Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Rubber Seed Samples
2.3. Processing Methods
2.4. Experimental Design and Dietary Treatments
2.5. Animals and Preparation of Rumen Inoculum
2.6. In Vitro Gas Production and Fermentation Characteristics
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Diets
3.2. Gas Kinetics, Cumulative Gas Production, and In Vitro Degradability
3.3. In Vitro Rumen Fermentation and Microbial Population
3.4. In Vitro Rumen Fatty Acid Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafari, S.; Goh, Y.M.; Rajion, M.A.; Jahromi, M.F.; Ebrahimi, M. Ruminal methanogenesis and biohydrogenation reduction potential of papaya (Carica papaya) leaf: An in vitro study. Ital. J. Anim. Sci. 2016, 15, 157–165. [Google Scholar] [CrossRef]
- Buccioni, A.; Decandia, M.; Minieria, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Jafari, S.; Ebrahimi, M.; Meng, G.Y.; Rajion, M.A.; Jahromi, M.F. Dietary supplementation of papaya (Carica papaya L.) leaf affects abundance of Butyrivibrio fibrisolvens and modulates biohydrogenation of C18 polyunsaturated fatty acids in the rumen of goats. Ital. J. Anim. Sci. 2017, 17, 326–335. [Google Scholar] [CrossRef]
- Dewanckele, L.; Vlaeminck, B.; Hernandez-Sanabria, E.; Ruiz-Gonzalez, A.; Dubruyne, S.; Jeyanathan, J.; Frievez, V. Rumen biohydrogenation and microbial community changes upon early life supplementation of 22:6n-3 enriched microalgae to goats. Front. Microbiol. 2018, 9, 573. [Google Scholar] [CrossRef]
- Morales, R.; Ungerfeld, E.M. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review. Chil. J. Agric. Res. 2015, 75, 239–248. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Meignan, T.; Lechartier, C.; Chesneau, G.; Bareille, N. Effects of feeding extruded linseed on production performance and milk fatty acid profile in dairy cows: A meta-analysis. J. Dairy Sci. 2017, 100, 4394–4408. [Google Scholar] [CrossRef] [PubMed]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Samadi, M.S.; Chashnidel, Y.; Dirandeh, E.; Deldar, H. Effects of heat processing of soybeans and linseed on ruminal fatty acid biohydrogenation in situ. Iranian, J. Appl. Anim. Sci. 2018, 8, 583–589. [Google Scholar]
- Troegeler-Meynadier, A.; Puaut, S.; Farizon, Y.; Enjalbert, F. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro. J. Dairy Sci. 2014, 97, 5657–5667. [Google Scholar] [CrossRef]
- Paya, H.; Taghizadeh, A. Dry matter intake, milk yield and milk fatty acid composition of dairy cows fed raw or microwave irradiated safflower seed as a substitution to cottonseed. Iranian, J. Appl. Anim. Sci. 2020, 10, 51–58. [Google Scholar]
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of rubber seed kernel fermented with yeast on feed utilization, rumen fermentation and microbial protein synthesis in dairy heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Ouppamong, T.; Gunun, N.; Tamkhonburee, C.; Khejornsart, P.; Kaewpila, C.; Kesorn, P.; Kimprasit, T.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; et al. Fermented rubber seed kernel with yeast in the diets of tropical lactating dairy cows: Effects on feed intake, hematology, microbial protein synthesis, milk yield and milk composition. Vet. Sci. 2022, 9, 360. [Google Scholar] [CrossRef]
- Pha-obnga, N.; Aiumlamai, S.; Wachirapakorn, C. Nutritive value and effect of different levels of rubber seed kernel in total mixed ration on digestibility using in vitro gas production technique. KKU Res. J. 2016, 21, 51–62. [Google Scholar]
- Chanjula, P.; Siriwathananukul, Y.; Lawpetchara, A. Effect of feeding rubber seed kernel and palm kernel cake in combination on nutrient utilization, rumen fermentation characteristics, and microbial populations in goats fed on Briachiaria humidicola hay-based diets. Asian Australas. J. Anim. Sci. 2011, 24, 73–81. [Google Scholar] [CrossRef]
- Pi, Y.; Gao, S.T.; Ma, L.; Zhu, Y.X.; Wang, J.Q.; Zhang, J.M.; Xu, J.C.; Bu, D.P. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows. J. Dairy Sci. 2016, 99, 5719–5730. [Google Scholar] [CrossRef] [PubMed]
- Pi, Y.; Ma, L.; Pierce, K.; Wang, H.; Xu, J.; Bu, D. Rubber seed oil and flaxseed oil supplementation alter digestion, ruminal fermentation and rumen fatty acid profile of dairy cows. Animal 2019, 13, 2811–2820. [Google Scholar] [CrossRef]
- Udo, M.D.; Ekpo, U.; Ahamefule, F.O. Effect of processing on the nutrient composition of rubber seed meal. J. Saudi Soc. Agric. Sci. 2018, 17, 297–301. [Google Scholar] [CrossRef]
- Agbai, C.M.; Olawuni, I.A.; Ofoedu, C.E.; Ibeabuchi, C.J.; Okpala, C.O.R.; Shorstkii, I.; Korzeniowska, M. Changes in anti-nutrient, phytochemical, and micronutrient contents of different processed rubber (Hevea brasiliensis) seed meals. PeerJ. 2021, 9, e11327. [Google Scholar] [CrossRef]
- Farr, H.M.; Donkoh, A.; Boateng, M.; Mensah, K.B. Effect of variously-processed rubber seed meals on reproductive performance: The use of Sprague-Dawley laboratory rats as model for pigs. J. Anim. Sci. Vet. Med. 2019, 4, 162–172. [Google Scholar]
- Matho, A.; Ciemeni Aimee, M.; Mouchili, M.; Mube, K.H.; Defang Fualefac, H.; Fonteh, F.; Teguia, A.; Tchoumboue, J. The effects of processed rubber (Hevea brasiliensis) seed meal on the chemical composition of ration, feed intake and nutrients digestibility in rabbits (Oryctolagus cuniculus). Online J. Anim. Feed Res. 2021, 11, 95–102. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- O’Brien, G.M.; Taylor, A.J.; Poulter, N.H. Improved enzymic assay for cyanogens in fresh and processed cassava. J. Sci. Food Agric. 1991, 56, 277–289. [Google Scholar]
- AACC. Approved Methods of Analysis, 11th ed.; Method 22-40.01; Measurement of trypsin inhibitor activity of soy products—Spectrophotometric method; American Association of Cereal Chemists International: St. Paul, MN, USA, 2009. [Google Scholar]
- Christie, W.W. Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids 1998, 33, 343–353. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Cai, Y. Analysis method for silage. In Field and Laboratory Methods for Grassland Science; Japanese Society of Grassland Science, Ed.; Tosho Printing Co., Ltd.: Tokyo, Japan, 2004; pp. 279–282. [Google Scholar]
- Galyean, M. Laboratory Procedures in Animal Nutrition Research; Department of Animals and Range Science, New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Tilley, J.; Terry, R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics; McGraw-Hill Book Co. Inc.: New York, NY, USA, 1980; p. 633. [Google Scholar]
- Ahmad Khan, N.; Booker, H.; Yu, P. Effect of heating method on alteration of protein molecular structure in flaxseed: Relationship with changes in protein subfraction profile and digestion in dairy cows. J. Agric. Food Chem. 2015, 63, 1057–1066. [Google Scholar] [CrossRef]
- Peng, Q.; Khan, N.A.; Wang, Z.; Yu, P. Moist and dry heating induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. J. Dairy Sci. 2014, 97, 446–457. [Google Scholar] [CrossRef]
- Cherif, A.; Slama, A. Stability and change in fatty acids composition of soybean, corn, and sunflower oils during the heating process. J. Food Qual. 2022, 2022, 6761029. [Google Scholar] [CrossRef]
- Li, X.; Wu, G.; Wu, Y.; Karrar, E.; Huang, J.; Jin, Q.; Zhang, H.; Wang, X. Effectiveness of the rapid test of polar compounds in frying oils as a function of environmental and compositional variables under restaurant conditions. Food Chem. 2020, 312, 126041. [Google Scholar] [CrossRef] [PubMed]
- da Silva Zornitta, C.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; dos Santos, G.T.; Dias, A.M.; dos Santos Difante, G.; Gurgel, A.L.C. Kinetics of in vitro gas production and fitting mathematical models of corn silage. Fermentation 2021, 7, 298. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Gunun, P.; Cherdthong, A. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins. Anim. Sci. J. 2016, 87, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Sombuddee, N.; Suntara, C.; Khota, W.; Boontiam, W.; Chanjula, P.; Cherdthong, A. Effect of cyanide-utilizing bacteria and sulfur supplementation on reducing cyanide concentration and in vitro degradability using in vitro gas production technique. Fermentation 2022, 8, 436. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Mitragyna speciosa Korth leaves supplementation on feed utilization, rumen fermentation efficiency, microbial population, and methane production in vitro. Fermentation 2022, 8, 8. [Google Scholar] [CrossRef]
- Zhao, G.; Xue, Y.; Zhang, W. Relationship between in vitro gas production and dry matter and organic matter digestibility of rations for sheep. J. Anim. Feed Sci. 2007, 16, 229–234. [Google Scholar] [CrossRef]
- Bueno, I.C.S.; Filho, S.L.S.; Godoy, P.B.; Abdalla, A.L. Comparison of in situ and in vitro dry matter rumen degradability of three distinct quality hays in sheep. Trop. Subtrop. Agroecosys. 2010, 12, 321–332. [Google Scholar]
- Taghinejad-Roudbaneh, M.; Kazemi-Bonchenari, M.; Salem, A.Z.M.; Kholif, A.E. Influence of roasting, gamma ray irradiation and microwaving on ruminal dry matter and crude protein digestion of cotton seed. Ital. J. Anim. Sci. 2016, 15, 144–150. [Google Scholar] [CrossRef]
- Molosse, V.L.; Pereira, D.A.B.; Rigon, F.; Rigon, F.; Magnani, E.; Marcondes, M.I.; Arnandes, R.H.B.; Benedeti, P.D.B.; Paula, E.M. Use of heating methods and xylose to increase rumen undegradable protein of alternative protein sources: 2) Cotton seed meal. Animals 2023, 13, 41. [Google Scholar] [CrossRef]
- Golshan, S.; Pirmohammadi, R.; Khalilvandi-Behroozyar, H. Microwave irradiation of whole soybeans in ruminant nutrition: Protein and carbohydrate metabolism in vitro and in situ. Vet. Res. Forum 2019, 10, 343–350. [Google Scholar]
- Lashkari, S.; Azizi, O.; Jahani-Azizabadi, H. Effects of different processing methods of flaxseed on ruminal degradability and in vitro post-ruminal nutrient disappearance. Arch. Anim. Nutr. 2015, 69, 177–186. [Google Scholar] [CrossRef]
- Marounek, M.; Brezina, P. Heat-induced formation of soluble maillard reaction products and its influence on utilization of glucose by rumen bacteria. Archiv für Tierernaehrung 1993, 43, 45–51. [Google Scholar] [CrossRef]
- Kang, S.; Wanapat, M.; Pakdee, P.; Pilajun, R.; Cherdthong, A. Effects of energy level and Leucaena leucocephala leaf meal as a protein source on rumen fermentation efficiency and digestibility in swamp buffalo. Anim. Feed Sci. Technol. 2012, 174, 131–139. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Olubobokun, J.A.; Mustafa, A.; Cohen, R.D.H.; Christensen, D.A. Influence of dry heat treatment of canola meal on site and extent of nutrient disappearance in ruminants. Anim. Feed Sci. Technol. 1995, 56, 243–252. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Khol-Parisini, A.; Gruber, L.; Zebeli, Q. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing. J. Appl. Microbiol. 2015, 119, 1502–1514. [Google Scholar] [CrossRef]
- Gijzen, H.J.; Bernal, E.; Ferrer, H. Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Wat. Res. 2000, 34, 2447–2454. [Google Scholar] [CrossRef]
- Luque-Almagro, V.M.; Cabello, P.; Sáez, L.P.; Olaya-Abril, A.; Moreno-Vivián, C.; Roldán, M.D. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl. Microbiol. Biotechnol. 2018, 102, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Haro, A.N.; Carro, M.D.; De Evan, T.; González, J. Influence of feeding sunflower seed and meal protected against ruminal fermentation on ruminal fermentation, bacterial composition and in situ degradability in sheep. Arch. Anim. Nutr. 2020, 74, 380–396. [Google Scholar] [CrossRef]
- Wahle, K.W.J.; Heys, S.D.; Rotondo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 2004, 43, 553–587. [Google Scholar] [CrossRef]
- Siurana, A.; Ferret, A.; Rodriguez, M.; Vlaeminck, B.; Fievez, V.; Calsamiglia, S. Strategies to modify the ruminal biohydrogenation of polyunsaturated fatty acids and the production of trans-10, cis-12 C18:2 in vitro. Anim. Feed Sci. Tech. 2018, 235, 158–165. [Google Scholar] [CrossRef]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, A.; Samsudin, A.A.; Kaka, U. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 2019, 9, 400. [Google Scholar] [CrossRef]
- Gonthier, C.; Mustafa, A.; Ouellet, D.; Chouinard, P.; Berthiaume, R.; Petit, H. Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. J. Dairy Sci. 2005, 88, 748–756. [Google Scholar] [CrossRef]
- Panah, F.M.; Lashkari, S.; Jensen, S.K.; Weisbjerg, M.R. Effect of toasting and decortication of oat on rumen biohydrogenation and intestinal digestibility of fatty acids in dairy cows. J. Dairy Sci. 2020, 103, 8105–8118. [Google Scholar] [CrossRef]
- Lashkari, S.; Hymoller, L.; Jensen, S.K. Ruminal biohydrogenation kinetics of defatted flaxseed and sunflower is affected by heat treatment. J. Agric. Food Chem. 2017, 65, 8839–8846. [Google Scholar] [CrossRef]
- Wang, X.; Martin, G.B.; Wen, Q.; Liu, S.; Zhang, J.; Yu, Y.; Shi, B.; Guo, X.; Zhao, Y.; Yan, S. Linseed oil and heated linseed grain supplements have different effects on rumen bacterial community structures and fatty acid profiles in cashmere kids. J. Anim. Sci. 2019, 97, 2099–2113. [Google Scholar] [CrossRef]
- Gonthier, C.; Mustafa, A.F.; Berthiaume, R.; Petit, H.V.; Ouellet, D.R. Feeding micronized and extruded flaxseed to dairy cows: Effects on digestion and ruminal biohydrogenation of long-chain fatty acids. Can. J. Anim. Sci. 2004, 84, 705–711. [Google Scholar] [CrossRef]
- Kaleem, M.; Enjalbert, F.; Farizon, Y.; Meynadier, A. Feeding heat-oxidized oil to dairy cows affects milk fat nutritional quality. Animal 2018, 12, 183–188. [Google Scholar] [CrossRef]
- Kaleem, A.; Enjalbert, F.; Farizon, Y.; Troegeler-Meynadier, A. Effect of chemical form, heating, and oxidation products of linoleic acid on rumen bacterial population and activities of biohydrogenating enzymes. J. Dairy Sci. 2013, 96, 7167–7180. [Google Scholar] [CrossRef] [Green Version]
Item | Heat Methods 1 | ||||
---|---|---|---|---|---|
CON | RAWR | ROR | MIR | RHO | |
Diet ingredients, % of DM | |||||
Rice straw | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 |
Cassava chip | 24.1 | 24.1 | 24.1 | 24.1 | 24.1 |
Oil palm meal | 15.0 | 4.6 | 4.6 | 4.6 | 4.6 |
Soybean meal | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rubber seed kernel | 0.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Rice bran | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Urea | 2.4 | 2.8 | 2.8 | 2.8 | 2.8 |
Molasses | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Salt | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Sulfur | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral premix | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Chemical composition | |||||
Dry matter, % | 73.8 | 71.9 | 74.8 | 74.2 | 79.4 |
Organic matter, %DM | 91.9 | 92.8 | 92.8 | 90.9 | 92.8 |
Crude protein, %DM | 14.4 | 14.2 | 14.5 | 14.5 | 14.5 |
Ether extract, %DM | 5.9 | 10.6 | 10.7 | 10.5 | 10.4 |
Neutral detergent fiber, %DM | 42.3 | 41.7 | 40.3 | 37.9 | 38.6 |
Acid detergent fiber, %DM | 32.0 | 32.4 | 29.5 | 29.2 | 27.9 |
Ash, %DM | 8.1 | 7.2 | 7.2 | 7.1 | 7.2 |
Gross energy, kcal/kg DM | 4578.0 | 5325.0 | 5566.8 | 5325.6 | 5346.8 |
HCN, mg/kg 2 | 0.0 | 33.5 | 19.1 | 7.0 | 11.2 |
Total fatty acid, %DM | 1.9 | 8.8 | 8.7 | 8.4 | 8.4 |
Fatty acid, % of total fatty acid | |||||
C12:0 | 25.8 | 0.5 | 0.4 | 0.3 | 0.5 |
C14:0 | 9.4 | 0.3 | 0.2 | 0.1 | 0.3 |
C16:0 | 18.3 | 10.2 | 10.2 | 10.1 | 10.8 |
C16:1 cis-9 | 0.0 | 0.3 | 0.3 | 0.2 | 0.3 |
C17:0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 |
C18:0 | 4.0 | 6.5 | 7.0 | 6.7 | 7.1 |
C18:1 cis-9 + tran-9 | 25.7 | 23.8 | 24.1 | 23.9 | 25.0 |
C18:2 cis-9,12 + tran-9,12 | 15.2 | 38.0 | 38.1 | 39.0 | 37.6 |
C18:3 cis-9,12,15 | 1.6 | 19.6 | 19.1 | 19.1 | 17.7 |
C20:0 | 0.0 | 0.3 | 0.3 | 0.3 | 0.3 |
C20:1 cis-11 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 |
C22:1 cis-13 | 0.0 | 0.2 | 0.3 | 0.2 | 0.2 |
Item | Heating Methods 1 | |||
---|---|---|---|---|
RAWR | ROR | MIR | RHO | |
Chemical composition | ||||
Dry matter, % | 57.1 | 71.7 | 74.3 | 96.2 |
Organic matter, %DM | 97.6 | 97.8 | 97.5 | 97.5 |
Crude protein, %DM | 22.2 | 20.1 | 21.7 | 20.9 |
Ether extract, %DM | 37.3 | 38.0 | 36.4 | 33.4 |
Neutral detergent fiber, %DM | 30.4 | 32.1 | 34.1 | 31.3 |
Acid detergent fiber, %DM | 11.5 | 14.1 | 16.2 | 10.4 |
Ash, %DM | 2.4 | 2.2 | 2.5 | 2.5 |
Gross energy, kcal/kg DM | 7926.6 | 7919.2 | 7833.8 | 7986.7 |
HCN, mg/kg 2 | 213.6 | 79.0 | 80.4 | 61.3 |
Trypsin inhibitor, mg/g | ND | ND | ND | ND |
Total fatty acid, %DM | 41.8 | 44.2 | 45.1 | 40.1 |
Fatty acid, % of total fatty acid | ||||
C16:0 | 7.5 | 7.9 | 7.8 | 7.9 |
C16:1 cis-9 | 0.3 | 0.3 | 0.2 | 0.3 |
C17:0 | 0.04 | 0.03 | 0.04 | 0.05 |
C18:0 | 6.3 | 7.2 | 6.9 | 7.1 |
C18:1 cis-9 + tran-9 | 22.8 | 22.5 | 22.5 | 22.6 |
C18:2 cis-9,12 + tran-9,12 | 39.3 | 40.3 | 40.0 | 39.9 |
C18:3 cis-9,12,15 | 23.4 | 21.2 | 21.2 | 21.6 |
C20:0 | 0.2 | 0.2 | 0.2 | 0.3 |
C20:1 cis-11 | 0.1 | 0.1 | 0.1 | 0.1 |
C22:1 cis-13 | 0.2 | 0.2 | 0.2 | 0.2 |
Heat Methods 1 | Gas Kinetics 2 | Cumulative Gas (mL) | Degradability 3 (%) | ||||
---|---|---|---|---|---|---|---|
a | b | c | a + b | IVDMD | IVOMD | ||
CON | −6.6 a | 88.5 | 0.08 a | 81.9 | 86.5 | 55.8 | 59.7 |
RAWR | −6.9 a | 81.3 | 0.08 a | 74.4 | 76.3 | 56.1 | 58.0 |
ROR | −6.3 ab | 85.5 | 0.07 a | 79.3 | 81.2 | 56.2 | 59.0 |
MIR | −4.8 c | 81.2 | 0.06 b | 76.3 | 77.9 | 57.7 | 60.2 |
RHO | −5.6 bc | 78.8 | 0.06 b | 73.2 | 74.4 | 57.7 | 60.5 |
SEM | 0.28 | 3.52 | 0.002 | 3.40 | 4.10 | 0.97 | 0.80 |
Contrast | |||||||
CON vs. RAWR, ROR, MIR, RHO | 0.11 | 0.16 | 0.02 | 0.16 | 0.06 | 0.65 | 0.89 |
RAWR vs. ROR, MIR, RHO | <0.01 | 0.89 | <0.01 | 0.62 | 0.69 | 0.69 | 8.45 |
ROR vs. MIR | <0.01 | 0.39 | <0.01 | 0.52 | 0.49 | 0.64 | 0.65 |
ROR vs. RHO | 0.19 | 0.24 | <0.01 | 0.24 | 0.21 | 0.66 | 0.60 |
MIR vs. RHO | 0.13 | 0.66 | 0.62 | 0.53 | 0.49 | 0.99 | 0.91 |
Heat Methods 1 | pH | NH3-N, mg% | Microbial Population | |
---|---|---|---|---|
Bacteria, 109 Cells/mL | Protozoa, 105 Cells/mL | |||
CON | 6.7 | 19.7 a | 3.9 ab | 1.1 |
RAWR | 6.7 | 18.1 a | 3.4 a | 1.5 |
ROR | 6.7 | 15.8 b | 5.0 ab | 1.3 |
MIR | 6.7 | 15.2 b | 4.6 ab | 0.9 |
RHO | 6.6 | 13.5 b | 5.5 b | 1.1 |
SEM | 0.02 | 0.51 | 0.22 | 0.30 |
Contrast | ||||
CON vs. RAWR, ROR, MIR, RHO | 0.81 | 0.02 | 0.21 | 0.77 |
RAWR vs. ROR, MIR, RHO | 0.95 | 0.04 | 0.02 | 0.13 |
ROR vs. MIR | 0.97 | 0.72 | 0.55 | 0.21 |
ROR vs. RHO | 0.32 | 0.24 | 0.53 | 0.66 |
MIR vs. RHO | 0.32 | 0.37 | 0.23 | 0.39 |
Heat Methods 1 | Total VFA (mmol/L) | VFA (mol/100 mol) 2 | C2:C3 | |||||
---|---|---|---|---|---|---|---|---|
C2 | C3 | C4 | i-C4 | C5 | i-C5 | |||
CON | 50.9 | 63.1 | 16.5 | 17.4 | 0.9 | 0.9 | 1.3 a | 3.9 |
RAWR | 57.2 | 62.2 | 17.8 | 17.3 | 0.8 | 0.9 | 1.1 ab | 3.5 |
ROR | 57.4 | 64.3 | 17.1 | 16.3 | 0.7 | 0.8 | 0.9 ab | 3.8 |
MIR | 53.6 | 60.5 | 18.5 | 18.5 | 0.8 | 0.8 | 1.0 ab | 3.3 |
RHO | 58.7 | 64.7 | 18.4 | 14.9 | 0.6 | 0.7 | 0.7 b | 3.7 |
SEM | 2.44 | 0.95 | 0.38 | 0.53 | 0.02 | 0.03 | 0.06 | 0.14 |
Contrast | ||||||||
CON vs. RAWR, ROR, MIR, RHO | 0.36 | 0.93 | 0.14 | 0.61 | 0.07 | 0.24 | 0.03 | 0.39 |
RAWR vs. ROR, MIR, RHO | 0.92 | 0.71 | 0.86 | 0.59 | 0.28 | 0.13 | 0.23 | 0.89 |
ROR vs. MIR | 0.63 | 0.23 | 0.24 | 0.21 | 0.76 | 0.79 | 0.80 | 0.26 |
ROR vs. RHO | 0.86 | 0.89 | 0.28 | 0.43 | 0.25 | 0.31 | 0.33 | 0.74 |
MIR vs. RHO | 0.52 | 0.18 | 0.91 | 0.06 | 0.15 | 0.21 | 0.23 | 0.42 |
Items | Heat Methods 1 | SEM | Contrast | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | RAWR | ROR | MIR | RHO | CON vs. RAWR, ROR, MIR, RHO | RAWR vs. ROR, MIR, RHO | ROR vs. MIR | ROR vs. RHO | MIR vs. RHO | ||
Fatty Acid, % of Total Fatty Acid | |||||||||||
C6:0 | 4.5 a | 6.1 bc | 7.2 c | 4.3 a | 3.2 a | 0.35 | 0.32 | 0.10 | <0.01 | <0.01 | 0.28 |
C8:0 | 3.5 | 3.4 | 3.3 | 2.7 | 2.6 | 0.41 | 0.13 | 0.10 | 0.19 | 0.10 | 0.82 |
C10:0 | 2.6 | 2.5 | 2.4 | 1.9 | 1.9 | 0.30 | 0.13 | 0.08 | 0.16 | 0.08 | 0.81 |
C12:0 | 2.6 | 2.8 | 2.8 | 2.7 | 2.3 | 0.21 | 0.70 | 0.49 | 0.64 | 0.13 | 0.34 |
C13:0 | 0.1 a | 0.4 b | 0.4 b | 0.5 b | 0.5 b | 0.04 | <0.01 | 0.45 | 0.72 | 0.52 | 0.80 |
C14:0 | 5.3 a | 6.9 b | 6.8 b | 5.7 ab | 4.8 a | 0.17 | 0.14 | 0.04 | 0.10 | <0.01 | 0.14 |
C15:0 | 1.1 a | 1.7 b | 1.7 b | 1.6 b | 1.9 c | 0.03 | <0.01 | 0.32 | 0.52 | 0.03 | 0.01 |
C16:0 | 38.9 a | 1.4 b | 1.4 b | 1.6 b | 1.6 b | 0.12 | <0.01 | 0.18 | 0.53 | 0.30 | 0.54 |
C17:0 | 0.3 a | 0.9 b | 0.9 b | 0.9 b | 0.9 b | 0.04 | <0.01 | 0.56 | 0.92 | 0.83 | 0.77 |
C18:0 | 44.8 a | 64.0 b | 64.5 b | 67.1 b | 66.4 b | 1.45 | <0.01 | 0.66 | 0.48 | 0.53 | 0.89 |
C20:0 | 0.0 a | 1.0 b | 1.0 b | 1.0 b | 1.0 b | 0.03 | <0.01 | 0.57 | 0.58 | 0.24 | 0.12 |
C14:1 cis-9 | 1.1 | 1.1 | 1.0 | 1.4 | 1.1 | 0.15 | 0.69 | 0.73 | 0.29 | 0.74 | 0.44 |
C16:1 cis-9 | 1.1 a | 0.7 b | 0.5 c | 0.4 c | 0.6 c | 0.04 | <0.01 | 0.03 | 0.82 | 0.37 | 0.30 |
C18:1 cis-9 + tran-9 | 2.2 a | 4.0 b | 4.3 bc | 4.7 bc | 4.9 c | 0.17 | <0.01 | 0.05 | 0.29 | 0.11 | 0.66 |
C18:2 cis-9,12 + tran-9,12 | 1.3 a | 2.5 b | 2.4 b | 2.3 b | 2.5 b | 0.14 | <0.01 | 0.08 | 0.71 | 0.69 | 0.47 |
C18:3 cis- 9,12,15 | 0.2 a | 1.3 ab | 1.4 ab | 2.1 bc | 2.8 c | 0.17 | <0.01 | 0.09 | 0.25 | 0.03 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunun, N.; Wanapat, M.; Kaewpila, C.; Khota, W.; Polyorach, S.; Cherdthong, A.; Suwannasing, R.; Patarapreecha, P.; Kesorn, P.; Intarapanich, P.; et al. Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. Fermentation 2023, 9, 143. https://doi.org/10.3390/fermentation9020143
Gunun N, Wanapat M, Kaewpila C, Khota W, Polyorach S, Cherdthong A, Suwannasing R, Patarapreecha P, Kesorn P, Intarapanich P, et al. Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. Fermentation. 2023; 9(2):143. https://doi.org/10.3390/fermentation9020143
Chicago/Turabian StyleGunun, Nirawan, Metha Wanapat, Chatchai Kaewpila, Waroon Khota, Sineenart Polyorach, Anusorn Cherdthong, Rattikan Suwannasing, Pairote Patarapreecha, Piyawit Kesorn, Piyawan Intarapanich, and et al. 2023. "Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation" Fermentation 9, no. 2: 143. https://doi.org/10.3390/fermentation9020143
APA StyleGunun, N., Wanapat, M., Kaewpila, C., Khota, W., Polyorach, S., Cherdthong, A., Suwannasing, R., Patarapreecha, P., Kesorn, P., Intarapanich, P., Viriyawattana, N., & Gunun, P. (2023). Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. Fermentation, 9(2), 143. https://doi.org/10.3390/fermentation9020143