Maximizing Bioethanol Production from Eucalyptus globulus Using Steam Explosion Pretreatment: A Multifactorial Design and Fermenter Development for High Solid Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Chemical Characterization of Samples
2.3. Experimental Design to Optimize Steam Explosion Pretreatment
2.4. Steam Explosion Pretreatment
2.5. Xylose Recovery from Liquid Fraction Post Steam Explosion Pretreatment
2.6. Characterization of Cellulose
2.6.1. Cellulose Extraction
2.6.2. Average Degree of Polymerization
2.6.3. The Cellulose Crystallinity Index by Spectroscopic FT-IR
2.7. Surface Morphology by Scanning Electronic Microscopy
2.8. Enzymatic Hydrolysis
2.9. Description of the Horizontal Fermenter with Helical Blades
2.10. Description of the Vertical Fermenter with Type “G” Blades
2.11. Simultaneous Saccharification and Fermentation
2.12. Ethanol Analysis
3. Results and Discussion
3.1. Steam Explosion Pretreatment Optimizaztion by CCC Design
3.2. Analysis of Chemical Composition
3.3. Structural Changes in Cellulose in Pretreated Materials
3.4. Scanning Electron Microscopy
3.5. Simultaneous Sacharification and Fermentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, A.J.; Abinandan, S.; Vaidyanathan, V.K.; Xu, C.C.; Krishnamurthi, T. A critical review on current status and environmental sustainability of pre-treatment methods for bioethanol production from lignocellulose feedstocks. 3 Biotech 2023, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Mariano, A.P.B.; Unpaprom, Y.; Ponnusamy, V.K.; Ramaraj, R. Bioethanol production from coconut pulp residue using hydrothermal and postalkaline pretreatment. Int. J. Energy Res. 2021, 45, 8140–8150. [Google Scholar] [CrossRef]
- Aditiya, H.B.; Mahlia, T.M.I.; Chong, W.T.; Nur, H.; Sebayang, A.H. Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev. 2016, 66, 631–653. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Lee, J.W. Hydrothermal Treatment. In Pretreatment of Biomass: Processes and Technologies; Elsevier: Amsterdam, The Netherlands, 2015; pp. 61–74. [Google Scholar] [CrossRef]
- Troncoso, E.; Castillo, R.; Valenzuela, R.; Reyes, P.; Freer, J.; Norambuena, M.; Rodríguez, J.; Parra, C. Chemical and microstructural changes in Eucalyptus globulus fibers subjected to four different pretreatments and their influence on the enzymatic hydrolysis. J. Chil. Chem. Soc. 2017, 62, 3442–3446. [Google Scholar] [CrossRef]
- Ramos, L.P. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 2003, 26, 863–871. [Google Scholar] [CrossRef]
- Reyes, P.; Márquez, N.; Troncoso, E.; Parra, C.; Teixeira Mendonça, R.; Rodríguez, J. Evaluation of Combined Dilute Acid-Kraft and Steam Explosion-Kraft Processes as Pretreatment for Enzymatic Hydrolysis of Pinus radiata Wood Chips. BioResources 2015, 11, 612–625. [Google Scholar] [CrossRef]
- Das, N.; Jena, P.K.; Padhi, D.; Kumar Mohanty, M.; Sahoo, G. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Convers. Biorefinery 2023, 13, 1503–1527. [Google Scholar] [CrossRef]
- Hill, C. Benchmarking and best practices. Annu. Qual. Congr. 2000, 54, 715–717. [Google Scholar]
- Mithra, M.G.; Sajeev, M.S.; Padmaja, G. Comparison of SHF and SSF Processes under Fed Batch Mode on Ethanol Production from Pretreated Vegetable Processing Residues. Eur. J. Sustain. Dev. Res. 2018, 3, em0084. [Google Scholar] [CrossRef]
- Kadhum, H.J.; Rajendran, K.; Murthy, G.S. Effect of solids loading on ethanol production: Experimental, economic and environmental analysis. Bioresour. Technol. 2017, 244, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, A.; Alkasrawi, M.; Zacchi, G.; Lidén, G. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb. Technol. 2005, 37, 195–204. [Google Scholar] [CrossRef]
- Jørgensen, H.; Vibe-Pedersen, J.; Larsen, J.; Felby, C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng. 2007, 96, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Wingren, A.; Galbe, M.; Zacchi, G. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 2003, 19, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.B.; Karim, M.N.; Schell, D.J.; McMillan, J.D. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl. Biochem. Biotechnol. 2009, 152, 88–107. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, F.; Su, R.; Qi, W.; He, Z. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour. Technol. 2010, 101, 4959–4964. [Google Scholar] [CrossRef]
- Cara, C.; Moya, M.; Ballesteros, I.; Negro, M.J.; González, A.; Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem. 2007, 42, 1003–1009. [Google Scholar] [CrossRef]
- Hoyer, K.; Galbe, M.; Zacchi, G. Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J. Chem. Technol. Biotechnol. 2009, 84, 570–577. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Xu, G.; Chu, J.; Zhuang, Y.; Zhang, S. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl. Biochem. Biotechnol. 2010, 160, 360–369. [Google Scholar] [CrossRef]
- Amândio, M.S.T.; Rocha, J.M.S.; Xavier, A.M.R.B. Enzymatic Hydrolysis Strategies for Cellulosic Sugars Production to Obtain Bioethanol from Eucalyptus globulus Bark. Fermentation 2023, 9, 241. [Google Scholar] [CrossRef]
- Chander Kuhad, R.; Mehta, G.; Gupta, R.; Sharma, K.K. Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 2010, 34, 1189–1194. [Google Scholar] [CrossRef]
- Valenzuela, R.; Priebe, X.; Troncoso, E.; Ortega, I.; Parra, C.; Freer, J. Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata. Ind. Crops Prod. 2016, 86, 79–86. [Google Scholar] [CrossRef]
- Guigou, M.; Guarino, J.; Chiarello, L.M.; Cabrera, M.N.; Vique, M.; Lareo, C.; Ferrari, M.D.; Ramos, L.P. Steam Explosion of Eucalyptus grandis Sawdust for Ethanol Production within a Biorefinery Approach. Processes 2023, 11, 2277. [Google Scholar] [CrossRef]
- Bhalla, A.; Cai, C.M.; Xu, F.; Singh, S.K.; Bansal, N.; Phongpreecha, T.; Dutta, T.; Foster, C.E.; Kumar, R.; Simmons, B.A.; et al. Performance of three delignifying pretreatments on hardwoods: Hydrolysis yields, comprehensive mass balances, and lignin properties. Biotechnol. Biofuels 2019, 12, 213. [Google Scholar] [CrossRef]
- Acuña, E.; Cancino, J.; Rubilar, R.; Parra, C. Potencial de bioetanol de culturas lenhosas conduzidas em alta densidade e curta rotação em terras marginais no Chile central. Cerne 2017, 23, 133–145. [Google Scholar] [CrossRef]
- Mendonça, R.T.; Jara, J.F.; González, V.; Elissetche, J.P.; Freer, J. Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J. Ind. Microbiol. Biotechnol. 2008, 35, 1323–1330. [Google Scholar] [CrossRef]
- Castro, J.F.; Parra, C.; Yáñez-S, M.; Rojas, J.; Teixeira Mendoncìa, R.; Baeza, J.; Freer, J. Optimal pretreatment of Eucalyptus globulus by hydrothermolysis and alkaline extraction for microbial production of ethanol and xylitol. Ind. Eng. Chem. Res. 2013, 52, 5713–5720. [Google Scholar] [CrossRef]
- Monrroy, M.; Ortega, I.; Ramírez, M.; Baeza, J.; Freer, J. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzym. Microb. Technol. 2011, 49, 472–477. [Google Scholar] [CrossRef]
- Monrroy, M.; Garcia, J.R.; Troncoso, E.; Freer, J. Fourier transformed near infrared (FT-NIR) spectroscopy for the estimation of parameters in pretreated lignocellulosic materials for bioethanol production. J. Chem. Technol. Biotechnol. 2015, 90, 1281–1289. [Google Scholar] [CrossRef]
- Edgardo, A.; Carolina, P.; Manuel, R.; Juanita, F.; Baeza, J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzym. Microb. Technol. 2008, 43, 120–123. [Google Scholar] [CrossRef]
- Chen, X.; Lawoko, M.; Heiningen, A. van Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour. Technol. 2010, 101, 7812–7819. [Google Scholar] [CrossRef] [PubMed]
- Leschinsky, M.; Sixta, H.; Patt, R. Detailed Mass Balances of the Autohydrolysis of eucalyptus globulus at 170 °C. BioResources 2009, 4, 687–703. [Google Scholar] [CrossRef]
- Araya, F.; Troncoso, E.; Mendonça, R.T.; Freer, J. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of Eucalyptus globulus wood and their relationship with cellulose accessibility. Biotechnol. Bioeng. 2015, 112, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.G.; Meng, X.; Pu, Y.; Ragauskas, A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour. Technol. 2020, 301, 122784. [Google Scholar] [CrossRef] [PubMed]
- Baksi, S.; Sarkar, U.; Villa, R.; Basu, D.; Sengupta, D. Conversion of biomass to biofuels through sugar platform: A review of enzymatic hydrolysis highlighting the trade-off between product and substrate inhibitions. Sustain. Energy Technol. Assess. 2023, 55, 102963. [Google Scholar] [CrossRef]
Pretreatment Conditions | Raw and Pretreated Material Composition (% dwb) a | %YEH e (dwb) (72 h) | ||||||
---|---|---|---|---|---|---|---|---|
Exp N° | Temperature (°C) | Time (min) | Log S0 | Solid Yield | Glucans | Xylans | Lignin | Glucose Yield |
E.g. b | -- | -- | -- | -- | 45.5 | 15.3 | 23.5 | -- |
1 | 180 (−1) | 4 (−1) | 2.96 | 92.0 | 47.0 | 16.9 | 28.0 | 6.4 |
2 | 213 (+1) | 4 (−1) | 3.93 | 71.9 | 64.9 | 3.2 | 35.3 | 71.2 |
3 | 180 (−1) | 15 (+1) | 3.53 | 85.1 | 53.1 | 12.1 | 31.4 | 28.5 |
4 | 213 (+1) | 15 (+1) | 4.50 | 68.1 | 68.4 | 1.6 | 41.3 | 73.1 |
5 | 173 (−1.4) | 9.5 (0) | 3.13 | 93.0 | 48.2 | 18.3 | 26.0 | 8.1 |
6 | 220 (+1.4) | 9.5 (0) | 4.51 | 66.6 | 66.8 | 1.5 | 40.3 | 76.9 |
7 | 196 (0) | 1.7 (−1.4) | 3.06 | 74.3 | 50.6 | 15.3 | 29.3 | 19.8 |
8 | 196 (0) | 17 (−1.4) | 4.06 | 68.6 | 65.0 | 3.2 | 36.6 | 75.9 |
9 c | 196 (0) | 9.5 (0) | 3.80 | 70.9 ± 3.0 | 63.2 ± 1.3 | 4.4 ± 0.4 | 35.1 ± 1.0 | 73.3 ± 4.8 |
10 d | 208 | 11 | 4.22 | 67.5 ± 0.9 | 58.3 ± 1.4 | 2.7 ± 0.1 | 31.8 ± 0.7 | 74.5 ± 2.3 |
Solids | SSF Erlenmeyer Flasks (Orbital Agitation) | SSF in Horizontal Fermenter (Helical Blades) | SSF in Vertical Fermenter (Type “G” Blades) | ||||||
---|---|---|---|---|---|---|---|---|---|
Ethanol Yields | Ethanol | Ethanol Yields | Ethanol | Ethanol Yields | Ethanol | ||||
% | % | g/L | %v/v | % | g/L | %v/v | % | g/L | %v/v |
10 | 63.8 ± 0.7 (72) a | 24.7 ± 0.3 | 3.2 ± 0.0 | ||||||
20 | 61.0 ± 0.1 (96) | 44.6 ± 0.1 | 5.7± 0.0 | 78.6 ± 1.2 (72) | 60.0 ± 1.0 | 7.7 ± 0.8 | 77.7 ± 2.3 (72) | 57.0 ± 2.1 | 7.3 ± 2.0 |
20 b | 78.0 ± 0.6 (72) | 58.0 ± 0.4 | 7.4 ± 0.1 | 87.7 ± 0.9 (48) | 65.0 ± 0.8 | 8.3 ± 0.6 | 92.5 ± 1.9 (48) | 71.0 ± 1.5 | 9.1 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncoso-Ortega, E.; Valenzuela, R.; Reyes-Contreras, P.; Castaño-Rivera, P.; Schiappacasse, L.-N.; Parra, C. Maximizing Bioethanol Production from Eucalyptus globulus Using Steam Explosion Pretreatment: A Multifactorial Design and Fermenter Development for High Solid Loads. Fermentation 2023, 9, 965. https://doi.org/10.3390/fermentation9110965
Troncoso-Ortega E, Valenzuela R, Reyes-Contreras P, Castaño-Rivera P, Schiappacasse L-N, Parra C. Maximizing Bioethanol Production from Eucalyptus globulus Using Steam Explosion Pretreatment: A Multifactorial Design and Fermenter Development for High Solid Loads. Fermentation. 2023; 9(11):965. https://doi.org/10.3390/fermentation9110965
Chicago/Turabian StyleTroncoso-Ortega, Eduardo, Roberto Valenzuela, Pablo Reyes-Contreras, Patricia Castaño-Rivera, L-Nicolás Schiappacasse, and Carolina Parra. 2023. "Maximizing Bioethanol Production from Eucalyptus globulus Using Steam Explosion Pretreatment: A Multifactorial Design and Fermenter Development for High Solid Loads" Fermentation 9, no. 11: 965. https://doi.org/10.3390/fermentation9110965
APA StyleTroncoso-Ortega, E., Valenzuela, R., Reyes-Contreras, P., Castaño-Rivera, P., Schiappacasse, L.-N., & Parra, C. (2023). Maximizing Bioethanol Production from Eucalyptus globulus Using Steam Explosion Pretreatment: A Multifactorial Design and Fermenter Development for High Solid Loads. Fermentation, 9(11), 965. https://doi.org/10.3390/fermentation9110965