.22 | 0.06 |
Rumen microbial protein yield, g/d | 217.3 | 215.3 | 224.4 | 239.1 | 3.42 | 0.20 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supapong, C.; Sommai, S.; Khonkhaeng, B.; Suntara, C.; Prachumchai, R.; Phesatcha, K.; Chanjula, P.; Cherdthong, A. Effect of Rhodanese Enzyme Addition on Rumen Fermentation, Cyanide Concentration, and Feed Utilization in Beef Cattle Receiving Various Levels of Fresh Cassava Root. Fermentation 2022, 8, 146. https://doi.org/10.3390/fermentation8040146
Supapong C, Sommai S, Khonkhaeng B, Suntara C, Prachumchai R, Phesatcha K, Chanjula P, Cherdthong A. Effect of Rhodanese Enzyme Addition on Rumen Fermentation, Cyanide Concentration, and Feed Utilization in Beef Cattle Receiving Various Levels of Fresh Cassava Root. Fermentation. 2022; 8(4):146. https://doi.org/10.3390/fermentation8040146
Chicago/Turabian StyleSupapong, Chanadol, Sukruthai Sommai, Benjamad Khonkhaeng, Chanon Suntara, Rittikeard Prachumchai, Kampanat Phesatcha, Pin Chanjula, and Anusorn Cherdthong. 2022. "Effect of Rhodanese Enzyme Addition on Rumen Fermentation, Cyanide Concentration, and Feed Utilization in Beef Cattle Receiving Various Levels of Fresh Cassava Root" Fermentation 8, no. 4: 146. https://doi.org/10.3390/fermentation8040146
APA StyleSupapong, C., Sommai, S., Khonkhaeng, B., Suntara, C., Prachumchai, R., Phesatcha, K., Chanjula, P., & Cherdthong, A. (2022). Effect of Rhodanese Enzyme Addition on Rumen Fermentation, Cyanide Concentration, and Feed Utilization in Beef Cattle Receiving Various Levels of Fresh Cassava Root. Fermentation, 8(4), 146. https://doi.org/10.3390/fermentation8040146