Influence of 1-Methylcyclopropene (1-MCP) on the Processing and Microbial Communities of Spanish-Style and Directly Brined Green Table Olive Fermentations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Physicochemical Monitoring
2.3. Microbial Monitoring
2.4. Sensory Evaluation
2.5. Metagenomic Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Postharvest Handling and Physicochemical Changes during Fermentation
3.2. Microbiological Changes
3.3. Metagenomic Analysis
3.4. Sensory Evaluation
3.5. Multiple Factor Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Olive Oil Council [IOC]. Key Figures on the World Market for Table Olives; International Olive Council: Madrid, Spain, 2021. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/12/114-OT-2021.pdf (accessed on 14 October 2021).
- Garrido-Fernández, A.; Fernández-Díez, M.J.; Adams, R. Table Olives: Production and Processing; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Sánchez Gómez, A.H.; García García, P. Elaboration of table olives. Grasas Aceites 2006, 57, 86–94. [Google Scholar]
- Sisler, E.C.; Serek, M. Inhibitions of ethylene responses in plants at the receptor level: Recent developments. Post. Biol. Technol. 1997, 100, 577–582. [Google Scholar]
- Menniti, A.M.; Donati, I.; Gregori, R. Response of 1-MCP application on plum stored under air and controlled atmospheres. Postharvest Biol. Technol. 2006, 39, 243–246. [Google Scholar]
- Shulman, Y.; Erez, A.; Lavee, S. Delay in the ripening of picked olives due to ethylene treatments. Scientia Hortic. 1974, 2, 21–27. [Google Scholar]
- Crisosto, C.H.; Kader, A.A. Olive postharvest quality maintenance guidelines. Univ. Calif. Fresh Prod. Factsheet 2005, 1, 1–6. [Google Scholar]
- Nanos, G.D.; Kiritsakis, A.K.; Sfakiotakis, E.M. Preprocessing storage conditions for green Conservelea and Chondrolia table olives. Post. Biol. Technol. 2002, 25, 109–115. [Google Scholar]
- Kafkaletou, M.; Tsantili, E. The paradox of oleuropein increase in harvested olives (Olea europea L.). J. Plant Physiol. 2018, 224, 132–136. [Google Scholar]
- Tsantili, E.; Pontikis, C. Response to ethylene and its interactive effect with N6-benzyladine (BA) in harvested green olives during ripening. Post. Biol. Technol. 2004, 33, 153–162. [Google Scholar]
- Blankenship, S.M.; Dole, J.M. 1-methylcyclopropene a review. Post. Biol. Technol. 2003, 25, 109–115. [Google Scholar]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar]
- Both, V.; Brackmann, A.; Rodrigo-Thewes, W.; Weber, A.; Schultz, E.; Ludwig, V. The influence of temperature and 1-MCP on quality attributes of “Galaxy” apples stored in controlled atmosphere and dynamic controlled atmosphere. Food Pack. Shelf Life. 2018, 16, 168–177. [Google Scholar]
- Xiong, Z.; Li, H.; Liu, Z.; Li, X.; Gui, D. Effect of 1-MCP on postharvest quality of French prune during storage at low temperature. J. Food Process. Preserv. 2019, 201, e14011. [Google Scholar]
- Amini, F.; Ramin, A.A. Effect of 1-methylcyclopropane in combination with calcium chloride on postharvest storage and quality of green olives. Prog. Biol. Sci. 2015, 5, 121–131. [Google Scholar]
- Ramin, A.A. Effects of storage temperatures and 1-MCP treatment on postharvest quality of green olives. Fruits 2007, 62, 383–390. [Google Scholar]
- Chen, Z.; Zhu, C.; Zhang, Y.; Niu, D.; Du, J. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Post. Biol. Technol. 2010, 58, 232–238. [Google Scholar]
- Bautista-Gallego, J.; Arroyo-López, F.N.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A. Evaluating the effects of zinc chloride as a preservative in cracked table olive packing. J. Food Prot. 2011, 74, 2169–2176. [Google Scholar]
- Sánchez, A.H.; De Castro, A.; Rejano, L.; Montaño, A. Comparative study on chemical changes in olive juice and brine during green olive fermentation. J. Agric. Food Chem. 2000, 48, 5975–5980. [Google Scholar]
- Rodríguez-Gómez, F.; Romero-Gil, V.; Arroyo-López, F.N.; Bautista-Gallego, J.; García-García, P.; Garrido-Fernández, A. Effect of packaging and storage conditions on microbial survival, physicochemical characteristics and colour of non-thermally preserved Green Spanish-style Manzanilla olives. LWT Food Sci. Technol. 2015, 63, 367–375. [Google Scholar]
- International Olive Oil Council [IOC]. Sensory Analysis of Table Olives. COI/OT/MO No1/Rev.1; IOC: Madrid, Spain, 2010.
- International Olive Oil Council [IOC]. Sensory Analysis of Olive Oil Standard Glass for Oil Tasting. COI/T20/Doc n_ 5; IOC: Madrid, Spain, 1987.
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 2013, 41, e1. [Google Scholar]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. (High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar]
- Ramiro-Garcia, J.; Hermes, G.D.; Giatsis, C.; Sipkema, D.; Zoetendal, E.G.; Schaap, P.J.; Smidt, H. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000 Res. 2018, 5, 1791. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Pagès, J.; Husson, F. Multiple factor analysis: Presentation of the method using sensory data. In Mathematical and Statistical Methods in Food Science and Technology, 1st ed.; Granato, D., Ares, G., Eds.; John Willey & Sons: London, UK, 2014. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMiner: An R Package for Multivaraite Analysis. J. Stat. Soft. 2008, 25, 1–18. [Google Scholar]
- Nanos, G.D.; Agtsidou, E.; Sfakiotakis, E. Temperature and propylene effects on ripening of green and black Conservolea olives. Hort Sci. 2002, 37, 1079–1081. [Google Scholar]
- Garcia, P.; Brenes, M.; Romero, C.; Garrido, A. Respiration and physicochemical changes in harvested olive fruits. J. Hortic. Sci. 1995, 70, 925–933. [Google Scholar]
- Romero, C.; Brenes, M.; García, P.; Garrido, A. Respiration of olives stored in sterile water. J. Hort. Sci. 1996, 71, 739–745. [Google Scholar]
- Coimbra, M.A.; Waldron, K.W.; Delgadillo, I.; Selvendram, R.R. Effect of processing on cell wall polysaccharides of Green table olives. J. Agri. Food Chem. 1996, 44, 2394–2401. [Google Scholar]
- Romero, C.; Brenes, M.; García, P.; García, A.; Garrido, A. Polyphenol changes during fermentation of naturally black olives. J. Agric. Food Chem. 2004, 52, 1973–1979. [Google Scholar]
- Yoruzmaz, A.; Erinc, H.; Tekin, A. Changes in olive and olive oil characteristics during maturation. J. Am. Oil Chem. Soc. 2013, 90, 647–658. [Google Scholar]
- Kafkaletou, M.; Fasseas, C.; Tsantili, E. Increased firmness and modified cell wall composition by ethylene were reversed by the ethylene inhibitor 1-metylcyclorpopene (1-MCP) in the non-climacteric olives harvested at the dark green stage—Possible implementation of ethylene for olive quality. J. Plant Phys. 2019, 238, 63–71. [Google Scholar]
- Bautista-Gallego, J.; Rodríguez-Gómez, F.; Romero-Gil, V.; Benítez-Cabello, A.; Arroyo-López, F.N.; Garrido-Fernández, A. Reduction of the bitter taste in packaged natural black Manzanilla olives by zinc chloride. Front. Nut. 2018, 5, 102. [Google Scholar]
- Medina, E.; Gori, C.; Servili, M.; de Castro, A.; Romero, C.; Brenes, M. Main variables affecting the lactic acid fermentation of table olives. Int. J. Food Sci. Technol. 2010, 45, 1291–1296. [Google Scholar] [CrossRef]
- Arroyo-Lopez, F.N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodriguez-Gomez, F.; Jimenez-Diaz, R.; Garcia-Garcia, P.; Querol, A.; Garrido-Fernandez, A. Yeasts in table olive processing: Desirable or spoilage microorganisms? Int. J. Food Microbiol. 2012, 160, 42–49. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Evaluation and identification of poly-microbial biofilms on natural Green Gordal table olives. Ant. Leu. 2015, 108, 597–610. [Google Scholar] [CrossRef]
- Establés-Ortiz, B.; Romero, P.; Ballester, A.R.; González-Candelas, L.; Lafuente, M.T. Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular response aimed to cope with cell toxicity and increased respiration in citrus fruits. Plant Physiol. Biochem. 2016, 103, 154–166. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozes, N. Lactic acid bacteria from fermented table olives. Food Microbiol. 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Romero-Gil, V.; Medina-Pradas, E.; Garrido-Fernández, A.; Arroyo-López, F.N. Exploring bacteria diversity in commercialized table olive biofilms by metataxonomic and compositional data analysis. Sci. Rep. 2020, 10, 11381. [Google Scholar] [CrossRef]
- Sidari, R.; Martorana, A.; De Bruno, A. Effect of brine composition on yeast biota associated with naturally fermented Nocellara messinese table olives. LWT Food Sci. Technol. 2019, 109, 163–170. [Google Scholar] [CrossRef]
Bacterial genera | SS-C | SS-1MCP | DB-C | DB-1MCP |
---|---|---|---|---|
Lactiplantibacillus | 91.54 (4.06) | 94.52 (5.32) | 87.44 (7.01) | 72.46 (9.32) |
Enterobacter | 0.00 (0.00) | 0.00 (0.00) | 0.04 (0.06) | 15.55 (21.64) |
Paraliobacillus | 5.79 (5.91) | 2.66 (3.19) | 0.00 (0.00) | 0.00 (0.00) |
Mangrovibacter | 0.00 (0.00) | 0.00 (0.00) | 2.78 (0.80) | 1.88 (1.86) |
Pantoea | 0.00 (0.00) | 0.00 (0.00) | 0.07 (0.10) | 0.00 (0.00) |
Enterococcus | 0.20 (0.29) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Halomonas | 0.00 (0.00) | 0.04 (0.06) | 0.00 (0.00) | 0.00 (0.00) |
Celerinatantimonas | 0.04 (0.05) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Erwinia | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.01) |
Pediococcus | 2.41 (1.61) | 2.75 (2.19) | 9.65 (6.37) | 10.08 (10.58) |
Fungal genera | SS-C | SS-1MCP | DB-C | DB-1MCP |
Saccharomyces | 5.71 (3.58) | 0.25 (0.35) | 98.78 (1.02) | 97.82 (0.40) |
Cystobasidium | 0.00 (0.00) | 0.17 (0.23) | 0.00 (0.00) | 0.00 (0.00) |
Meyerozyma | 0.00 (0.00) | 0.00 (0.00) | 0.02 (0.02) | 0.00 (0.00) |
Holtermanniella | 0.00 (0.00) | 0.00 (0.00) | 0.02 (0.02) | 0.00 (0.00) |
Dipodascus | 0.00 (0.00) | 0.82 (1.15) | 0.00 (0.00) | 0.00 (0.00) |
Itersonilia | 0.59 (0.84) | 0.00 (0.00) | 0.02 (0.02) | 0.00 (0.00) |
Rhodotorula | 0.45 (0.64) | 0.14 (0.19) | 0.01 (0.01) | 0.00 (0.00) |
Sigarispora | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.01) | 0.00 (0.00) |
Pichia | 0.33 (0.46) | 0.00 (0.00) | 0.00 (0.00) | 0.03 (0.01) |
Sistotrema | 0.19 (0.26) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Cercospora | 0.14 (0.20) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Hanseniaspora | 0.00 (0.00) | 0.05 (0.06) | 0.00 (0.00) | 0.00 (0.00) |
Pleurophoma | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.00) |
Wickerhamomyces | 36.95 (25.51) | 74.46 (29.91) | 0.77 (0.82) | 0.22 (0.12) |
Zygoascus | 36.31 (43.35) | 17.73 (24.57) | 0.07 (0.10) | 0.29 (0.01) |
Candida | 3.08 (1.95) | 0.40 (0.56) | 0.16 (0.01) | 0.92 (0.05) |
Aureobasidium | 3.13 (0.70) | 2.04 (1.51) | 0.06 (0.04) | 0.20 (0.15) |
Cladosporium | 2.81 (2.93) | 1.01 (0.99) | 0.02 (0.01) | 0.12 (0.07) |
Debaryomyces | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.10 (0.14) |
Naganishia | 2.62 (3.70) | 0.00 (0.00) | 0.01 (0.01) | 0.00 (0.00) |
Nakazawaea | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.12 (0.16) |
Uncobasidium | 2.30 (3.26) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Saccharomycopsis | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.06 (0.08) |
Vishniacozyma | 1.81 (2.56) | 0.00 (0.00) | 0.00 (0.00) | 0.02 (0.02) |
Sporobolomyces | 0.47 (0.67) | 1.12 (1.59) | 0.00 (0.00) | 0.01 (0.01) |
Botryosphaeria | 1.03 (1.49) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Dekkera | 0.00 (0.00) | 0.35 (0.48) | 0.00 (0.00) | 0.00 (0.00) |
Schwanniomyces | 0.00 (0.00) | 1.21 (1.70) | 0.03 (0.04) | 0.02 (0.02) |
Priceomyces | 0.52 (0.72) | 0.23 (0.33) | 0.00 (0.00) | 0.04 (0.06) |
Malassezia | 1.50 (1.42) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Treatment | ||||
---|---|---|---|---|
Attribute | SS-C | SS-1MCP | DB-C | DB-1MCP |
Hardness | 2.71 (0.49) a | 5.62 (0.99) b | 6.91 (0.58) c | 7.15 (0.57) c |
Acidic | 5.03 (0.62) a | 5.76 (0.70) a | 5.22 (0.52) a | 4.83 (0.48) a |
Salty | 5.07 (0.49) a | 5.14 (0.41) a | 5.01 (0.25) a | 4.83 (0.44) a |
Bitterness | 2.60 (1.13) a | 3.02 (0.81) a | 6.52 (0.62) b | 6.13 (0.83) b |
Browning | 0.35 (0.31) a | 0.32 (0.30) a | 4.90 (0.46) b | 5.33 (0.55) b |
Flavour/aroma defects | 0.70 (0.35) a | 0.96 (0.43) a | 0.97 (0.32) a | 0.90 (0.29) a |
Overall acceptability | 5.45 (0.96) a | 6.86 (1.52) b | 4.36 (1.45) c | 4.59 (0.99) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-García, E.; Benítez-Cabello, A.; Rodríguez-Gómez, F.; Martín-Arranz, V.; Garrido-Fernández, A.; Arroyo-López, F.N. Influence of 1-Methylcyclopropene (1-MCP) on the Processing and Microbial Communities of Spanish-Style and Directly Brined Green Table Olive Fermentations. Fermentation 2022, 8, 441. https://doi.org/10.3390/fermentation8090441
López-García E, Benítez-Cabello A, Rodríguez-Gómez F, Martín-Arranz V, Garrido-Fernández A, Arroyo-López FN. Influence of 1-Methylcyclopropene (1-MCP) on the Processing and Microbial Communities of Spanish-Style and Directly Brined Green Table Olive Fermentations. Fermentation. 2022; 8(9):441. https://doi.org/10.3390/fermentation8090441
Chicago/Turabian StyleLópez-García, Elio, Antonio Benítez-Cabello, Francisco Rodríguez-Gómez, Virginia Martín-Arranz, Antonio Garrido-Fernández, and Francisco Noé Arroyo-López. 2022. "Influence of 1-Methylcyclopropene (1-MCP) on the Processing and Microbial Communities of Spanish-Style and Directly Brined Green Table Olive Fermentations" Fermentation 8, no. 9: 441. https://doi.org/10.3390/fermentation8090441
APA StyleLópez-García, E., Benítez-Cabello, A., Rodríguez-Gómez, F., Martín-Arranz, V., Garrido-Fernández, A., & Arroyo-López, F. N. (2022). Influence of 1-Methylcyclopropene (1-MCP) on the Processing and Microbial Communities of Spanish-Style and Directly Brined Green Table Olive Fermentations. Fermentation, 8(9), 441. https://doi.org/10.3390/fermentation8090441