Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waste Sewage Sludge (WSS) Preparation
2.2. Methane and Hydrogen Sulfide Production via Photo-Irradiation
2.3. Chlorophyll Measurement
2.4. Analytical Methods
2.5. Activity Measurement of Methanogens and Sulfur-Reducing Bacteria
2.6. DNA Extractions
2.7. RNA Extraction and cDNA Synthesis
2.8. qRT-PCR and High-Throughput 16S rRNA Sequencing and Data Processing
3. Results and Discussion
3.1. Effect of Photo-Irradiation on Methane and Hydrogen Sulfide Productions
3.2. Effect of Photo-Irradiation on Anaerobic Digestion
3.3. Effect of Photo-Irradiation on Acetoclastic Methanogens and Sulfate-Reducing Bacteria
3.4. Removal of Hydrogen Sulfide during Anaerobic Digestion via Dark/Light Switching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shchegolkova, N.M.; Krasnov, G.S.; Belova, A.A.; Dmitriev, A.A.; Kharitonov, S.L.; Klimina, K.M.; Melnikova, N.V.; Kudryavtseva, A.V. Microbial community structure of activated sludge in treatment plants with different wastewater compositions. Front. Microbiol. 2016, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Modin, O.; Alam, S.S.; Persson, F.; Wilén, B.M. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater. PLoS ONE 2015, 10, e0119371. [Google Scholar] [CrossRef]
- Hara, K.; Mino, T. Environmental assessment of sewage sludge recycling options and treatment processes in Tokyo. Waste Manag. 2008, 28, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Das, S.R.; Basak, N. Molecular biohydrogen pro-duction by dark and photo fermentation from wastes containing starch: Recent advancement and future perspective. Bioprocess Biosyst. Eng. 2021, 44, 1–25. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Jalil, A.A. A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Convers. Biorefinery 2023, 13, 8465–8483. [Google Scholar] [CrossRef]
- Saha, R.; Bhattacharya, D.; Mukhopadhyay, M. Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Convers. Manag. X 2022, 13, 100153. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J.N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Yadav, M.; Paritosh, K.; Vivekanand, V. Lignocellulose to bio-hydrogen: An overview on recent developments. Int. J. Hydrog. Energy 2020, 45, 18195–18210. [Google Scholar] [CrossRef]
- Sabourin-Provost, G.; Hallenbeck, P.C. High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 2009, 100, 3513–3517. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, S.; Yuan, H.; Zhou, Q.; Gu, G. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007, 41, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Qin, L.; Gao, J.; Nan, R.; Gao, J. Protein extraction and sludge dewatering performance of ultra-sound-assisted enzymatic hydrolysis of excess sludge. Environ. Sci. Pollut. Res. Int. 2020, 27, 18317–18328. [Google Scholar] [CrossRef]
- Maeda, T.; Sabidi, S.; Sanchez-Torres, V.; Hoshiko, Y.; Toya, S. Engineering anaerobic digestion via optimizing microbial community: Effects of bactericidal agents, quorum sensing inhibitors, and inorganic materials. Appl. Microbiol. Biotechnol. 2021, 105, 7607–7618. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, Z.; Zhao, Z.; Quan, X.; Zhao, Z. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. J. Clean. Prod. 2017, 149, 1101–1108. [Google Scholar] [CrossRef]
- Roy, C.K.; Hoshiko, Y.; Toya, S.; Maeda, T. Effect of different concentrations of sodium selenite on anaerobic digestion of waste sewage sludge. Environ. Technol. Innov. 2022, 27, 102403. [Google Scholar] [CrossRef]
- Dong, D.; Wang, R.; Geng, P.; Li, C.; Zhao, Z. Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater. J. Environ. Manag. 2019, 244, 1–12. [Google Scholar] [CrossRef]
- Mustapha, N.A.; Sakai, K.; Shirai, Y.; Maeda, T. Impact of different antibiotics on methane production using waste-activated sludge: Mechanisms and microbial community dynamics. Appl. Microbiol. Biotechnol. 2016, 100, 9355–9364. [Google Scholar] [CrossRef]
- Roy, C.K.; Toya, S.; Hoshiko, Y.; Sabidi, S.; Mustapha, N.A.; Miyazaki, T.; Maeda, T. Effect of sodium tungstate on anaerobic digestion of waste sewage sludge: Enhanced methane production via increased acetoclastic methanogens. J. Environ. Chem. Eng. 2022, 10, 107524. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Zhang, Y.; Xiang, Y.; Xu, R.; Jia, M.; Cao, J.; Xiong, W. Effects of different conductive nanomaterials on anaerobic digestion process and microbial community of sludge. Bioresour. Technol. 2020, 304, 123016. [Google Scholar] [CrossRef] [PubMed]
- Hoshiko, Y.; Hirano, R.; Mustapha, N.A.; Nguyen, P.D.T.; Fujie, S.; Sanchez-Torres, V.; Maeda, T. Impact of 5-fluorouracil on anaerobic digestion using sewage sludge. Chemosphere 2022, 298, 134253. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.D.T.; Mustapha, N.A.; Kadokami, K.; Garcia-Contreras, R.; Wood, T.K.; Maeda, T. Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium. Appl. Microbiol. Biotechnol. 2019, 103, 1485–1495. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Q.; Wang, D.; Yang, Q.; Wu, Y.; Li, Y.; Fu, Q.; Yang, F.; Liu, Y.; Ni, B.J.; et al. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresour. Technol. 2019, 281, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, S.; Peng, Y.; He, Y.; Wang, S.; Li, L.; Zhao, M. Anaerobic digestion using ultrasound as pretreatment approach: Changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations. Biochem. Eng. J. 2018, 139, 139–145. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V.; Goel, R. Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour. Technol. 2019, 286, 121368. [Google Scholar] [CrossRef]
- Mustapha, N.A.; Toya, S.; Maeda, T. Effect of Aso limonite on anaerobic digestion of waste sewage sludge. AMB Express 2020, 10, 74. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimakawa, G.; Tabata, H.; Kusama, S.; Miyake, C.; Nakanishi, S. Quantification of NAD(P)H in cyanobacterial cells by a phenol extraction method. Photosynth. Res. 2021, 148, 57–66. [Google Scholar] [CrossRef]
- Battumur, U.; Yoon, Y.; Bae, G.S.; Kim, C.H. Isolation and characterization of new Methanosarcina mazei strains KOR-3, -4, -5, and -6 from an anaerobic digester using pig slurry. Asian-Australas. J. Anim. Sci. 2017, 30, 1198–1203. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Chen, J.H.; Wu, H.; Xu, C.; Liu, X.C.; Huang, Z.; Chang, S.; Wang, W.; Han, G.; Kuang, T.; Shen, J.R.; et al. Architecture of the photosynthetic complex from a green sulfur bacterium. Science 2020, 370, eabb6350. [Google Scholar] [CrossRef]
- Wu, B.; Liu, F.; Fang, W.; Yang, T.; Chen, G.H.; He, Z.; Wang, S. Microbial sulfur metabolism and environmental implications. Sci. Total Environ. 2021, 778, 146085. [Google Scholar] [CrossRef] [PubMed]
- Vigneron, A.; Cruaud, P.; Langlois, V.; Lovejoy, C.; Culley, A.I.; Vincent, W.F. Ultra-small and abudant: Candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol. Ocean. Lett. 2020, 5, 212–220. [Google Scholar] [CrossRef]
- Moreno, R.; Rojo, F. Features of pseudomonads growing at low temperatures: Another facet of their versatility. Environ. Microbiol. Rep. 2014, 6, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, X.; Hu, Y.; Zhang, Y.; Li, Y. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zi, X.; Yang, H.; Ji, F.; Tang, J.; Lv, R.; Zhou, H. Effects of king grass and sugarcane top in the absence or presence of exogenous enzymes on the growth performance and rumen microbiota diversity of goats. Trop. Anim. Health Prod. 2021, 53, 106. [Google Scholar] [CrossRef]
- Kurade, M.B.; Saha, S.; Salama, E.S.; Patil, S.M.; Govindwar, S.P.; Jeon, B.H. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 2019, 272, 351–359. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, G.; Kuang, B.; Jia, J.; Liu, C.; Cai, G.; Li, C. Novel insights into the anaerobic digestion of propionate via Syntrophobacter fumaroxidans and Geobacter sulfurreducens: Process and mechanism. Water Res. 2021, 200, 117270. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Q.; Lu, Y. Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge. Water Res. 2018, 146, 275–287. [Google Scholar] [CrossRef]
- In ‘t Zandt, M.H.; Beckmann, S.; Rijkers, R.; Jetten, M.S.M.; Manefield, M.; Welte, C.U. Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a non-producing Australian coal well. Microb. Biotechnol. 2018, 11, 626–638. [Google Scholar] [CrossRef]
- Monroy, I.; Buitrón, G. Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: A review. J. Biotechnol. 2020, 317, 39–47. [Google Scholar] [CrossRef]
- Xiong, Z.H.; Ma, H.J.; Huang, G.L.; Pan, H.; Sun, C.Z. Treating sewage using coimmobilized system of Chlorella pyrenoidosa and activated sludge. Environ. Technol. 2007, 28, 33–39. [Google Scholar] [CrossRef]
- Kopperi, H.; Mohan, S.V. Comparative appraisal of nutrient recovery, bio-crude, and bio-hydrogen production using Coelestrella sp. in a closed-loop biorefinery. Front. Bioeng. Biotechnol. 2022, 10, 964070. [Google Scholar] [CrossRef] [PubMed]
- Baig, U.; Gondal, M.A.; Dastageer, M.A.; Khalil, A.B.; Zubair, S.M. Photo-catalytic deactivation of hazardous sulfate reducing bacteria using palladium nanoparticles decorated silicon carbide: A comparative study with pure silicon carbide nanoparticles. J. Photochem. Photobiol. B. 2018, 187, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, P. Dynamics of microbial competition, commensalism, and cooperation and its implications for coculture and microbiome engineering. Biotechnol. Bioeng. 2021, 118, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Gu, T.; Lovley, D.R. Microbially mediated metal corrosion. Nat. Rev. Microbiol. 2023, 21, 705–718. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiang, X.; Li, X.; Jiang, W. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process. Appl. Microbiol. Biotechnol. 2016, 100, 8179–8189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toya, S.; Iriguchi, S.; Yamaguchi, K.; Maeda, T. Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions. Fermentation 2023, 9, 943. https://doi.org/10.3390/fermentation9110943
Toya S, Iriguchi S, Yamaguchi K, Maeda T. Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions. Fermentation. 2023; 9(11):943. https://doi.org/10.3390/fermentation9110943
Chicago/Turabian StyleToya, Shotaro, Shunsuke Iriguchi, Kohei Yamaguchi, and Toshinari Maeda. 2023. "Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions" Fermentation 9, no. 11: 943. https://doi.org/10.3390/fermentation9110943
APA StyleToya, S., Iriguchi, S., Yamaguchi, K., & Maeda, T. (2023). Effect of Photo Irradiation on the Anaerobic Digestion of Waste Sewage Sludge-Reduced Methane and Hydrogen Sulfide Productions. Fermentation, 9(11), 943. https://doi.org/10.3390/fermentation9110943