Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Inoculum Preparation
2.3. Preparation of Black Soy Milk and Fermented Black Soy Milk
2.4. Proximate Composition Analysis
2.5. Mineral Element Analysis
2.6. Determination of Amino Acids Profile
2.7. Determination of Sugars Profile
2.8. Determination of Lactic and Acetic Acid Content
2.9. Viable Cell, Titratable Acidity, and pH Assay
2.10. Preparation of Crude Phenolic Extract
2.11. Folin-Ciocalteu Assay
2.12. Antioxidant Activity Assay
2.13. Isoflavone Aglycone Daidzein and Genistein Analysis
2.14. Determination of β-Glucosidase Activity
2.15. Data Analysis
3. Results
3.1. Chemical Properties of Black Soy Milk
3.2. Fermentation of Black Soy Milk by Indonesian Indigenous LAB
3.3. Antioxidant Properties of Black Soy Milk during Fermentation by Indonesian Indigenous LAB
3.4. Isoflavone Aglycone Liberation throughout Black Soy Milk Fermentation by Indonesian Indigenous LAB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.Y.; Jang, G.Y.; Oh, N.S.; Baek, S.Y.; Lee, S.H.; Kim, K.M.; Kim, T.M.; Lee, J.; Jeong, H.S. Characteristics and in Vitro Anti-Inflammatory Activities of Protein Extracts from Pre-Germinated Black Soybean [Glycine Max (L.)] Treated with High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 2017, 43, 84–91. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, K.M. Changes Occurring in Compositional Components of Black Soybeans Maintained at Room Temperature for Different Storage Periods. Food Chem. 2012, 131, 161–169. [Google Scholar] [CrossRef]
- Kim, G.P.; Lee, J.; Ahn, K.G.; Hwang, Y.S.; Choi, Y.; Chun, J.; Chang, W.S.; Choung, M.G. Differential Responses of B Vitamins in Black Soybean Seeds. Food Chem. 2014, 153, 101–108. [Google Scholar] [CrossRef]
- Joshi, J.; Rahal, A. Effect of Processing Method on Nutritional Quality of Black Soybean. Asian J. Dairy Food Res. 2018, 37, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Widowati, W.; Prahastuti, S.; Hidayat, M.; Hasianna, S.T.; Wahyudianingsih, R.; Eltania, T.F.; Azizah, A.M.; Aviani, J.K.; Subangkit, M.; Handayani, R.A.S.; et al. Detam 1 Black Soybean against Cisplatin-Induced Acute Ren Failure on Rat Model via Antioxidant, Antiinflammatory and Antiapoptosis Potential. J. Tradit. Complement. Med. 2022, 12, 426–435. [Google Scholar] [CrossRef]
- Huang, G.; Cai, W.; Xu, B. Improvement in Beta-Carotene, Vitamin B2, GABA, Free Amino Acids and Isoflavones in Yellow and Black Soybeans upon Germination. LWT Food Sci. Technol. 2017, 75, 488–496. [Google Scholar] [CrossRef]
- Hati, S.; Vij, S.; Singh, B.P.; Mandal, S. β-Glucosidase Activity and Bioconversion of Isoflavones during Fermentation of Soy milk. J. Sci. Food Agric. 2015, 95, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.H.; Ho, C.T.; Pan, M.H. Bioavailability and Health Benefits of Major Isoflavone Aglycones and Their Metabolites. J. Funct. Foods 2020, 74, 104164. [Google Scholar] [CrossRef]
- Zuo, A.; Yanying, Y.; Li, J.; Binbin, X.; Xiongying, Y.; Yan, Q.; Shuwen, C. Study on the Relation of Structure and Antioxidant Activity of Isorhamnetin, Quercetin, Phloretin, Silybin and Phloretin Isonicotinyl Hydrazone. Free Radic. Antioxid. 2011, 1, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.K.; Shah, N.P. Enhancing the Biotransformation of Isoflavones in Soy milk Supplemented with Lactose Using Probiotic Bacteria during Extended Fermentation. J. Food Sci. 2010, 75, 140–149. [Google Scholar] [CrossRef]
- Zhao, D.; Shah, N.P. Changes in Antioxidant Capacity, Isoflavone Profile, Phenolic and Vitamin Contents in Soy milk during Extended Fermentation. LWT Food Sci. Technol. 2014, 58, 454–462. [Google Scholar] [CrossRef]
- Lee, M.; Hong, G.E.; Zhang, H.; Yang, C.Y.; Han, K.H.; Mandal, P.K.; Lee, C.H. Production of the Isoflavone Aglycone and Antioxidant Activities in Black soy milk Using Fermentation with Streptococcus thermophilus S10. Food Sci. Biotechnol. 2015, 24, 537–544. [Google Scholar] [CrossRef]
- Fitrotin, U.; Utami, T.; Hastuti, P.; Santoso, U. Antioxidant Properties of Fermented Sesame Milk Using Lactobacillus plantarum Dad 13. Int. Res. J. Biol. 2015, 4, 56–61. [Google Scholar]
- Utami, T.; Cindarbhumi, A.; Khuangga, M.C.; Rahayu, E.S.; Cahyanto, M.N.; Nurfiyani, S.; Zulaichah, E. Preparation of Indigenous Lactic Acid Bacteria Starter Cultures for Large Scale Production of Fermented Milk. In Proceedings of the 10th Asian Conference of Lactic Acid Bacteria, Yogyakarta, Indonesia, 10 February 2020. [Google Scholar]
- Yudianti, N.F.; Yanti, R.; Cahyanto, M.N.; Rahayu, E.S.; Utami, T. Isolation and Characterization of Lactic Acid Bacteria from Legume Soaking Water of Tempeh Productions. In Proceedings of the 10th Asian Conference of Lactic Acid Bacteria, Yogyakarta, Indonesia, 10 February 2020. [Google Scholar]
- Wardani, S.K.; Cahyanto, M.N.; Rahayu, E.S.; Utami, T. The Effect of Inoculum Size and Incubation Temperature on Cell Growth, Acid Production and Curd Formation during Milk Fermentation by Lactobacillus plantarum Dad 13. Int. Food Res. J. 2017, 24, 921–926. [Google Scholar]
- AOAC International. Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Wasik, A.; McCourt, J.; Buchgraber, M. Simultaneous Determination of Nine Intense Sweeteners in Foodstuffs by High Performance Liquid Chromatography and Evaporative Light Scattering Detection-Development and Single-Laboratory Validation. J. Chromatogr. A 2007, 1157, 187–196. [Google Scholar] [CrossRef]
- Ulyatu, F.; Pudji, H.; Tyas, U.; Umar, S. The Changes of Sesaminol Triglucoside and Antioxidant Properties during Fermentation of Sesame Milk by Lactobacillus plantarum Dad 13. Int. Food Res. J. 2015, 22, 1945–1952. [Google Scholar]
- Sulistyowati, E.; Martono, S.; Riyanto, S.; Lukitaningsih, E. Development and Validation for Free Aglycones Daidzein and Genistein in Soybeans (Glycine Max (l.) Merr.) Using RP HPLC Method. Int. J. Appl. Pharm. 2019, 11, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Djafaar, T.F.; Santoso, U.; Cahyanto, M.N.; Takuya, S.; Rahayu, E.S.; Kosuke, N. Effect of Indigenous Lactic Acid Bacteria Fermentation on Enrichment of Isoflavone and Antioxidant Properties of Kerandang (Canavalia Virosa) Extract. Int. Food Res. J. 2013, 20, 2945–2950. [Google Scholar]
- IBM SPSS Statistic 20. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-20 (accessed on 10 March 2021).
- Berisvil, A.P.; Astesana, D.M.; Zimmermann, J.A.; Frizzo, L.S.; Rossler, E.; Romero-Scharpen, A.; Olivero, C.R.; Zbrun, M.V.; Signorini, M.L.; Sequeira, G.J.; et al. Low-Cost Culture Medium for Biomass Production of Lactic Acid Bacteria with Probiotic Potential Destined to Broilers. FAVE Secc. Cienc. Vet. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, L.; Jin, Z.; An, P.; Yang, S.T.; Fei, Y.; Liu, G. Characterization of Fermented Soy milk by Schleiferilactobacillus Harbinensis M1, Based on the Whole-Genome Sequence and Corresponding Phenotypes. LWT Food Sci. Technol. 2021, 144, 111237. [Google Scholar] [CrossRef]
- Baú, T.R.; Garcia, S.; Ida, E.I. Changes in Soy milk during Fermentation with Kefir Culture: Oligosaccharides Hydrolysis and Isoflavone Aglycone Production. Int. J. Food Sci. Nutr. 2015, 66, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Hazelnut Milk Fermentation Using Probiotic Lactobacillus Rhamnosus GG and Inulin. Int. J. Food Sci. Technol. 2014, 49, 2553–2562. [Google Scholar] [CrossRef]
- Djaafar, T.F.; Cahyanto, M.N.; Santoso, U.; Rahayu, E.S. Growth of Indigenous Lactic Acid Bacteria Lactobacillus plantarum-pentosus T14 and Lactobacillus plantarum-pentosus T35 in Kerandang (Canavalia Virosa) Milk and Changes of Raffinose. Malays. J. Microbiol. 2013, 9, 213–218. [Google Scholar]
- Singh, B.P.; Vij, S. α-Galactosidase Activity and Oligosaccharides Reduction Pattern of Indigenous Lactobacilli during Fermentation of Soy Milk. Food Biosci. 2018, 22, 32–37. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Kundu, P.; Dhankhar, J.; Sharma, A. Development of Non Dairy Milk Alternative Using Soy milk and Almond Milk. Curr. Res. Nutr. Food Sci. 2018, 6, 203–210. [Google Scholar] [CrossRef]
- Boulay, M.; al Haddad, M.; Rul, F. Streptococcus thermophilus Growth in Soya Milk: Sucrose Consumption, Nitrogen Metabolism, Soya Protein Hydrolysis and Role of the Cell-Wall Protease PrtS. Int. J. Food Microbiol. 2020, 335, 108903. [Google Scholar] [CrossRef]
- Teusink, B.; Molenaar, D. Systems Biology of Lactic Acid Bacteria: For Food and Thought. Curr. Opin. Syst. Biol. 2017, 6, 7–13. [Google Scholar] [CrossRef]
- Endo, A.; Dicks, L.M.T. Physiology of the LAB. In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H., Wood, B.J.B., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 13–20. [Google Scholar]
- Liu, W.S.; Yang, C.Y.; Fang, T.J. Strategic Ultrasound-Induced Stress Response of Lactic Acid Bacteria on Enhancement of β-Glucosidase Activity for Bioconversion of Isoflavones in Soy milk. J. Microbiol. Methods 2018, 148, 145–150. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, Physicochemical and Rheological Properties of Fermented Soy milk Produced with Exopolysaccharide (EPS) Producing Lactic Acid Bacteria Strains. LWT Food Sci. Technol. 2014, 57, 477–485. [Google Scholar]
- Hong LE, P.; Parmentier, N.; Trung LE, T.; Raes, K. Evaluation of Using a Combination of Enzymatic Hydrolysis and Lactic Acid Fermentation for γ-Aminobutyric Acid Production from Soy milk. LWT Food Sci. Technol. 2021, 142, 111044. [Google Scholar] [CrossRef]
- Kuda, T.; Kataoka, M.; Nemoto, M.; Kawahara, M.; Takahashi, H.; Kimura, B. Isolation of Lactic Acid Bacteria from Plants of the Coastal Satoumi Regions for Use as Starter Cultures in Fermented Milk and Soy milk Production. LWT Food Sci. Technol.. 2016, 68, 202–207. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, M.J. The Fermentation Characteristics of Soy Yogurt with Different Content of D-Allulose and Sucrose Fermented by Lactic Acid Bacteria from Kimchi. Food Sci. Biotechnol. 2019, 28, 1155–1161. [Google Scholar] [CrossRef]
- Salar, R.K.; Certik, M.; Brezova, V. Modulation of Phenolic Content and Antioxidant Activity of Maize by Solid State Fermentation with Thamnidium Elegans CCF 1456. Biotechnol. Bioprocess Eng. 2012, 17, 109–116. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food Phenolics and Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, D.; Nuraida, L.; Dewanti-Hariyadi, R.; Hunaef, D. In Vitro Antioxidant and α-Glucosidase Inhibitory Activities of Lactobacillus Spp. Isolated from Indonesian Kefir Grains. Appl. Food Biotechnol. 2021, 8, 39–46. [Google Scholar]
- Lee, J.H.; Kim, B.; Hwang, C.E.; Haque, M.A.; Kim, S.C.; Lee, C.S.; Kang, S.S.; Cho, K.M.; Lee, D.H. Changes in Conjugated Linoleic Acid and Isoflavone Contents from Fermented Soy milks Using Lactobacillus Plantarum P1201 and Screening for Their Digestive Enzyme Inhibition and Antioxidant Properties. J. Funct. Foods 2018, 43, 17–28. [Google Scholar] [CrossRef]
- Cairns, J.R.K.; Esen, A. β-Glucosidases. Cell. Mol. Life Sci. 2010, 67, 3389–3405. [Google Scholar] [CrossRef]
Time (min) | Flow Rate (mL·mL−1) | % Mobile Phase A | % Mobile Phase B | % Mobile Phase C | % Mobile Phase D |
---|---|---|---|---|---|
Initial | 0.700 | 10.0 | 0.0 | 90.0 | 0.0 |
0.29 | 0.700 | 9.9 | 0.0 | 90.1 | 0.0 |
5.49 | 0.700 | 9.0 | 80.0 | 11.0 | 0.0 |
7.10 | 0.700 | 8.0 | 15.6 | 57.9 | 18.5 |
7.30 | 0.700 | 8.0 | 15.6 | 57.9 | 18.5 |
7.69 | 0.700 | 7.8 | 0.0 | 70.9 | 21.3 |
7.99 | 0.700 | 4.0 | 0.0 | 36.3 | 59.7 |
5.89 | 0.700 | 4.0 | 0.0 | 36.3 | 59.7 |
8.68 | 0.700 | 10.0 | 0.0 | 90.0 | 0.0 |
10.20 | 0.700 | 10.0 | 0.0 | 90.0 | 0.0 |
Parameters | Black Soy Milk |
---|---|
Moisture (%) | 0.03 |
Crude fat (g·100 mL−1) | 0.03 |
Crude protein (g·100 mL−1) | 0.05 |
Ash (g·100 mL−1) | 0.01 |
Iron (µg·mL−1) | 0.03 |
Zinc (µg·mL−1) | 0.02 |
Magnesium (µg·mL−1) | 0.04 |
Manganese (µg·mL−1) | 0.01 |
Carbohydrate (g·100 mL−1) | 0.02 |
Fructose (g·100 mL−1) | |
Glucose (g·100 mL−1) | n.d. 1 |
Sucrose (g·100 mL−1) | 0.01 |
Maltose (g·100 mL−1) | n.d. 1 |
Lactose (g·100 mL−1) | n.d. 1 |
Gallic acid equivalent (mg GAE·100 mL−1) | 3.55 |
Daidzein (µg·mL−1) | 0.07 |
Genistein (µg·mL−1) | 0.01 |
Amino Acids | Concentration (g·100 mL−1) |
---|---|
L-Serine | 0.01 |
Glutamic acid | 0.01 |
L-phenylalanine | 0.01 |
L-Isoleucine | 0.01 |
L-Valine | 0.01 |
L-Alanine | 0.01 |
L-Arginine | 0.01 |
Glycine | 0.01 |
L-Lysine | 0.01 |
L-Aspartic acid | 0.01 |
L-Leucine | 0.01 |
L-Tyrosine | 0.01 |
L-Proline | 0.01 |
L-Threonine | 0.01 |
L-Histidine | 0.01 |
L-Cysteine | 0.01 |
L-Methionine | 0.01 |
L-Tryptophan | 0.01 |
Strains | Fermentation Time (h) | Lactic Acid (mg·100 mL−1) | Acetic Acid (mg·100 mL−1) |
---|---|---|---|
L. plantarum WGK 4 | 0 | n.d. 1 | n.d. 1 |
6 | 0.01 | n.d. 1 | |
12 | 0.01 | n.d. 1 | |
18 | 0.01 | 0.01 | |
S. thermophilus Dad 11 | 0 | n.d. 1 | n.d. 1 |
6 | 0.01 | n.d. 1 | |
12 | 0.01 | n.d. 1 | |
18 | 0.01 | 0.01 | |
L. plantarum Dad 13 | 0 | n.d. 1 | n.d. 1 |
6 | 0.01 | n.d. 1 | |
12 | 0.01 | n.d. 1 | |
18 | 0.01 | 0.01 |
Strains | Fermentation Time (h) | Fructose (g·100 mL−1) | Glucose (g·100 mL−1) | Sucrose (g·100 mL−1) | Maltose (g·100 mL−1) | Lactose (g·100 mL−1) |
---|---|---|---|---|---|---|
L. plantarum WGK 4 | 0 | 0.01 | n.d. 1 | 3.94 0.01 | n.d. 1 | n.d. 1 |
6 | 0.01 | 0.01 | 0.01 | n.d. 1 | n.d. 1 | |
12 | 0.01 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 | |
18 | n.d. 1 | n.d. 1 | n.d. 1 | n.d. 1 | n.d. 1 | |
S. thermophilus Dad 11 | 0 | 0.01 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 |
6 | 0.01 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 | |
12 | n.d. 1 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 | |
18 | n.d. 1 | n.d. 1 | n.d. 1 | n.d. 1 | n.d. 1 | |
L. plantarum Dad 13 | 0 | 0.01 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 |
6 | n.d. 1 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 | |
12 | 0.01 | n.d. 1 | 0.01 | n.d. 1 | n.d. 1 | |
18 | n.d. 1 | n.d. 1 | n.d. 1 | n.d. 1 | n.d. 1 |
Strains | Fermentation Time (h) | Folin–Ciocalteu Assay (mg GAE·mL−1) | DPPH-Scavenging Activity (%) |
---|---|---|---|
L. plantarum WGK 4 | 0 | 3.55 a | 2.50 a |
6 | 0.84 a | 1.30 b | |
12 | 3.05 b | 0.26 b | |
18 | 2.56 c | 0.59 c | |
24 | 1.89 b | 0.55 c | |
S. thermophilus Dad 11 | 0 | 3.55 ab | 2.50 ab |
6 | 0.37 a | 0.72 ab | |
12 | 0.89 a | 2.35 a | |
18 | 2.25 ab | 1.56 b | |
24 | 4.38 b | 3.44 c | |
L. plantarum Dad 13 | 0 | 3.97 a | 2.50 a |
6 | 0.70 a | 0.78 a | |
12 | 0.82 a | 2.44 b | |
18 | 1.03 b | 0.68 c | |
24 | 2.61 a | 2.93 b |
Strains | Fermentation Time (h) | Daidzein (µg·mL−1) | Genistein (µg·mL−1) | β-Glucosidase Activity (mU·mL−1) |
---|---|---|---|---|
L. plantarum WGK 4 | 0 | 0.07 a | 0.01 a | - |
6 | 0.67 b | 0.01 b | 0.40 a | |
12 | 0.01 cd | 0.02 c | 3.44 a | |
18 | 0.05 c | 0.01 d | 1.86 a | |
24 | 0.12 d | 0.01 e | 1.34 b | |
S. thermophilus Dad 11 | 0 | 0.07 a | 0.01 a | - |
6 | 0.09 b | 0.07 b | 2.90 a | |
12 | 0.01 d | 0.06 d | 5.18 b | |
18 | 0.11 e | 0.09 e | 1.41 b | |
24 | 0.01 c | 0.01 c | 1.04 c | |
L. plantarum Dad 13 | 0 | 0.07 a | 0.01 a | - |
6 | 0.65 b | 0.02 b | 5.81 a | |
12 | 0.09 c | 0.02 c | 3.03 b | |
18 | 0.04 d | 0.01 e | 4.53 c | |
24 | 0.02 c | 0.10 d | 1.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leksono, B.Y.; Cahyanto, M.N.; Rahayu, E.S.; Yanti, R.; Utami, T. Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation. Fermentation 2022, 8, 326. https://doi.org/10.3390/fermentation8070326
Leksono BY, Cahyanto MN, Rahayu ES, Yanti R, Utami T. Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation. Fermentation. 2022; 8(7):326. https://doi.org/10.3390/fermentation8070326
Chicago/Turabian StyleLeksono, Benediktus Yudo, Muhammad Nur Cahyanto, Endang Sutriswati Rahayu, Rini Yanti, and Tyas Utami. 2022. "Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation" Fermentation 8, no. 7: 326. https://doi.org/10.3390/fermentation8070326
APA StyleLeksono, B. Y., Cahyanto, M. N., Rahayu, E. S., Yanti, R., & Utami, T. (2022). Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation. Fermentation, 8(7), 326. https://doi.org/10.3390/fermentation8070326