Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Habanero Pepper Obtention and Processing
2.2. Microorganisms and Growth Conditions
2.3. Habanero Pepper Fermentation
2.4. Measurement of Biomass and Lactic Acid
2.4.1. Biomass Measurement
2.4.2. Determination of Lactic Acid
2.5. Extraction of Volatile Compounds
2.6. Analysis of Volatiles Compounds by Gas Chromatography
2.7. Statistical Analysis
3. Results
3.1. Biomass and Lactic Acid Production during Fermentation
3.2. Evaluation of Kinetic Parameters
3.3. Evaluation of Volatile Compound Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Volatile Compound | Retention Time (min) | R2 |
---|---|---|
2,3 butadione | 11.27 | 0.9933 |
Limonene | 18.78 | 0.9920 |
Isoamyl isobutyrate | 19.10 | 0.9930 |
Trans-2-hexen-1-al | 20.18 | 0.9924 |
1-Hexanol | 25.94 | 0.9925 |
Hexyl-3-methyl butanoate | 29.57 | 0.9923 |
3,3-Dimethyl-1-hexanol | 32.36 | 0.9951 |
Linalool | 33.70 | 0.9965 |
Cis-3-Hexenyl hexanoate | 37.86 | 0.9912 |
References
- Ashaolu, T.J.; Reale, A. A holistic review on euro-asian lactic acid bacteria fermented cereals and vegetables. Microorganisms 2020, 8, 1176. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, B.; Zhao, W.; Lao, F.; Chen, F.; Liao, X.; Wu, J. Shifts in autochthonous microbial diversity and volatile metabolites during the fermentation of chili pepper (Capsicum frutescens L.). Food Chem. 2021, 335, 127512. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Cardinali, G.; Rizello, C. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Appl. Environ. Microbiol. 2014, 80, 2206–2215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cebeci, A.; Gürakan, C. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 2003, 20, 511–518. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Boekhorst, J.; Van Kranenburg, R.; Molenaar, D.; Kuipers, O.; Leer, R.; Tarchini, R.; Peters, S.; Sandbrink, H.; Fiers, M.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martino, M.E.; Bayjanov, J.R.; Caffrey, B.E.; Wels, M.; Joncour, P.; Hughes, S.; Gillet, B.; Kleerebezem, M. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ. Microbiol. 2016, 18, 4974–4989. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Fermented Foods: Fermented Vegetables and Other Products. In Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 668–674. [Google Scholar]
- Lara-Hidalgo, C.; Belloch, C.; Dorantes-Alvarez, L.; Flores, M. Contribution of autochthonous yeasts with probiotic potential to the aroma profile of fermented Guajillo pepper sauce. J. Sci. Food Agric. 2020, 100, 4940–4949. [Google Scholar] [CrossRef] [PubMed]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Economía. Sistema de Información Arancelaria Via Internet. 2020. Available online: http://www.economia-snci.gob.mx/ (accessed on 16 March 2022).
- Rodríguez-Buenfil, I.M.; Ramírez-Sucre, M.O. Metabolómica y Cultivo del Chile Habanero (Capsicum chinense Jacq) de la Península de Yucatán, 1st ed.; Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco: Guadalajara, Mexico, 2020; p. 99. [Google Scholar]
- Pino, J.; Sauri-Duch, E.; Marbot, R. Changes in volatile compounds of Habanero chile pepper (Capsicum chinense Jack. cv. Habanero) at two ripening stages. Food Chem. 2006, 94, 394–398. [Google Scholar] [CrossRef]
- Sosa-Moguel, O.; Pino, J.A.; Ayora-Talavera, G.; Sauri-Duch, E.; Cuevas-Glory, L. Biological activities of volatile extracts from two varieties of Habanero pepper (Capsicum chinense Jacq.). Int. J. Food Prop. 2018, 20, 3042–3051. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Glory, L.; Pino, J.A.; Lopez-Sauri, D.; Novelo-Torres, B.; Sauri-Duch, E. Characterization of odor-contributing volatiles in two Habanero pepper varieties by gas chromatography–olfactometry. Chem. Pap. 2020, 74, 2239–2246. [Google Scholar] [CrossRef]
- Colli-Turriza, N.H. Estudio de la Capacidad Fermentativa de dos Bacterias ácido Lácticas Aisladas del chile Habanero para su Posterior uso en una Salsa Fermentada. Bachelor’s Thesis, Instituto Tecnológico Superior de Calkiní, Campeche, México, 2007. [Google Scholar]
- Borshchevskaya, L.N.; Gordeeva, T.L.; Kalinina, A.N.; Sineokii, S.P. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016, 71, 755–758. [Google Scholar] [CrossRef]
- Bogusz-Junior, S.; Tavares, A.M.; Filho, J.T.; Zini, C.A.; Godoy, H.T. Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Res. Int. 2012, 48, 98–107. [Google Scholar] [CrossRef]
- Prabha, T.N.; Neelwarne, B.; Tharanathan, R.N. Carbohydrate changes in ripening Capsicum annuum in relation to textural degradation. Eur. Food Res. Technol. 1998, 206, 121–125. [Google Scholar] [CrossRef]
- Aizat, W.M.; Dias, D.A.; Stangoulis, J.C.R.; Able, J.A.; Roessner, U.; Able, A.J. Metabolomics of Capsicum ripening reveals modification of the ethylene related-pathway and carbon metabolism. Postharvest Biol. Technol. 2014, 89, 19–31. [Google Scholar] [CrossRef]
- Passos, F.V.; Fleming, H.P.; Ollis, D.F.; Felder, R.M.; McFeeters, R.F. Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Appl. Environ. Microbiol. 1994, 60, 2627–2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, R.; Koleva, P.; Nikolova, D.; Yankov, D.; Danova, S. Growth parameters of probiotic strain Lactobacillus plantarum, isolated from traditional white cheese. Biotechnol. Biotechnol. Equip. 2009, 23, 861–865. [Google Scholar] [CrossRef]
- Mao, B.; Yin, B.; Li, X.; Cui, S.; Zhang, H.; Zhao, J.; Chen, W. Comparative genomic analysis of Lactiplanti bacillus plantarum isolated from different niches. Genes 2021, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT 2021, 146, 111434. [Google Scholar] [CrossRef]
Experiment No. | Codified Variable | Real Variable | ||||
---|---|---|---|---|---|---|
A | B | C | A: Strain | B: Proportion Puree–Water * | C: Maturity | |
1 | − | − | − | COM | 40% | Unripe |
2 | + | − | − | WIL | 40% | Unripe |
3 | − | + | − | COM | 60% | Unripe |
4 | + | + | − | WIL | 60% | Unripe |
5 | − | − | + | COM | 40% | Ripe |
6 | + | − | + | WIL | 40% | Ripe |
7 | − | + | + | COM | 60% | Ripe |
8 | + | + | + | WIL | 60% | Ripe |
Sample | Strain | Proportion Puree–Water | Maturity | μ (h−1) | ∆X (g L−1) | Qp (g L−1h−1) | ∆P (g L−1) | Pmax (g L−1h−1) |
---|---|---|---|---|---|---|---|---|
1 | COM | 40% | Unripe | 0.0888 ± 0.0288 a | 0.30 ± 0.17 a | 0.6298 ± 0.1746 a | 10.36 ± 1.60 a | 0.39 ± 0.08 a |
2 | WIL | 40% | Unripe | 0.0839 ± 0.0306 a | 0.51 ± 0.41 b | 0.8804 ± 0.2652 a | 12.50 ± 1.24 a | 0.44 ± 0.01 b |
3 | COM | 60% | Unripe | 0.0665 ± 0.0313 a | 0.60 ± 0.29 b | 1.1904 ± 0.0977 b | 15.57 ± 2.31 b | 0.31 ± 0.05 a |
4 | WIL | 60% | Unripe | 0.1151 ± 0.0241 a | 0.79 ± 0.02 b | 0.8235 ± 0.1815 a | 16.40 ± 0.09 b | 0.51 ± 0.00 c |
5 | COM | 40% | Ripe | 0.2275 ± 0.0713 b | 0.91 ± 0.29 c | 0.8413 ± 0.0635 a | 12.71 ± 2.68 a | 0.46 ± 0.06 b |
6 | WIL | 40% | Ripe | 0.2244 ± 0.0594 b | 0.75 ± 0.30 b | 1.3428 ± 0.3152 c | 16.69 ± 0.25 b | 0.52 ± 0.01 c |
7 | COM | 60% | Ripe | 0.1967 ± 0.0872 b | 1.36 ± 0.40 c | 1.0952 ± 0.0568 b | 15.90 ± 1.61 b | 0.61 ± 0.06 d |
8 | WIL | 60% | Ripe | 0.3686 ± 0.0764 c | 1.96 ± 0.19 d | 1.4257 ± 0.2640 c | 20.14 ± 0.54 c | 0.72 ± 0.06 e |
Kinetic Parameter | A: Strain | B: Proportion Puree–Water | C: Maturity | A*B | A*C | B*C | A*B*C |
---|---|---|---|---|---|---|---|
μ | 0.0960 | 0.3085 | 0.0004 * | 0.0770 | 0.2990 | 0.3807 | 0.3130 |
∆X | 0.1793 | 0.0044 * | 0.0012 * | 0.2270 | 0.9640 | 0.0889 | 0.2080 |
Qp | 0.1112 | 0.0686 | 0.0183 * | 0.0840 | 0.0451 * | 0.6877 | 0.2965 |
∆P | 0.0072 * | 0.0010 * | 0.0095 * | 0.7427 | 0.1314 | 0.4559 | 0.6279 |
Pmax | 0.0027 * | 0.0086 * | 0.0002 * | 0.0852 | 0.4095 | 0.0081 * | 0.3519 |
Volatile Concentration (µg/mL) * | Maturity | |||||||
---|---|---|---|---|---|---|---|---|
Unripe | Ripe | |||||||
Proportion Puree–Water (% w/v) | ||||||||
40 | 60 | 40 | 60 | |||||
Strain | ||||||||
COM | WIL | COM | WIL | COM | WIL | COM | WIL | |
2,3 Butanedione | 864.96 ± 270.98 c | 681.63 ± 22.74 c | 326.05 ± 13.87 a | 223.95 ± 11.73 a | 158.36 ± 34.50 a | 579.00 ± 86.15 b | 150.37 ± 132.17 a | 1324.10 ± 421.22 d |
Limonene | 100.83 ± 0.50 a | 144.11 ± 13.74 b | 100.60 ± 0.14 a | 100.76 ± 0.85 a | 101.88 ± 0.64 a | Nd | 203.81 ± 5.54 c | 100.63 ± 0.21 a |
Isoamyl isobutyrate | 5.54 ± 0.18 a | 27.33 ± 6.97 a | 6.17 ± 0.21 a | 6.81 ± 1.67 a | 7.17 ± 3.10 a | Nd | 47.62 ± 45.64 a | 4.85 ± 0.50 a |
Trans-2-hexen-1-al | 80.19 ± 1.61 a | 145.59 ± 35.81 a | 82.92 ± 0.67 a | 74.73 ± 0.45 a | 107.75 ± 9.99 a | 90.18 ± 14.87 a | 134.27 ± 66.03 a | 84.81 ± 4.25 a |
1-Hexanol | 194.58 ± 39.58 a | 182.08 ± 4.92 a | 311.63 ± 5.41 b | 162.95 ± 2.02 a | 243.03 ± 15.03 b | 175.48 ± 1.56 a | 290.69 ± 89.64 b | 185.19 ± 32.05 a |
Hexyl-3-methyl-butanoate | 86.75 ± 1.14 b | 83.10 ± 1.44 b | 94.83 ± 1.37 c | 73.55 ± 0.19 a | 75.80 ± 1.35 a | 92.08 ± 5.40 c | 77.89 ± 4.38 a | 79.36 ± 8.87 a |
3,3 Dimethyl-1-hexanol | 125.43 ± 8.53 a | 129.04 ± 17.36 a | 134.05 ± 3.03 a | 118.30 ± 0.61 a | 140.34 ± 24.71 a | 128.54 ± 14.69 a | 153.78 ± 12.43 a | 128.67 ± 7.22 a |
Linalool | 137.89 ± 0.01 a | 137.92 ± 0.02 a | 137.95 ± 0.11 a | 138.01 ± 0.06 b | 138.11 ± 0.02 b | 137.92 ± 0.03 a | 137.93 ± 0.11 a | 137.91 ± 0.08 a |
cis-3- Hexenyl hexanoate | 89.09 ± 1.46 a | 95.83 ± 2.26 b | 92.84 ± 1.56 b | 85.37 ± 0.48 a | 141.68 ± 9.02 d | 86.76 ± 1.74 a | 113.75 ± 4.83 c | 84.08 ± 1.34 a |
Volatile Compound | A: Strain | B: Proportion | C: Maturity | A*B | A*C | B*C | A*B*C |
---|---|---|---|---|---|---|---|
2,3 Butanedione | 0.0237 * | 0.9704 | 0.5069 | 0.3611 | 0.0232 * | 0.0345 * | 0.1335 |
Limonene | 0.0000 * | 0.0000 * | 0.0052 * | 0.0029 * | 0.0000 * | 0.0000 * | 0.0041 * |
Isoamyl isobutyrate | 0.4254 | 0.4599 | 0.6848 | 0.1214 | 0.0581 | 0.0817 | 0.6707 |
Trans-2-hexen-1-al | 0.8619 | 0.4152 | 0.5563 | 0.0900 | 0.0528 | 0.1413 | 0.4678 |
1-Hexanol | 0.0019 * | 0.0687 | 0.5752 | 0.0462 * | 0.8764 | 0.5982 | 0.2203 |
Hexyl-3-methyl-butanoate | 0.4058 | 0.1776 | 0.1487 | 0.0042 * | 0.0008 * | 0.2960 | 0.7399 |
3,3 Dimethyl-1-hexanol | 0.1025 | 0.6788 | 0.1331 | 0.2546 | 0.3794 | 0.5722 | 0.8258 |
Linalool | 0.4215 | 0.8585 | 0.5038 | 0.1519 | 0.0548 | 0.0309 * | 0.3166 |
cis-3- Hexenyl hexanoate | 0.0000 * | 0.0013 * | 0.0000 * | 0.1910 | 0.0000 * | 0.0148 * | 0.0009 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Salas, D.; Oney-Montalvo, J.E.; Ramírez-Rivera, E.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds. Fermentation 2022, 8, 219. https://doi.org/10.3390/fermentation8050219
López-Salas D, Oney-Montalvo JE, Ramírez-Rivera E, Ramírez-Sucre MO, Rodríguez-Buenfil IM. Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds. Fermentation. 2022; 8(5):219. https://doi.org/10.3390/fermentation8050219
Chicago/Turabian StyleLópez-Salas, Diego, Julio Enrique Oney-Montalvo, Emmanuel Ramírez-Rivera, Manuel Octavio Ramírez-Sucre, and Ingrid Mayanin Rodríguez-Buenfil. 2022. "Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds" Fermentation 8, no. 5: 219. https://doi.org/10.3390/fermentation8050219
APA StyleLópez-Salas, D., Oney-Montalvo, J. E., Ramírez-Rivera, E., Ramírez-Sucre, M. O., & Rodríguez-Buenfil, I. M. (2022). Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds. Fermentation, 8(5), 219. https://doi.org/10.3390/fermentation8050219