Potential of Incorporating a Functional Probiotic Encapsulant in Whipped Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Spray-Dried Conjugated WPH-MD-Encapsulated Probiotic Formulation
2.2. Preparation of WPH-MD-Encapsulated Probiotic Whipped Cream Variants
2.3. Viable Probiotic Counts of 0.1% and 1% Whipped Cream Variants
2.3.1. Experimental Design
2.3.2. Enumeration of the Viable Probiotic Counts
2.4. Physicochemical Analysis to Assess the Influence of the WPH-MD-Encapsulated Probiotics Formulation on the Whipped Cream Functionality
2.4.1. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Overrun of Whipped Cream Variants
2.4.2. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Foam Stability of Whipped Cream Variants
2.4.3. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Partial Coalescence of Whipped Cream Variants
2.4.4. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Rheological Properties of Whipped Cream Variants
2.4.5. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Color Parameters of Whipped Cream Variants
2.4.6. Interaction of WPH-MD Probiotic Encapsulant with the Whipped Cream Matrix through Confocal Laser Scanning Microscopy (CLSM)
Mounting Protocol
Imaging Protocol
2.5. Storage Studies of the WPH-MD-Encapsulated Probiotics Whipped Cream at Refrigerated Conditions
2.5.1. Experimental Design
2.5.2. Enumeration of Viable Probiotic Counts
2.6. Statistical Analysis
3. Results and Discussion
3.1. Viable Probiotic Counts in 0.1% and 1% Whipped Cream Variants with the Incorporation of the WPH-MD-Encapsulated Probiotic Formulation
3.2. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Overrun of Whipped Cream Variants
3.3. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Foam Stability of Whipped Cream Variants
3.4. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Rheological Properties of Whipped Cream Variants
3.5. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Partial Coalescence of Whipped Cream Variants
3.6. Effect of the WPH-MD-Encapsulated Probiotics Formulation on the Color Parameters of Whipped Cream Variants
3.7. Imaging Protein and Fat Globule Distribution through Confocal Laser Scanning Microscopy
3.8. Viability of Probiotic Whipped Cream during Refrigerated Storage Conditions (4 °C)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PR News Wire. Available online: https://www.prnewswire.com/news-releases/functional-food-ingredients-global-market-report-2022-301709635.html (accessed on 23 December 2022).
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021, 120, 106882. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Development of a spray-dried conjugated whey protein hydrolysate powder with entrapped probiotics. J. Dairy. Sci. 2022, 105, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Minj, S.; Anand, S.; Martinez-Monteagudo, S. Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates. J. Food Sci. 2021, 86, 5107–5119. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, E.; Niranjan, K. Transient development of whipped cream properties. J. Food Eng. 2006, 77, 79–83. [Google Scholar] [CrossRef]
- Peng, F.; He, S.; Yi, H.; Li, Q.; Xu, W.; Wang, R.; Ma, Y. Physical, textural, and rheological properties of whipped cream affected by milk fat globule membrane protein. Int. J. Food Prop. 2018, 21, 1190–1202. [Google Scholar] [CrossRef]
- Zhao, Q.; Kuang, W.; Long, Z.; Fang, M.; Liu, D.; Yang, B.; Zhao, M. Effect of sorbitan monostearate on the physical characteristics and whipping properties of whipped cream. Food Chem. 2003, 141, 1834–1840. [Google Scholar] [CrossRef]
- Abadía-García, L.; Cardador, A.; Martín del Campo, S.T.; Arvízu, S.M.; Castaño-Tostado, E.; Regalado-González, C.; García-Almendarez, B.; Amaya-Llano, S.L. Influence of probiotic strains added to cottage cheese on generation of potentially antioxidant peptides, anti-listerial activity, and survival of probiotic microorganisms in simulated gastrointestinal conditions. Int. Dairy. J. 2013, 33, 191–197. [Google Scholar] [CrossRef]
- Cuffia, F.; George, G.; Renzulli, P.; Reinheimer, J.; Meinardi, C.; Burns, P. Technological challenges in the production of a probiotic pasta filata soft cheese. LWT 2017, 81, 111–117. [Google Scholar] [CrossRef]
- De Souza, C.H.B.; Buriti, F.C.A.; Behrens, J.H.; Saad, S.M.I. Sensory evaluation of probiotic Minas fresh cheese with Lactobacillus acidophilus added solely or in co-culture with a thermophilic starter culture. Int. J. Food Sci. Technol. 2008, 43, 871–877. [Google Scholar] [CrossRef]
- Ong, L.; Shah, N.P. Probiotic Cheddar cheese: Influence of ripening temperatures on survival of probiotic microorganisms, cheese composition and organic acid profiles. LWT-Food Sci. Technol. 2009, 42, 1260–1268. [Google Scholar] [CrossRef]
- Scheller, M.; O’Sullivan, D.J. Comparative analysis of an intestinal strain of Bifidobacterium longum and a strain of Bifidobacterium animalis subspecies lactis in Cheddar cheese. J. Dairy. Sci. 2011, 94, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Verruck, S.; Prudêncio, E.S.; Vieira, C.R.W.; Amante, E.R.; de Mello Castanho Amboni, R.D. The buffalo Minas Frescal cheese as a protective matrix of Bifidobacterium BB-12 under invitro simulated gastrointestinal conditions. LWT 2015, 63, 1179–1183. [Google Scholar] [CrossRef]
- Gaba, K.; Anand, S.; Syamala, A. Development of Value-Added Butter by Incorporating Whey Protein Hydrolysate-Encapsulated Probiotics. Microorganisms 2023, 11, 1139. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, F.; Abbasi, H.; Nourani, M. Effects of protein–polysaccharide interactions on the physical and textural characteristics of low-fat whipped cream. J. Food Process. Preserv. 2020, 44, e14743. [Google Scholar] [CrossRef]
- Sajedi, M.; Nasirpour, A.; Keramat, J.; Desobry, S. Effect of modified whey protein concentrate on physical properties and stability of whipped cream. Food Hydrocoll. 2014, 36, 93–101. [Google Scholar] [CrossRef]
- Brasili, E.; Mengheri, E.; Tomassini, A.; Capuani, G.; Roselli, M.; Finamore, A.; Sciubba, F.; Marini, F.; Miccheli, A. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 Induce Different Age-Related Metabolic Profiles Revealed by 1H-NMR Spectroscopy in Urine and Feces of Mice1–3. J. Nutr. 2013, 143, 1549–1557. [Google Scholar] [CrossRef]
- Kim, J.J.; Jung, T.H.; Ahn, J.; Kwak, H.S. Properties of cholesterol-reduced butter made with β-cyclodextrin and added evening primrose oil and phytosterols. J. Dairy. Sci. 2006, 89, 4503–4510. [Google Scholar] [CrossRef]
- Han, J.; Zhou, X.; Cao, J.; Wang, Y.; Sun, B.; Li, Y.; Zhang, L. Microstructural evolution of whipped cream in whipping process observed by confocal laser scanning microscopy. Int. J. Food Prop. 2018, 21, 593–605. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control 2019, 100, 8–16. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Codex Standard for Fermented Milks. Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; Córdoba, Argentina. 2011. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwid6azYk5CCAxVos1YBHSiMDCUQFnoECAgQAQ&url=https%3A%2F%2Fwww.fao.org%2F3%2Fa0512e%2Fa0512e.pdf&usg=AOvVaw0HqaUiE05VlWuUSfUCeTn4&opi=89978449 (accessed on 10 October 2001).
- Calligaris, S.; Marino, M.; Maifreni, M.; Innocente, N. Potential application of monoglyceride structured emulsions as delivery systems of probiotic bacteria in reduced saturated fat ice cream. LWT 2018, 96, 329–334. [Google Scholar] [CrossRef]
- da Silva, P.D.L.; Bezerra, M.d.F.; dos Santos, K.M.O.; Correia, R.T.P. Potentially probiotic ice cream from goat’s milk: Characterization and cell viability during processing, storage and simulated gastrointestinal conditions. LWT 2015, 62, 452–457. [Google Scholar] [CrossRef]
- Amiri, A.; Mousakhani-Ganjeh, A.; Torbati, S.; Ghaffarinejhad, G.; Esmaeilzadeh Kenari, R. Impact of high-intensity ultrasound duration and intensity on the structural properties of whipped cream. Int. Dairy. J. 2018, 78, 152–158. [Google Scholar] [CrossRef]
- Emam-Djome, Z.; Mousavi, M.E.; Ghorbani, A.-V.; Madadlou, A. ORIGINAL RESEARCH Effect of whey protein concentrate addition on the physical properties of homogenized sweetened dairy creams. Int. J. Dairy. Technol. 2008, 61, 183–191. [Google Scholar]
- Dogan, M.; Kayacier, A.; Toker, Ö.S.; Yilmaz, M.T.; Karaman, S. Steady, Dynamic, Creep, and Recovery Analysis of Ice Cream Mixes Added with Different Concentrations of Xanthan Gum. Food Bioprocess. Technol. 2013, 6, 1420–1433. [Google Scholar] [CrossRef]
- Liu, P.; Balaban, M.O. Quantification of Visual Characteristics of Whipped Cream by Image Analysis and Machine Vision: Method Development. J. Food Sci. 2015, 80, E750–E758. [Google Scholar] [CrossRef]
- Allen, K.E.; Dickinson, E.; Murray, B. Acidified sodium caseinate emulsion foams containing liquid fat: A comparison with whipped cream. LWT-Food Sci. Technol. 2006, 39, 225–234. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Turan, M.A.; Taskin, M.B. Probiotic Cream: Viability of Probiotic Bacteria and Chemical Characterization. J. Food Process. Preserv. 2016, 41, e12797. [Google Scholar] [CrossRef]
- Akalin, A.S.; Erişir, D. Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. J. Food Sci. 2008, 73, M184–M188. [Google Scholar] [CrossRef]
- dos Santos Cruxen, C.E.; Hoffmann, J.F.; Zandoná, G.P.; Fiorentini, Â.M.; Rombaldi, C.V.; Chaves, F.C. Probiotic butiá (Butia odorata) ice cream: Development, characterization, stability of bioactive compounds, and viability of Bifidobacterium lactis during storage. LWT 2017, 75, 379–385. [Google Scholar] [CrossRef]
- Hanafi, F.N.A.; Kamaruding, N.A.; Shaharuddin, S. Influence of coconut residue dietary fiber on physicochemical, probiotic (Lactobacillus plantarum ATCC 8014) survivability and sensory attributes of probiotic ice cream. LWT 2022, 154, 112725. [Google Scholar] [CrossRef]
- Peres, J.; Esmerino, E.; da Silva, A.L.; Racowski, I.; Bolini, H. Sensory Profile, Drivers of Liking, and Influence of Information on the Acceptance of Low-Calorie Synbiotic and Probiotic Chocolate Ice Cream. J. Food Sci. 2018, 83, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Abbasiliasi, S.; Tan, J.S.; Bello, B.; Ibrahim, T.A.T.; Tam, Y.J.; Ariff, A.; Mustafa, S. Prebiotic efficacy of coconut kernel cake’s soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro. Biotechnol. Biotechnol. Equip. 2019, 33, 1216–1227. [Google Scholar] [CrossRef]
Whipped Cream Variants | Viability of LA5 (MRS Agar) | Viability of BB12 (MRS + L-Cysteine Agar) |
---|---|---|
0.1% whipped cream variant | aA | aA |
1% whipped cream variant | bB | bB |
Whipped Cream Variants | Overrun (%) |
---|---|
0.1% whipped cream variant | a |
1% whipped cream variant | a |
Control (with no WPH-MD-encapsulated probiotics formulation) | b |
Whipped Cream Variants | G′ (Pa) | G″ (Pa) |
---|---|---|
0.1% whipped cream variant | a | A |
1% whipped cream variant | b | B |
Control (with no WPH-MD-encapsulated probiotics formulation) | c | C |
Color Parameters | 0.1% Whipped Cream Variant | 1% Whipped Cream Variant | Control (with No Formulation) |
---|---|---|---|
L* | a | a | b |
a* | a′ | b′ | c′ |
b* | a″ | b″ | c″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaba, K.; Anand, S. Potential of Incorporating a Functional Probiotic Encapsulant in Whipped Cream. Fermentation 2023, 9, 928. https://doi.org/10.3390/fermentation9110928
Gaba K, Anand S. Potential of Incorporating a Functional Probiotic Encapsulant in Whipped Cream. Fermentation. 2023; 9(11):928. https://doi.org/10.3390/fermentation9110928
Chicago/Turabian StyleGaba, Kritika, and Sanjeev Anand. 2023. "Potential of Incorporating a Functional Probiotic Encapsulant in Whipped Cream" Fermentation 9, no. 11: 928. https://doi.org/10.3390/fermentation9110928
APA StyleGaba, K., & Anand, S. (2023). Potential of Incorporating a Functional Probiotic Encapsulant in Whipped Cream. Fermentation, 9(11), 928. https://doi.org/10.3390/fermentation9110928