Development of a Fermented Bitter Gourd (Momordica charantia)–Grape Beverage Using Optimized Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Raw Material Processing
2.2. Production of the Bitter Gourd–Grape Beverage
2.3. Determination of the Physiochemical and Microbial Properties
2.3.1. Alcohol (Degree Plato °P)
2.3.2. pH
2.3.3. Total Titratable Acidity (TTA) (Lactic Acid %)
2.3.4. Total Soluble Solids (TSS) (g/100 g)
2.3.5. Total Phenolic Content (TPC) (mg GAE/g)
2.3.6. Total Flavonoid Content (TFC) (mg QE/g)
2.3.7. Antioxidant Activity
The (2,2-diphenyl-1-picrylhydrazyl) DPPH Assay (µM TE/mL)
Ferric Reducing Antioxidant Power (FRAP) Assay (µM Fe (II) E/mL)
The 2,2-Azinobis (3-Ethyl-Benzothiazone-6-Sulfonic Acid) (ABTS) Assay (µM TE/mL)
2.3.8. Antidiabetic Potential
2.3.9. Microbial Load Determination (CFU/mL)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects on Antioxidant Activity
3.2. Effects on Antidiabetic Potential
3.3. Relationship between Antioxidant Activity and Antidiabetic Potential
3.4. Comparison among Fermented Bitter Gourd–Grape Beverage (FBGGB) with and without Enzymes, Grape Juice and Bitter Gourd Juice
3.5. Effects of Enzymes on Fermentation
3.6. Effect on Alcohol Content
3.7. Effect of Fermentation on pH, TTA, TSS, TFC and TPC
3.8. Microbial Analysis Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AACC | American Association for Clinical Chemistry |
ABTS | 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) |
ANOVA | Analysis of variance |
DNSA | 3,5-dinitrosalicylic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
FBGGB | Fermented bitter gourd–grape beverage |
FC | Folin–Ciocalteu |
FRAP | Ferric reducing antioxidant assay |
HSD | Honest significant difference |
MRS | de Man, Rogosa and Sharpe |
NaOH | Sodium hydroxide |
PCA | Plate count agar |
RSM | Response surface methodology |
SD | Standard deviation |
TFC | Total flavonoid content |
TPC | Total phenolic content |
TSS | Total soluble solids |
TTA | Total titratable acidity |
References
- Liu, R.H. Health-promoting components of vegetables and vegetables in the diet. Adv. Nutr. 2013, 4, 3845–3925. [Google Scholar] [CrossRef] [PubMed]
- Poinski, M. Consumer Trends Shifting toward Health and Wellness, ADM Finds. FoodDive. September 3rd. 2020. Available online: https://www.fooddive.com/news/consumer-trends-shifting-toward-health-and-wellness-adm-finds/584388/ (accessed on 3 September 2020).
- Das, D.R.; Sachan, A.K.; Imtiyaz, M.; Shuaib, M. Momordica charantia as a potential medicinal herb: An overview. J. Med. Plants Stud. 2015, 3, 23–26. [Google Scholar]
- Makwana, M.; Hati, S. Fermented beverages and their health benefits. Fermented Beverages 2019, 5, 1–29. [Google Scholar] [CrossRef]
- Budrat, P.; Shotipruk, A. Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Sep. Purif. Technol. 2009, 66, 125–129. [Google Scholar] [CrossRef]
- Tan, S.P.; Kha, T.C.; Parks, S.E.; Roach, P.D. Bitter melon (momordica charantia L.) bioactive composition and health benefits: A review. Food Rev. Int. 2016, 32, 181–202. [Google Scholar] [CrossRef]
- Joseph, B.; Jini, D. Anti-diabetic effects of momordica charantia (bitter melon) and its medicinal potency. Asian Pac. J. Trop. Dis. 2013, 3, 93–102. [Google Scholar] [CrossRef]
- Frank, J.; Fukagawa, N.K.; Bilia, A.R.; Johnson, E.J.; Kwon, O.; Prakash, V.; Miyazawa, T.; Clifford, M.N.; Kay, C.D.; Crozier, A.; et al. Terms and nomenclature used for plant-derived components in nutrition and related research: Efforts toward harmonization. Nutr. Rev. 2020, 78, 451–458. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Upadhyay, A.; Agrahari, P.; Singh, D.K. A review on salient pharmacological features of momordica charantia. Int. J. Pharmacol. 2015, 11, 405–413. [Google Scholar] [CrossRef]
- Patel, S.; Patel, T.; Parmer, K.; Bhatt, Y. Isolation, characterization and antimicrobial activity of charantin from Momordica Charantia Linn. Fruit. Int. J. Drug Dev. Res. 2010, 2, 629–634. [Google Scholar]
- Raina, K.; Kumar, D.; Agarwal, R. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Semin. Cancer Biol. 2017, 40, 116–129. [Google Scholar] [CrossRef]
- Anilakumar, K.R.; Kumar, G.P.; Ilaiyaraja, N. Nutritional, pharmacological and medicinal properties of momordica charantia. Int. J. Nutr. Food Sci. 2015, 4, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Efird, J.T.; Ming Choi, Y.; Davies, S.W.; Mehra, S.; Anderson, E.J.; Katunga, L.A. Potential for improved glycemic control with dietary momordica charantia in patients with insulin resistance and pre-diabetes. Int. J. Environ. Res. Public Health 2014, 11, 2328–2345. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Premathilaka, U.; Maduwanthi, S.D.T.; Uthpala, T.G.G. Development of fermented momordica charantia and analysis of biochemical properties. Int. J. Sci. Eng. Res. 2016, 7, 362–366. [Google Scholar]
- Horax, R.; Hettiarachchy, N.; Islam, A.S. Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons (momordica charantia) and antioxidant activities of their extracts. J. Food Sci. 2005, 70, 275–280. [Google Scholar] [CrossRef]
- Kubola, C.J.; Siriamornpun, S. Phenolic contents and antioxidant activities of bitter gourd (momordica charantia L.) leaf, stem and vegetable fraction extracts in vivo. Food Chem. 2008, 110, 881–890. [Google Scholar] [CrossRef]
- Sorifa, A.M. Nutritional compositions, health promoting phytochemicals and value added products of bitter gourd: A review. Int. Food Res. J. 2018, 25, 1763–1772. [Google Scholar]
- Gürbüz, I.; Akyüz, Ç.; Yeşilada, E.; Şener, B. Anti-ulcerogenic effect of momordica charantia vegetables on various ulcer models in rats. J. Ethnopharmacol. 2000, 71, 77–82. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Niaz, B.; Arshad, M.U.; Tufail, T.; Hussain, M.B.; Javed, A. Bitter melon (momordica charantia): A natural healthy vegetable. Int. J. Food Prop. 2018, 21, 1270–1290. [Google Scholar] [CrossRef]
- Ahmad, N.; Hasan, N.; Ahmad, Z.; Zishan, M.; Zohrameena, S. Momordica charantia: For traditional uses and pharmacological actions. J. Drug Deliv. Ther. 2016, 6, 40–44. [Google Scholar] [CrossRef]
- Verma, A.; Jaiswal, S. Bottle gourd (Lagenaria siceraria) juice poisoning. World J. Emerg. Med. 2015, 6, 308–309. [Google Scholar] [CrossRef] [PubMed]
- Rensburg, P.; Pretorius, I. Enzymes in winemaking: Harnessing natural catalysts for efficient biotransformations. S. Afr. J. Enol. Vitic. 2000, 21, 52–73. [Google Scholar] [CrossRef]
- Mojsov, K. Use of enzymes in wine making: A review. Int. J. Mark. Technol. 2013, 3, 112–127. [Google Scholar]
- Hartajanie, L.; Fatimah-Muis, S.; Heri-Nugroho Hs, K.; Riwanto, I.; Sulchan, M. Probiotics fermented bitter melon juice as promising complementary agent for diabetes type 2: Study on animal model. J. Nutr. Metab. 2020, 2, 6369873. [Google Scholar] [CrossRef] [PubMed]
- Devaki, C.S.; Premavalli, K.S. Fermented vegetable beverages. Fermented Beverages 2019, 5, 321–367. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.; Merrifield, C.A.; Hutkins, R. Probiotics for human use. Nutr. Bull. 2018, 43, 212–225. [Google Scholar] [CrossRef]
- Devaki, C.S.; Premavalli, K.S. Development of bitter gourd fermented beverage using response surface methodology. J. Pharm. Nutr. Sci. 2012, 2, 94–103. [Google Scholar] [CrossRef]
- Tomovska, J.; Gjorgievski, N.; Makarijoski, B. Examination of pH, titratable acidity and antioxidant activity in fermented milk. J. Mater. Sci. Eng. 2016, 6, 326–333. [Google Scholar] [CrossRef]
- AACC International. AACC International Methods, 11th ed.; Approved methods of analysis 02-31.01; AACC International: Saint Paul, MN, USA, 1999. [Google Scholar]
- Kupina, S.; Fields, C.; Roman, M.C.; Brunelle, S.L. Determination of total phenolic content using the folin-c assay: Single-laboratory validation, first action 2017.13. J. AOAC Int. 2018, 101, 1466–1472. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Żurowska, D.; Wenta, W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Aliment. 2012, 11, 83–89. [Google Scholar] [PubMed]
- Gonçalves, C.; Rodriguez-Jasso, R.M.; Gomes, N.; Teixeira, J.A.; Belo, I. Adaptation of dinitrosalicylic acid method to microtiter plates. Anal. Methods 2010, 2, 2046–2048. [Google Scholar] [CrossRef]
- Sebastià, N.; El-Shenawy, M.; Mañes, J.; Soriano, J.M. Assessment of microbial quality of commercial and home-made tiger-nut beverages. Lett. Appl. Microbiol. 2012, 54, 299–305. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, D.J.; Devaraj, S.; Grundy, S.M.; Jialal, I. Comparison of the antioxidant effects of concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Am. J. Clin. Nutr. 2002, 76, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Bunea, C.I.; Pop, N.; Babeş, A.C.; Matea, C.; Dulf, F.V.; Bunea, A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J. 2012, 6, 66. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages 2018, 4, 22. [Google Scholar] [CrossRef]
- Aljohi, A.; Matou-Nasri, S.; Ahmed, N. Antiglycation and antioxidant properties of momordica charantia. PLoS ONE 2016, 11, e0159985. [Google Scholar] [CrossRef]
- Samak, G.; Shenoy, R.P.; Manjunatha, S.M.; Vinayak, K.S. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata. Food Chem. 2009, 115, 631–634. [Google Scholar] [CrossRef]
- Shan, B.; Xie, J.; Zhu, J.; Peng, Y. Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food Bioprod. Process. 2012, 90, 579–587. [Google Scholar] [CrossRef]
- Gogi, M.D.; Ashfaq, M.; Arif, M.J.; Sarfraz, R.M.; Nawab, N.N. Investigating phenotypic structures and allelochemical compounds of the fruits of Momordica charantia L. genotypes as sources of resistance against Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Crop Protect. 2010, 29, 884–890. [Google Scholar] [CrossRef]
- Krishnendu, J.R.; Nandini, P.V. Antioxidant properties of bitter gourd (Momordica charantia L.). Int. J. Adv. Eng. Manag. Sci. 2016, 2, 1733–1739. [Google Scholar] [CrossRef]
- Rathor, S.; Pandey, P. Anti-radical and microbial analysis of MAP stored bitter gourd chips short-running title: MAP storage study of Bitter gourd chips. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1840–1846. [Google Scholar] [CrossRef]
- Ahmed, I.; Lakhani, M.S.; Gillett, M.; John, A.; Raza, H. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 2001, 51, 155–161. [Google Scholar] [CrossRef]
- Waheed, A.; Miana, G.A.; Ahmad, S.I. Clinical investigation of hypoglycemic effect of seeds of Azadirachta-inidca in type-2 (NIDDM) diabetes mellitus. Pak. J. Pharm. Sci. 2006, 19, 322–325. [Google Scholar]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes associated with freshly prepared juices of citrus and carrots. Int. J. Food Sci. 2014, 2014, 408085. [Google Scholar] [CrossRef]
- Barros, M.I.; Frölech, D.B.; Mello, L.L.; Mânica-Berto, R.; Malgarim, M.B.; Costa, V.B.; Mello-Farias, P.C. Impact of cluster thinning on quality of “malbec” grapes in Encruzilhada do Sul-RS. Am. J. Plant Sci. 2018, 9, 495–506. [Google Scholar] [CrossRef]
- Jin, Q.; Kirk, M.F. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front. Environ. Sci. 2018, 6, 21. [Google Scholar] [CrossRef]
- Chizoba, F.G.; Suneetha, J.; Maheswari, K.U.; Kumari, B.A.; Prasad, T.N.V.K.V. In-vitro antibacterial activity of extracts of bitter gourd with selected media. J. Res. Dep. Foods Nutr. Profr. Jayashankar Telangana State Agric. Univ. 2016, 44, 80–83. [Google Scholar]
Mean | Std. Deviation | Minimum | Maximum | |
---|---|---|---|---|
Grape juice | 340.90 | 0.10 | 340.80 | 341.00 |
Bitter gourd juice | 280.73 | 0.12 | 280.60 | 280.80 |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 371.57 | 0.12 | 371.50 | 371.70 |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 571.03 | 0.058 | 571.00 | 571.10 |
Mean | Std. Deviation | Minimum | Maximum | |
---|---|---|---|---|
Grape juice | 234.17 | 0.06 | 234.10 | 234.20 |
Bitter gourd juice | 12.47 | 0.06 | 12.40 | 12.50 |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 27.77 | 0.06 | 27.70 | 27.80 |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 40.30 | 0.17 | 40.10 | 40.40 |
Mean | Std. Deviation | Minimum | Maximum | |
---|---|---|---|---|
Grape juice | 35.77 | 0.25 | 35.50 | 36.00 |
Bitter gourd juice | 419.47 | 0.12 | 419.40 | 419.60 |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 51.07 | 0.057 | 51.00 | 51.10 |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 81.07 | 0.057 | 81.00 | 81.10 |
Mean | Std. Deviation | Minimum | Maximum | |
---|---|---|---|---|
Bitter gourd juice | 18.03 | 0.06 | 18.00 | 18.10 |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 27.07 | 0.12 | 27.00 | 27.20 |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 25.07 | 0.12 | 25.00 | 25.20 |
Antioxidants—FRAP | Antioxidants—ABTS | Antioxidants—DPPH | Antidiabetic Potential | ||
---|---|---|---|---|---|
Antioxidants—FRAP | Pearson’s Correlation | 1.00 | −0.16 | −0.50 | 0.58 |
Sig. (2-tailed) | 0.61 | 0.09 | 0.10 | ||
N | 12.00 | 12.00 | 12.00 | 9.00 | |
Antioxidants—ABTS | Pearson’s Correlation | −0.16 | 1.00 | −0.49 | 0.78 * |
Sig. (2-tailed) | 0.61 | 11.00 | 0.01 | ||
N | 12.00 | 12.00 | 12.00 | 9.00 | |
Antioxidants—DPPH | Pearson’s Correlation | −0.50 | −0.49 | 1.00 | −0.99 * |
Sig. (2-tailed) | 0.99 | 0.11 | 0 | ||
N | 12.00 | 12.00 | 12.00 | 9.00 | |
Antidiabetic potential | Pearson’s Correlation | 0.58 | 0.78 * | −0.99 * | 1.00 |
Sig. (2-tailed) | 0.10 | 0.01 | 0 | ||
N | 9.00 | 9.00 | 9.00 | 9.00 |
t | Df | p | Significant/Not Significant | |
---|---|---|---|---|
Alcohol | 1.79 | 4.00 | 0.15 | S |
TTA | 41.00 | 4.00 | <0.005 | N |
Antioxidant activity—FRAP | −2676.13 | 4.00 | <0.005 | N |
Antidiabetic potential | −21.21 | 4.00 | <0.005 | N |
Mean | Std. Deviation | Minimum | Maximum | ||
---|---|---|---|---|---|
pH | Grape juice | 3.40 | 0 | 3.40 | 3.40 |
Bitter gourd juice | 5.20 | 0 | 5.20 | 5.20 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 3.90 | 0 | 3.90 | 3.90 | |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 4.80 | 0 | 4.80 | 4.80 | |
TTA | Grape juice | 10.13 | 0.06 | 10.10 | 10.20 |
Bitter gourd juice | 3.43 | 0.06 | 3.40 | 3.50 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 7.67 | 0.06 | 7.60 | 7.70 | |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 6.30 | 0 | 6.30 | 6.30 | |
TSS | Grape juice | 4.20 | 0.06 | 4.10 | 4.20 |
Bitter gourd juice | 0.53 | 0.06 | 0.50 | 0.60 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 4.40 | 0.06 | 4.30 | 4.40 | |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 3.83 | 0.06 | 3.80 | 3.90 | |
TFC | Grape juice | 67.73 | 0.06 | 67.70 | 67.80 |
Bitter gourd juice | 318.40 | 0 | 318.40 | 318.40 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 46.53 | 0.06 | 46.50 | 46.60 | |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 46.53 | 0.06 | 46.50 | 46.60 | |
TPC | Grape juice | 215.67 | 0.12 | 215.60 | 215.80 |
Bitter gourd juice | 59.83 | 0.12 | 59.70 | 59.90 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 341.07 | 0.12 | 341.00 | 341.20 | |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 411.077 | 0.12 | 411.00 | 411.20 |
Mean | Std. Deviation | Minimum | Maximum | ||
---|---|---|---|---|---|
Microbial analysis—LAB count | Grape juice | 4.70 | 0 | 4.70 | 4.70 |
Bitter gourd juice | 3.83 | 0.06 | 3.80 | 3.90 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 2.03 | 0.06 | 2.00 | 2.10 | |
Fermented bitter gourd–grape beverage (FBGGB) without enzymes | 2.03 | 0.06 | 2.00 | 2.10 | |
Microbial analysis—total aerobic mesophiles | Grape juice | 8.87 | 0.15 | 8.70 | 9.00 |
Bitter gourd juice | 6.50 | 0 | 6.50 | 6.50 | |
Fermented bitter gourd–grape beverage (FBGGB) with enzymes | 1.07 | 0.12 | 1.00 | 1.20 | |
Fermented bitter gourd–grape beverage (FBGGB)without enzymes | 3.83 | 0.06 | 3.80 | 3.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maselesele, T.L.; Molelekoa, T.B.J.; Gbashi, S.; Adebo, O.A. Development of a Fermented Bitter Gourd (Momordica charantia)–Grape Beverage Using Optimized Conditions. Fermentation 2022, 8, 439. https://doi.org/10.3390/fermentation8090439
Maselesele TL, Molelekoa TBJ, Gbashi S, Adebo OA. Development of a Fermented Bitter Gourd (Momordica charantia)–Grape Beverage Using Optimized Conditions. Fermentation. 2022; 8(9):439. https://doi.org/10.3390/fermentation8090439
Chicago/Turabian StyleMaselesele, Tintswalo Lindi, Tumisi Beiri Jeremiah Molelekoa, Sefater Gbashi, and Oluwafemi Ayodeji Adebo. 2022. "Development of a Fermented Bitter Gourd (Momordica charantia)–Grape Beverage Using Optimized Conditions" Fermentation 8, no. 9: 439. https://doi.org/10.3390/fermentation8090439
APA StyleMaselesele, T. L., Molelekoa, T. B. J., Gbashi, S., & Adebo, O. A. (2022). Development of a Fermented Bitter Gourd (Momordica charantia)–Grape Beverage Using Optimized Conditions. Fermentation, 8(9), 439. https://doi.org/10.3390/fermentation8090439