Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production
Abstract
:1. Introduction
1.1. Underutilized Malaysian Agro-Industrial Waste
1.2. Production of Lactic Acid from Agro-Industrial Waste
2. Potential Agro-Industrial Waste as Feedstock for Lactic Acid Production
2.1. Coconut Waste
- Mature Husk (from old brown coconuts): These are taken from fully matured coconuts, usually around 12 months old. Mature coconut husk is characterized by its thickness, strength, dryness, and high resistance to abrasion.
- Young Husk (from green, immature coconuts): These husks are harvested from green and immature coconuts, typically around 6 months old. They appear brownish-white, are moist, flexible, and comparatively weaker. Young coconut husks are finer in texture and can be easily processed using chemical methods.
2.2. Oil Palm Waste
2.2.1. Empty Fruit Bunch (EFB)
2.2.2. Oil Palm Trunks (OPT)
2.2.3. Palm Kernel Cakes (PKC)
2.2.4. Palm Oil Mill Effluent (POME)
2.3. Rice Waste
2.3.1. Rice Husk
2.3.2. Rice Straw
2.4. Bagasse
3. Challenges, Limitation and Future Works
- Lack and disconnect of knowledge: Farmers and other stakeholders are often unaware of the potential applications for agro-industrial waste that hold many benefits. Also, researchers are unable to communicate their research findings to the community; for example, the purification strategies can be conducted to increase the yield of targeted products.
- Technical issues: Some technical challenges need to be addressed to use agro-industrial waste in some of its potential applications, such as the production of organic acids, biofuels and bioplastics. For example, most microbes cannot directly metabolize lignocellulose, which requires some strategies to optimize agro-industrial waste utilization [104].
- Infrastructure issues: The infrastructure needed to collect and process agro-industrial waste is either lacking, high-tech or expensive.
- The government can play a role in supporting the use of underutilized Malaysian agro-industrial waste by providing financial incentives to companies that develop new ways to use this waste;
- Research institutes can play a role in developing new technologies for the use of underutilized Malaysian agro-industrial waste;
- Farmers and other stakeholders need to be educated about the potential applications of agro-industrial waste;
- The infrastructure for collecting and processing agro-industrial waste needs to be improved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmud, M.S.; Chong, K.P. Effects of liming on soil properties and its roles in increasing the productivity and profitability of the oil palm industry in Malaysia. Agriculture 2022, 12, 322. [Google Scholar] [CrossRef]
- Norhisham, D.A.; Saad, N.M.; Ahmad Usuldin, S.R.; Vayabari, D.A.; Ilham, Z.; Ibrahim, M.F.; Wan-Mohtar, W.A.A.Q.I. Bioactivities of Kenaf Biomass Extracts: A Review. Processes 2023, 11, 1178. [Google Scholar] [CrossRef]
- Ahmad, R.K.; Sulaiman, S.A.; Dol, S.S.; Umar, H.A. The potential of coconut shells through pyrolysis technology in Nigeria. In Clean Energy Opportunities in Tropical Countries; Springer: Berlin/Heidelberg, Germany, 2021; pp. 151–175. [Google Scholar]
- Nikmatin, S.; Irmansyah, I.; Hermawan, B.; Kardiansyah, T.; Seta, F.T.; Afiah, I.N.; Umam, R. Oil palm empty fruit bunches as raw material of dissolving pulp for viscose rayon fiber in making textile products. Polymers 2022, 14, 3208. [Google Scholar] [CrossRef] [PubMed]
- Adnan, Z.S.; Ariffin, N.F.; Mohsin, S.M.S.; Lim, N.H.A.S. Performance of rice husk ash as a material for partial cement replacement in concrete. Mater. Today Proc. 2022, 48, 842–848. [Google Scholar] [CrossRef]
- Yossa, R.; Ahmad Fatan, N.; Kumari, J.; Schrama, J.W. Apparent digestibility coefficients of banana peel, cassava peel, cocoa husk, copra waste, and sugarcane bagasse in the GIFT strain of Nile tilapia (Oreochromis niloticus). J. Appl. Aquac. 2022, 34, 734–754. [Google Scholar] [CrossRef]
- Rosli, T.; Jumali, S. Mycoremediation of Coconut Shell (Cocos Nucifera) with Ganoderma lucidum. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 012025. [Google Scholar]
- Oseghale, S.D.; Mohamed, A.F.; Chikere, A.O. Status evaluation of palm oil waste management sustainability in Malaysia. OIDA Int. J. Sustain. Dev. 2017, 10, 41–48. [Google Scholar]
- Rozainee, M.; Ngo, S.; Johari, A.; Salema, A.; Tan, K. Utilization of rice husk waste and its ash (Part 1). Ing. March-May 2009, 41, 46–50. [Google Scholar]
- SEDA Malaysia. Malaysia Renewable Energy Road Map: Pathway towards Low Carbon Energy System; Sustainable Energy Development Authority (SEDA) Malaysia: Putrajaya, Malaysia, 2021.
- Foo, K.; Hameed, B. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste. Renew. Sustain. Energy Rev. 2010, 14, 1445–1452. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Food and Drug Administration. Lactic acid. In Code of Federal Regulations Title 21; Administration, F.D., Ed.; Food and Drug Administration (FDA): Silver Spring, MD, USA, 2015; Volume 21CFR184.1061. [Google Scholar]
- Zaini, N.A.M.; Chatzifragkou, A.; Charalampopoulos, D. Microbial production of D-lactic acid from Dried Distillers Grains with Solubles (DDGS). Eng. Life Sci. 2019, 19, 21–30. [Google Scholar] [CrossRef]
- Din, N.A.S.; Lim, S.J.; Maskat, M.Y.; Zaini, N.A.M. Microbial D-lactic acid production, In Situ separation and recovery from mature and young coconut husk hydrolysate fermentation broth. Biochem. Eng. J. 2022, 188, 108680. [Google Scholar] [CrossRef]
- Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B.F. Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ. Sci. 2013, 6, 1415–1442. [Google Scholar] [CrossRef]
- Alves De Oliveira, R.; Alexandri, M.; Komesu, A.; Venus, J.; Vaz Rossell, C.E.; Maciel Filho, R. Current advances in separation and purification of second-generation lactic acid. Sep. Purif. Rev. 2020, 49, 159–175. [Google Scholar] [CrossRef]
- Nor, N.N.M.; Leng, T.P.; Din, N.A.S.; Zaini, N.A.M. Production of D Lactic Acid from Hydrolysate Brown and Green Coconut Husk. Sains Malays. 2021, 50, 409–418. [Google Scholar]
- Jannah, A.M.; Asip, F. Bioethanol Production from Coconut Fiber using Alkaline Pretreatment and Acid Hydrolysis Method. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 320–322. [Google Scholar] [CrossRef]
- Aftab, M.N.; Iqbal, I.; Riaz, F.; Karadag, A.; Tabatabaei, M. Different Pretreatment Methods of Lignocellulosic Biomass for Use in Biofuel Production. In Biomass for Bioenergy-Recent Trends and Future Challenges; Abomohra, A.E.-F., Ed.; IntechOpen: London, UK, 2019; pp. 1–24. [Google Scholar]
- Patil, U.; Benjakul, S. Coconut milk and coconut oil: Their manufacture associated with protein functionality. J. Food Sci. 2018, 83, 2019–2027. [Google Scholar] [CrossRef]
- Bolivar-Telleria, M.; Turbay, C.; Favarato, L.; Carneiro, T.; de Biasi, R.S.; Fernandes, A.A.R.; Santos, A.; Fernandes, P. Second-generation bioethanol from coconut husk. BioMed Res. Int. 2018, 2018, 4916497. [Google Scholar] [CrossRef]
- Arulandoo, X.; Sritharan, K.; Subramaniam, M. Volume 1: Plant Physiology and Development. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Lomelí-Ramírez, M.G.; Anda, R.R.; Satyanarayana, K.G.; Bolzon de Muniz, G.I.; Iwakiri, S. Comparative Study of the Characteristics of Green and Brown Coconut Fibers for the Development of Green Composites. BioResources 2018, 13, 1637–1660. [Google Scholar] [CrossRef]
- Abu Dardak, R.; Mohd Yon, R. Strengthening the Coconut Industry in Malaysia. Agric. Technol. Dev. 2021. Available online: https://ap.fftc.org.tw/article/2938 (accessed on 27 August 2023).
- Archana, A.; Vijay Pradhap Singh, M.; Chozhavendhan, S.; Gnanavel, G.; Jeevitha, S.; Muthu Kumara Pandian, A. Coconut shell as a promising resource for future biofuel production. In Biomass Valorization to Bioenergy; Kumar, R.P., Bharathiraja, B., Kataki, R., Moholkar, V.S., Eds.; Springer: Singapore, 2020; pp. 31–43. [Google Scholar]
- Tanjung, F.A.; Arifin, Y.; Husseinsyah, S. Enzymatic degradation of coconut shell powder–reinforced polylactic acid biocomposites. J. Thermoplast. Compos. Mater. 2020, 33, 800–816. [Google Scholar] [CrossRef]
- Rizal, W.; Maryana, R.; Prasetyo, D.; Pratiwi, D.; Jatmiko, T.; Ariani, D.; Suwanto, A. Chemical composition of liquid smoke from coconut shell waste produced by SME in Rongkop Gunungkidul. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012057. [Google Scholar]
- Wang, Q.; Sarkar, J. Pyrolysis behaviors of waste coconut shell and husk biomasses. Towards Energy Sustain. 2018, 3, 34–47. [Google Scholar] [CrossRef]
- Bakker, R. Availability of Lignocellulosic Feedstocks for Lactic Acid Production-Feedstock Availability, Lactic Acid Production Potential and Selection Criteria; Wageningen UR-Food & Biobased Research: Wageningen, The Netherlands, 2013. [Google Scholar]
- Nikhontha, K.; Krisanapook, K.; Imsabai, W. Fruit growth, endocarp lignification, and boron and calcium concentrations in Nam Hom (aromatic) coconut during fruit development. J. Int. Soc. Southeast Asian Agric. Sci. 2019, 25, 21–31. [Google Scholar]
- Din, N.A.S.; Lim, S.J.; Maskat, M.Y.; Zaini, N.A.M. Bioconversion of coconut husk fibre through biorefinery process of alkaline pretreatment and enzymatic hydrolysis. Biomass Convers. Biorefin. 2021, 11, 815–826. [Google Scholar] [CrossRef]
- Cabral, M.M.S.; Abud, A.K.d.S.; Silva, C.E.d.F.; Almeida, R.M.R.G. Bioethanol production from coconut husk fiber. Ciência Rural 2016, 46, 1872–1877. [Google Scholar] [CrossRef]
- Vaithanomsat, P.; Apiwatanapiwat, W.; Chumchuent, N.; Kongtud, W.; Sundhrarajun, S. The potential of coconut husk utilization for bioethanol production. Kasetsart J. Nat. Sci. 2011, 45, 159–164. [Google Scholar]
- Brígida, A.; Calado, V.; Gonçalves, L.; Coelho, M. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 2010, 79, 832–838. [Google Scholar] [CrossRef]
- van Dam, J.E.; van den Oever, M.J.; Keijsers, E.R.; van der Putten, J.C.; Anayron, C.; Josol, F.; Peralta, A. Process for production of high density/high performance binderless boards from whole coconut husk: Part 2: Coconut husk morphology, composition and properties. Ind. Crops Prod. 2006, 24, 96–104. [Google Scholar] [CrossRef]
- Carrijo, O.; Liz, R.; Makishima, N. Fiber of green coconut shell as an agricultural substrate. Hortic. Bras. 2002, 20, 533–535. [Google Scholar] [CrossRef]
- Sengupta, S.; Basu, G. Properties of coconut fiber. Encycl. Renew. Sustain. Mater. Ref. Modul. Mater. Sci. Mater. Eng. 2016, 2, 263–281. [Google Scholar]
- Reddy, N.; Yang, Y. Innovative Biofibers from Renewable Resources; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Khan, G.; Alam, M. Thermal characterization of chemically treated coconut husk fibre. Indian J. Fibre Text. Res. 2012, 37, 20–26. [Google Scholar]
- Salazar, V.; Leão, A.L.; Rosa, D.; Gomez, J.; Alli, R. Biodegradation of coir and sisal applied in the automotive industry. J. Polym. Environ. 2011, 19, 677. [Google Scholar] [CrossRef]
- Asasutjarit, C.; Hirunlabh, J.; Khedari, J.; Charoenvai, S.; Zeghmati, B.; Shin, U.C. Development of coconut coir-based lightweight cement board. Constr. Build. Mater. 2007, 21, 277–288. [Google Scholar] [CrossRef]
- Khalil, H.S.A.; Alwani, M.S.; Omar, A.K.M. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 2006, 1, 220–232. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Sundararajan, T. Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cem. Concr. Compos. 2005, 27, 575–582. [Google Scholar] [CrossRef]
- Mudaliyar, P.; Kulkarni, C. Screening of novel substrates for lactic acid production by Rhizopus oryzae. Int. J. Life Sci. Pharma Res. 2012, 2, 122–127. [Google Scholar]
- Boonsawang, P.; Youravong, W. Sustainability issues, challenges and controversies surrounding the palm oil industry. In Sustainability Challenges in the Agrofood Sector; Bhat, R., Ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 596–615. [Google Scholar]
- Bejarano, P.-A.C.; Rodriguez-Miranda, J.-P.; Maldonado-Astudillo, R.I.; Maldonado-Astudillo, Y.I.; Salazar, R. Circular Economy Indicators for the Assessment of Waste and By-Products from the Palm Oil Sector. Processes 2022, 10, 903. [Google Scholar] [CrossRef]
- Rahim, N.A.; Indera Luthfi, A.A.; Abdul, P.M.; Jahim, J.M.; Bukhari, N.A. Towards Sustainable Production of Bio-based Lactic Acid via a Bio-based Technical Route: Recent Developments and the Use of Palm Kernel Cakes in the Bioconversion. Bioresources 2022, 17, 1–29. [Google Scholar] [CrossRef]
- Juturu, V.; Wu, J.C. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Biotechnol. Appl. Biochem. 2018, 65, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Hudari, M.S.B.; Li, Z.; Wu, J.C. Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem. Eng. J. 2014, 83, 16–21. [Google Scholar] [CrossRef]
- Erliana, W.H.; Widjaja, T.; Altway, A.; Pudjiastuti, L. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Preliminary hydrolysis and fermentation studies. Biodiversitas J. Biol. Divers. 2020, 21, 2281–2288. [Google Scholar]
- Eom, I.-Y.; Oh, Y.-H.; Park, S.J.; Lee, S.-H.; Yu, J.-H. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresour. Technol. 2015, 185, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kunasundari, B.; Arai, T.; Sudesh, K.; Hashim, R.; Sulaiman, O.; Stalin, N.J.; Kosugi, A. Detoxification of sap from felled oil palm trunks for the efficient production of lactic acid. Appl. Biochem. Biotechnol. 2017, 183, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, A.; Tanaka, R.; Magara, K.; Murata, Y.; Arai, T.; Sulaiman, O.; Hashim, R.; Hamid, Z.A.A.; Yahya, M.K.A.; Yusof, M.N.M. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. J. Biosci. Bioeng. 2010, 110, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Saelee, N. Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863. Fermentation 2022, 8, 430. [Google Scholar] [CrossRef]
- Shukor, H.; Abdeshahian, P.; Al-Shorgani, N.K.N.; Hamid, A.A.; Rahman, N.A.; Kalil, M.S. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone–butanol–ethanol fermentation. Bioresour. Technol. 2016, 202, 206–213. [Google Scholar] [CrossRef]
- Rahim, N.A.; Luthfi, A.A.I.; Bukhari, N.A.; Tan, J.P.; Abdul, P.M.; Manaf, S.F.A. Biotechnological enhancement of lactic acid conversion from pretreated palm kernel cake hydrolysate by Actinobacillus succinogenes 130Z. Sci. Rep. 2023, 13, 5787. [Google Scholar] [CrossRef]
- Chung, C.W. Production of L-Lactic Acid Using Various Carbon Sources by Enterococcus Gallinarum EB1. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2002. [Google Scholar]
- Alexandri, M.; López-Gómez, J.P.; Olszewska-Widdrat, A.; Venus, J. Valorising agro-industrial wastes within the circular bioeconomy concept: The case of defatted rice bran with emphasis on bioconversion strategies. Fermentation 2020, 6, 42. [Google Scholar] [CrossRef]
- Goodman, B.A. Utilization of waste straw and husks from rice production: A review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Huang, F.; Tang, X.; Wei, Z.; Zhang, M. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT 2018, 87, 450–456. [Google Scholar] [CrossRef]
- Wood, I.P.; Cao, H.-G.; Tran, L.; Cook, N.; Ryden, P.; Wilson, D.R.; Moates, G.K.; Collins, S.R.; Elliston, A.; Waldron, K.W. Comparison of saccharification and fermentation of steam exploded rice straw and rice husk. Biotechnol. Biofuels 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Potumarthi, R.; Baadhe, R.R.; Nayak, P.; Jetty, A. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour. Technol. 2013, 128, 113–117. [Google Scholar] [CrossRef]
- Matei, J.C.; Soares, M.; Bonato, A.C.H.; de Freitas, M.P.A.; Helm, C.V.; Maroldi, W.V.; Magalhães, W.L.; Haminiuk, C.W.; Maciel, G.M. Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification. Renew. Energy 2020, 157, 987–997. [Google Scholar] [CrossRef]
- Hafid, H.S.; Omar, F.N.; Zhu, J.; Wakisaka, M. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydr. Polym. 2021, 260, 117789. [Google Scholar] [CrossRef] [PubMed]
- Shahabazuddin, M.; Chandra, T.S.; Meena, S.; Sukumaran, R.; Shetty, N.; Mudliar, S. Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresour. Technol. 2018, 263, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Chen, H.; Liu, H.; Chen, J. Recent advances in lactic acid production by lactic acid bacteria. Appl. Biochem. Biotechnol. 2021, 193, 4151–4171. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.A.; González-Martínez, C.; Chiralt, A. Active Poly (Lactic Acid) Films with Rice Straw Aqueous Extracts for Meat Preservation Purposes. Food Bioprocess Technol. 2023, 16, 2635–2650. [Google Scholar] [CrossRef]
- Freitas, P.A.; Gil, N.J.B.; Gonzalez-Martinez, C.; Chiralt, A. Antioxidant poly (lactic acid) films with rice straw extract for food packaging applications. Food Packag. Shelf Life 2022, 34, 101003. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, Z.; Pang, Y.; Liu, J.; Zhang, W.; Wang, B.; Xu, L.; Guo, H.; Liu, Y. The Facile and Efficient Fabrication of Rice Husk/poly (lactic acid) Foam Composites by Coordinated the Interface Combination and Bubble Hole Structure. Int. J. Biol. Macromol. 2023, 234, 123734. [Google Scholar] [CrossRef]
- Wu, C.-S.; Tsou, C.-H. Fabrication, characterization, and application of biocomposites from poly (lactic acid) with renewable rice husk as reinforcement. J. Polym. Res. 2019, 26, 44. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K. Recovery of silica from rice straw and husk. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 411–433. [Google Scholar]
- Montipó, S.; Ballesteros, I.; Fontana, R.C.; Liu, S.; Ballesteros, M.; Martins, A.F.; Camassola, M. Bioprocessing of rice husk into monosaccharides and the fermentative production of bioethanol and lactate. Cellulose 2019, 26, 7309–7322. [Google Scholar] [CrossRef]
- Jaichakan, P.; Nakphaichit, M.; Rungchang, S.; Weerawatanakorn, M.; Phongthai, S.; Klangpetch, W. Two-stage processing for xylooligosaccharide recovery from rice by-products and evaluation of products: Promotion of lactic acid-producing bacterial growth and food application in a high-pressure process. Food Res. Int. 2021, 147, 110529. [Google Scholar] [CrossRef]
- Da Silva Menezes, B.; Rossi, D.M.; Squina, F.; Ayub, M.A.Z. Xylooligosaccharides production by fungi cultivations in rice husk and their application as substrate for lactic acid bacteria growth. Bioresour. Technol. Rep. 2018, 2, 100–106. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Juodeikiene, G.; Damasius, J. Use of wheat straw biomass in production of L-lactic acid applying biocatalysis and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatal. Agric. Biotechnol. 2018, 15, 185–191. [Google Scholar] [CrossRef]
- Verma, D.; Subudhi, S. Lactobacillus sp. strain TERI-D3′, as microbial cell factory for fermentative production of lactic acid. Curr. Res. Green Sustain. Chem. 2021, 4, 100059. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Yuan, S.-F.; Wang, C.-A.; Huang, Y.-J.; Guo, G.-L.; Hwang, W.-S. Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour. Technol. 2015, 198, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huo, W.; Wang, B.; Wang, Y.; Wen, H.; Cai, D.; Zhang, C.; Wu, Y.; Qin, P. L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw. Ind. Crops Prod. 2019, 141, 111749. [Google Scholar] [CrossRef]
- Chen, X.; Xue, Y.; Hu, J.; Tsang, Y.F.; Gao, M.-T. Release of polyphenols is the major factor influencing the bioconversion of rice straw to lactic acid. Appl. Biochem. Biotechnol. 2017, 183, 685–698. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Xue, Y.; Zhang, T.-A.; Li, Y.; Hu, J.; Tsang, Y.F.; Zhang, H.; Gao, M.-T. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae. J. Biosci. Bioeng. 2018, 125, 703–709. [Google Scholar] [CrossRef]
- Yao, R.; Qi, B.; Deng, S.; Liu, N.; Peng, S.; Cui, Q. Use of surfactants in enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation. Bioresources 2007, 2, 389–398. [Google Scholar] [CrossRef]
- Mu, L.; Wang, Q.; Cao, X.; Zhang, Z. Effects of fatty acid salts on fermentation characteristics, bacterial diversity and aerobic stability of mixed silage prepared with alfalfa, rice straw and wheat bran. J. Sci. Food Agric. 2022, 102, 1475–1487. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Hajar-Azhari, S.; Shahruddin, R.; Abd Rahim, M.H. The effect of heat treatment and sonication on physicochemical and colour attributes of yellow sugarcane juice. Malays. Appl. Biol. 2018, 47, 129–134. [Google Scholar]
- Jasmi, N.; Mansor, N.; Lim, E.J.; Yusof, N.L.; Hajar-Azhari, S.; Rahim, M.H.A. The effect of sonication and heat treatment on the physicochemical, nutritional and microbiological properties of different sugarcane variants. Food Sci. Technol. 2019, 40, 551–556. [Google Scholar] [CrossRef]
- Mansor, N.; Ramli, S.; Azhari, S.H.; Abd Rahim, M.H. Effects of different preservation treatments on nutritional profile on juices from different sugar cane varieties. Sains Malays. 2020, 49, 283–291. [Google Scholar] [CrossRef]
- Hajar-Azhari, S.; Abd Rahim, M.H.; Wan, W.A.A.Q.I.; Sarbini, S.R.; Saari, N. Novel fructooligosaccharide conversion from sugarcane syrup using a specialised enzymatic pH-stat bioreactor. Process Biochem. 2020, 95, 55–63. [Google Scholar] [CrossRef]
- Hajar-Azhari, S.; Abd Rahim, M.H.; Sarbini, S.R.; Muhialdin, B.J.; Olusegun, L.; Saari, N. Enzymatically synthesised fructooligosaccharides from sugarcane syrup modulate the composition and short-chain fatty acid production of the human intestinal microbiota. Food Res. Int. 2021, 149, 110677. [Google Scholar] [CrossRef]
- Agrawal, D.; Kumar, V. Recent progress on sugarcane-bagasse based lactic acid production: Technical advancements, potential and limitations. Ind. Crops Prod. 2023, 193, 116132. [Google Scholar] [CrossRef]
- Munagala, M.; Shastri, Y.; Nalawade, K.; Konde, K.; Patil, S. Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid. Waste Manag. 2021, 126, 52–64. [Google Scholar] [CrossRef]
- Reis, C.E.R.; Junior, N.L.; Bento, H.B.; de Carvalho, A.K.F.; de Souza Vandenberghe, L.P.; Soccol, C.R.; Aminabhavi, T.M.; Chandel, A.K. Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries. Chem. Eng. J. 2023, 451, 138690. [Google Scholar] [CrossRef]
- Baral, P.; Kumar, V.; Agrawal, D. Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform. Crit. Rev. Biotechnol. 2022, 42, 873–891. [Google Scholar] [CrossRef]
- Baral, P.; Munagala, M.; Shastri, Y.; Kumar, V.; Agrawal, D. Cost reduction approaches for fermentable sugar production from sugarcane bagasse and its impact on techno-economics and the environment. Cellulose 2021, 28, 6305–6322. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, J.; Zhang, Y.; Guo, Y.; Xu, H.; Xu, J.; Wang, Z. Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Bioresour. Technol. 2019, 292, 121993. [Google Scholar] [CrossRef] [PubMed]
- Morais, A.R.C.; Zhang, J.; Dong, H.; Otto, W.G.; Mokomele, T.; Hodge, D.; Balan, V.; Dale, B.E.; Lukasik, R.M.; da Costa Sousa, L. Development of an ammonia pretreatment that creates synergies between biorefineries and advanced biomass logistics models. Green Chem. 2022, 24, 4443–4462. [Google Scholar] [CrossRef]
- Cubas-Cano, E.; González-Fernández, C.; Ballesteros, M.; Tomás-Pejó, E. Biotechnological advances in lactic acid production by lactic acid bacteria: Lignocellulose as novel substrate. Biofuels Bioprod. Biorefin. 2018, 12, 290–303. [Google Scholar] [CrossRef]
- Peng, L.; Xie, N.; Guo, L.; Wang, L.; Yu, B.; Ma, Y. Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38. PLoS ONE 2014, 9, e107143. [Google Scholar] [CrossRef]
- Pangestu, R.; Kahar, P.; Kholida, L.N.; Perwitasari, U.; Thontowi, A.; Fahrurrozi; Lisdiyanti, P.; Yopi; Ogino, C.; Prasetya, B. Harnessing originally robust yeast for rapid lactic acid bioproduction without detoxification and neutralization. Sci. Rep. 2022, 12, 13645. [Google Scholar] [CrossRef] [PubMed]
- Sornlek, W.; Sae-Tang, K.; Watcharawipas, A.; Wongwisansri, S.; Tanapongpipat, S.; Eurwilaichtr, L.; Champreda, V.; Runguphan, W.; Schaap, P.J.; Martins dos Santos, V.A. D-Lactic acid production from sugarcane bagasse by genetically engineered Saccharomyces cerevisiae. J. Fungi 2022, 8, 816. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Supramani, S.; Rejab, N.A.; Ilham, Z.; Wan-Mohtar, W.A.A.Q.I.; Ghosh, S. Basal stem rot of oil palm incited by Ganoderma species: A review. Eur. J. Plant Pathol. 2022, 164, 1–20. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
Type | Ash (%) | Cellulose (%) | Lignin (%) | Hemicellulose (%) | References |
---|---|---|---|---|---|
Young coconut husk | 2.40 | 33.32 | 32.40 | 14.60 | Din et al. [32] |
1.25 | 29.96 | 35.46 | 33.33 | Lomelí-Ramírez et al. [24] | |
2.56 | 24.70 | 40.10 | 12.26 | Cabral et al. [33] | |
n.a. | 39.31 | 29.79 | 16.15 | Vaithanomsat et al. [34] | |
n.a. | 45.93 | 43.14 | n.a. | Brígida et al. [35] | |
2.6 | 35.1 | 33.6 | 2.3 | van Dam et al. [36] | |
n.a. | 23–43 | 35–45 | 3–12 | Carrijo et al. [37] | |
Mature coconut husk | 1.53 | 23.25 | 38.80 | 14.95 | Din et al. [32] |
1.6 | 38.4 | 31.8 | 24.5 | Sengupta and Basu [38] | |
0.61 | 29.23–36.51 | 23.81–33.51 | 15–28 | Reddy and Yang [39] | |
n.a. | 37.11 | 44.06 | n.a. | Khan and Alam [40] | |
n.a. | 41.55 | 45.95 | 31.10 | Brígida et al. [35] | |
1.34 | 31.83 | 45.47 | 2.33 | Salazar et al. [41] | |
n.a. | 32.1 | 68.9 | 16.8 | Asasutjarit et al. [42] | |
2.4 | 44.2 | 32.8 | 6.4 | Khalil et al. [43] | |
n.a. | 20.5 | 33.20 | 31.1 | Ramakrishna and Sundararajan [44] |
Carbon Sources | Composition | Promising Biocatalyst | Titer (g/L) | Yield (g/g) | Productivity (g/L h−1) | References |
---|---|---|---|---|---|---|
Empty fruit bunches | cellulose: 35–50%; hemicellulose: 20–30%; lignin: 15–25% | Bacillus coagulans JI12 | 80.6 | 0.49 | 3.4 | Ye et al. [50] |
120.0 | 0.99 | 4.3 | Juturu and Wu [49] | |||
Oil palm trunks | cellulose: 43.88%; hemicellulose: 7.24%; lignin: 33.24% | Lactobacillus rhamnosus and Lactobacillus brevis | 33.29 | 0.68 | 0.69 | Erliana et al. [51] |
Lacticaseibacillus paracasei KM2 | 38–40 | 0.49 | 1.36–1.43 | Eom et al. [52] | ||
Bacillus coagulans 191 | 63.3 | 0.92 | 2.64 | Kunasundari et al. [53] | ||
Lactobacillus rhamnosus ATCC 10863 | 95.94 | 1.04 | 6.40 | Saelee [55] | ||
Palm kernel cakes | galactomannan: 25–40%; glucan: 10–20%; sugars: 45–55% | Actinobacillus succinogenes 130 Z | 31.64 | 0.92 | 0.88 | Rahim et al. [57] |
Palm oil mill effluents (origin) | total solids: 1–4%; VSS: 80–95%; lipids: 0.1–0.6%; carbohydrates: 0.2–1.5%; proteins: 0.1–0.8% | Enterococcus gallinarum EB1 | 18.0 | 1.92 | N/A | Chung [58] |
Pre-Treatment | Waste | Parameters | Outcome | Reference |
---|---|---|---|---|
Grinding (physical) | Bran | Using FW80 disintegrator and passed through an 80-mesh sieve | Physical pre-treatment is usually performed for bran, to increase its functionality in food-related applications | Zhao et al. [61] |
Steam explosion (thermal) | Husk and straw | 180–230 °C for 10 min | Rice husk is more resistant than its straw—requires high temperature, lower yield, and higher cellulase for saccharification, with less fermentation theoretical yield | Wood et al. [62] |
Phanerochete chrysosporium (biological—microbe) | Husk | 30 C, 150 rpm for 26 days in a shaking incubator | Fungal pre-treatment produced fermentable sugars and lignin degradation enzymes in a single instead of 2 steps | Potumarthi et al. [63] |
Laccases enzyme (biological—enzyme) | Husk and sugarcane bagasse | Crude laccases enzyme from Trametes villosa | 10-fold increase in fermentable sugars | Matei et al. [64] |
Alkaline treatment and acid hydrolysis (chemical) | Husk | 5% or NaOH with strong acid (H2SO4) and weak acid (HNO3) in autoclave | Increase in cellulose and its crystallinity, and thermal properties | Hafid et al. [65] |
Thermal assisted alkaline (combination) | Husk | Biomass (10% w/w), particle size (0.25–0.625 mm), NaOH (2% w/w), and time (40 min) | Highest sugar production, removal of lignin and no cellulosic components, low hemicellulose, increase in cellulose and its crystallinity, porosity and biomass disruption | Shahabazuddin et al. [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan-Mohtar, W.A.A.Q.I.; Khalid, N.I.; Rahim, M.H.A.; Luthfi, A.A.I.; Zaini, N.S.M.; Din, N.A.S.; Mohd Zaini, N.A. Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production. Fermentation 2023, 9, 905. https://doi.org/10.3390/fermentation9100905
Wan-Mohtar WAAQI, Khalid NI, Rahim MHA, Luthfi AAI, Zaini NSM, Din NAS, Mohd Zaini NA. Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production. Fermentation. 2023; 9(10):905. https://doi.org/10.3390/fermentation9100905
Chicago/Turabian StyleWan-Mohtar, Wan Abd Al Qadr Imad, Nurul Izzah Khalid, Muhamad Hafiz Abd Rahim, Abdullah Amru Indera Luthfi, Nurul Solehah Mohd Zaini, Nur Akmal Solehah Din, and Nurul Aqilah Mohd Zaini. 2023. "Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production" Fermentation 9, no. 10: 905. https://doi.org/10.3390/fermentation9100905
APA StyleWan-Mohtar, W. A. A. Q. I., Khalid, N. I., Rahim, M. H. A., Luthfi, A. A. I., Zaini, N. S. M., Din, N. A. S., & Mohd Zaini, N. A. (2023). Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production. Fermentation, 9(10), 905. https://doi.org/10.3390/fermentation9100905