In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Variable | 3 h | 6 h | 12 h | 24 h | pH * | ME * | DOM * | CO2 * | CH4 * |
---|---|---|---|---|---|---|---|---|---|
Sunflower meal | 14.00 a | 30.33 a | 38.38 a | 50.00 ab | 6.81 a | 10.56 a | 69.85 b | 44.41 bc | 26.36 c |
Soybean meal | 14.50 a | 28.17 ab | 35.84 a | 51.83 a | 6.83 a | 10.89 a | 72.05 a | 44.60 bc | 24.46 c |
Alfalfa hay | 14.50 a | 26.00 b | 37.67 a | 47.83 bc | 6.77 a | 10.16 a | 67.09 ab | 56.76 a | 29.48 a |
S. platensis | 7.83 b | 28.50 ab | 34.09 ab | 41.00 e | 6.37 b | 7.77 c | 61.07 d | 46.94 b | 26.76 b |
C. vulgaris | 16.67 a | 29.57 a | 37.78 a | 44.50 c | 6.50 b | 9.99 b | 65.71 c | 44.68 bc | 24.38 c |
Schizochytrium spp. | 6.08 b | 14.75 c | 29.20 b | 37.17 d | 6.47 b | 9.83 b | 51.73 e | 42.62 c | 22.81 d |
Monensin | 0.50 c | 6.67 d | 12.25 c | 18.27 f | 6.95 a | - | - | 42.52 c | 20.72 e |
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 163. ISBN 1815-6797. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Efroymson, R.A.; Dale, V.H.; Langholtz, M.H. Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. GCB Bioenergy 2017, 9, 1005–1023. [Google Scholar] [CrossRef]
- Van Krimpen, M.M.; Bikker, P.; Van der Meer, I.M.; Van der Peet-Schwering, C.M.C.; Vereijken, J.M. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2013. [Google Scholar]
- Ferreira de Oliveira, A.P.; Bragotto, A.P.A. Microalgae-based products: Food and public health. Futur. Foods 2022, 6, 100157. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nevel, C.J. Control of rumen methanogenesis. Environ. Monit. Assess. 1996, 42, 73–97. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byers, F.M. Determining Effects of Monensin on Energy Value of Corn Silage Diets for Beef Cattle by Linear or Semi-log Methodsle. J. Anim. Sci. 1980, 51, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Albrecht, G.L.; Tedeschi, L.O.; Jarvis, G.; Russell, J.B.; Fox, D.G. Effect of monensin on the performance and nitrogen utilization of lactating dairy cows consuming fresh forage. J. Dairy Sci. 2001, 84, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Ranga Niroshan Appuhamy, J.A.D.; Strathe, A.B.; Jayasundara, S.; Wagner-Riddle, C.; Dijkstra, J.; France, J.; Kebreab, E. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 2013, 96, 5161–5173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaway, T.R.; Edrington, T.S.; Rychlik, J.L.; Genovese, K.J.; Poole, T.L.; Jung, Y.S.; Bischoff, K.M.; Anderson, R.C.; Nisbet, D.J. Ionophores: Their use as ruminant growth promotants and impact on food safety. Curr. Issues Intest. Microbiol. 2003, 4, 43–51. [Google Scholar]
- McGuffey, R.K.; Richardson, L.F.; Wilkinson, J.I.D. Ionophores for Dairy Cattle: Current Status and Future Outlook. J. Dairy Sci. 2001, 84, E194–E203. [Google Scholar] [CrossRef]
- Rogers, J.A.; Davis, C.L. Rumen Volatile Fatty Acid Production and Nutrient Utilization in Steers Fed a Diet Supplemented with Sodium Bicarbonate and Monensin. J. Dairy Sci. 1982, 65, 944–952. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Amábile-Cuevas, C.F.; Cárdenas-García, M.; Ludgar, M. Much faster than ways to control resistance. Am. Sci. 1995, 83, 320–329. [Google Scholar]
- Donovan, D.C.; Franklin, S.T.; Chase, C.C.L.; Hippen, A.R. Growth and health of Holstein calves fed milk replacers supplemented with antibiotics or enteroguard. J. Dairy Sci. 2002, 85, 947–950. [Google Scholar] [CrossRef]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Andrade, L.M. Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ Food Process. Technol. 2018, 6, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Tsiplakou, E.; Abdullah, M.A.M.; Mavrommatis, A.; Chatzikonstantinou, M.; Skliros, D.; Sotirakoglou, K.; Flemetakis, E.; Labrou, N.E.; Zervas, G. The effect of dietary Chlorella vulgaris inclusion on goat’s milk chemical composition, fatty acids profile and enzymes activities related to oxidation. J. Anim. Physiol. Anim. Nutr. 2018, 102, 142–151. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Skliros, D.; Sotirakoglou, K.; Flemetakis, E.; Tsiplakou, E. The effect of forage-to-concentrate ratio on schizochytrium spp.-supplemented goats: Modifying rumen microbiota. Animals 2021, 11, 2746. [Google Scholar] [CrossRef]
- Meehan, D.J.; Cabrita, A.R.J.; Silva, J.L.; Fonseca, A.J.M.; Maia, M.R.G. Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation. Algal Res. 2021, 56, 102284. [Google Scholar] [CrossRef]
- Fievez, V.; Boeckaert, C.; Vlaeminck, B.; Mestdagh, J.; Demeyer, D. In vitro examination of DHA-edible micro-algae. 2. Effect on rumen methane production and apparent degradability of hay. Anim. Feed Sci. Technol. 2007, 136, 80–95. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Fievez, V.; Mao, S.; He, W.; Zhu, W. Dose and time response of ruminally infused algae on rumen fermentation characteristics, biohydrogenation and Butyrivibrio group bacteria in goats. J. Anim. Sci. Biotechnol. 2016, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Neto, G.B.; Berndt, A.; Nogueira, J.R.; Demarchi, J.J.A.A.; Nogueira, J.C. Monensin and protein supplements on methane production and rumen protozoa in bovine fed low quality forage. S. Afr. J. Anim. Sci. 2009, 39, 280–283. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Method of Analysis Association of Official Analytical Chemists, 15th ed.; AOAC International Publisher: Washington, DC, USA, 1990; Volume 15, ISBN 9780203495728. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Menke, H.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Fievez, V.; Babayemi, O.J.; Demeyer, D. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 2005, 123–124, 197–210. [Google Scholar] [CrossRef]
- Hutton, P.; Nagaraja, T.G.; White, C.L.; Vercoe, P. In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear and related methodologies. In Screening Plants for the Antimicrobial Control of Lactic Acidosis in Ruminant Livestock. Meeting on the Alternative Feed Resources—A Key Livestock Intensification in Developing Countries; Vercoe, P.E., Makkar, H.P.S., Schlink, A.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 159–189. [Google Scholar]
- SAS. Statistical Analysis System User's Guide Statistical Version, 8th ed.; Analysis System, V. 9. SAS; SAS Institute: Cary, SC, USA, 2003. [Google Scholar]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Sotira, S.; Rebucci, R.; Reggi, S.; Castiglioni, B.; Rossi, L. In vitro evaluation of antimicrobial and antioxidant activities of algal extracts. Ital. J. Anim. Sci. 2020, 19, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Elghandour, M.M.Y.; Vallejo, L.H.; Salem, A.Z.M.; Salem, M.Z.M.; Camacho, L.M.; Buendía, R.G.; Odongo, N.E. Effects of Schizochytrium microalgae and sunflower oil as sources of unsaturated fatty acids for the sustainable mitigation of ruminal biogases methane and carbon dioxide. J. Clean. Prod. 2017, 168, 1389–1397. [Google Scholar] [CrossRef]
- Ahmed, M.G.; Al-Sagheer, A.A.; El-Zarkouny, S.Z.; Elwakeel, E.A. Potential of selected plant extracts to control severe subacute ruminal acidosis in vitro as compared with monensin. BMC Vet. Res. 2022, 18, 356. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Taylor, M.B.; Harmon, D.L.; Boyer, J.E. In vitro lactic acid inhibition and alterations in volatile fatty acid production by antimicrobial feed additives. J. Anim. Sci. 1987, 65, 1064–1076. [Google Scholar] [CrossRef] [Green Version]
- Boeckaert, C.; Vlaeminck, B.; Dijkstra, J.; Issa-Zacharia, A.; Van Nespen, T.; Van Straalen, W.; Fievez, V. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J. Dairy Sci. 2008, 91, 4714–4727. [Google Scholar] [CrossRef] [Green Version]
- Fievez, V.; Dohme, F.; Danneels, M.; Raes, K.; Demeyer, D. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim. Feed Sci. Technol. 2003, 104, 41–58. [Google Scholar] [CrossRef]
- Han, K.J.; McCormick, M.E. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J. Anim. Sci. Biotechnol. 2014, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Dubois, B.; Tomkins, N.W.; Kinley, R.D.; Bai, M.; Seymour, S.; Paul, N.A.; de Nys, R. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am. J. Plant. Sci. 2013, 4, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Kiani, A.; Wolf, C.; Giller, K.; Eggerschwiler, L.; Kreuzer, M.; Schwarm, A. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Can. J. Anim. Sci. 2020, 100, 485–493. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Chaves, A.V.; Thompson, L.C.; Iwaasa, A.D.; Scott, S.L.; Olson, M.E.; Benchaar, C.; Veira, D.M.; McAllister, T.A. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci. 2006, 86, 409–418. [Google Scholar] [CrossRef]
- Archimède, H.; Eugène, M.; Marie Magdeleine, C.; Boval, M.; Martin, C.; Morgavi, D.P.; Lecomte, P.; Doreau, M. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 2011, 166–167, 59–64. [Google Scholar] [CrossRef]
- Gerald, T. Schelling Monensin Mode of Action in the Rumen. J. Anim. Sci. 1984, 58, 1518–1527. [Google Scholar]
- Doreau, M.; Ferlay, A. Effect of dietary lipids on nitrogen metabolism in the rumen: A review. Livest. Prod. Sci. 1995, 43, 97–110. [Google Scholar] [CrossRef]
- Boeckaert, C.; Vlaeminck, B.; Mestdagh, J.; Fievez, V. In vitro examination of DHA-edible micro algae. 1. Effect on rumen lipolysis and biohydrogenation of linoleic and linolenic acids. Anim. Feed Sci. Technol. 2007, 136, 63–79. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Morsy, T.A.; Matloup, O.H.; Anele, U.Y.; Mohamed, A.G.; El-Sayed, A.B. Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci. 2017, 155, 508–518. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Abdullah, M.A.M.; Skliros, D.; Chatzikonstantinou, M.; Flemetakis, E.; Labrou, N.; Zervas, G. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr. 2017, 101, 275–283. [Google Scholar] [CrossRef]
- Mickdam, E.; Khiaosa-ard, R.; Metzler-Zebeli, B.U.; Klevenhusen, F.; Chizzola, R.; Zebeli, Q. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro. Anaerobe 2016, 39, 4–13. [Google Scholar] [CrossRef]
- Yadeghari, S.; Malecky, M.; Banadaky, M.D.; Navidshad, B. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. Vet. Res. Forum 2015, 6, 285. [Google Scholar]
- Molina-Alcaide, E.; Carro, M.D.; Roleda, M.Y.; Weisbjerg, M.R.; Lind, V.; Novoa-Garrido, M. In vitro ruminal fermentation and methane production of different seaweed species. Anim. Feed Sci. Technol. 2017, 228, 1–12. [Google Scholar] [CrossRef] [Green Version]
- De la Moneda, A.; Carro, M.D.; Weisbjerg, M.R.; Roleda, M.Y.; Lind, V.; Novoa-Garrido, M.; Molina-Alcaide, E. Variability and potential of seaweeds as ingredients of ruminant diets: An in vitro study. Animals 2019, 9, 851. [Google Scholar] [CrossRef] [Green Version]
Variable | DM | OM | NDF | ADF | CP | EE | CA |
---|---|---|---|---|---|---|---|
Sunflower meal | 92.06 | 86.15 | 37.24 | 31.22 | 35.43 | 0.97 | 6.42 |
Soybean meal | 89.48 | 82.96 | 13.57 | 5.94 | 48.20 | 1.34 | 6.52 |
Alfalfa hay | 89.46 | 81.79 | 44.37 | 32.32 | 16.37 | 1.54 | 9.33 |
S. platensis | 93.61 | 85.24 | 18.80 | 6.40 | 61.97 | 5.20 | 8.37 |
C. vulgaris | 94.93 | 85.80 | 20.50 | 11.40 | 51.77 | 17.20 | 9.13 |
Schizochytrium spp. | 94.17 | 87.67 | 22.73 | 12.21 | 18.00 | 45.50 | 6.50 |
Variable | C2 | C3 | C4 | TVFA | C2:C3 |
---|---|---|---|---|---|
Sunflower meal | 56.33 a | 21.67 ab | 7.22 f | 104.62 a | 2.61 bc |
Soybean meal | 50.47 bc | 19.60 bc | 8.26 e | 98.48 b | 2.58 bc |
Alfalfa hay | 47.64 d | 15.97 d | 19.30 a | 98.10 b | 2.99 a |
S. platensis | 52.30 b | 18.97 c | 10.70 bc | 94.39 c | 2.76 ab |
C. vulgaris | 46.97 d | 21.17 abc | 9.23 d | 91.77 d | 2.22 d |
Schizochytrium spp. | 48.07 cd | 19.60 bc | 10.50 c | 92.97 d | 2.46 cd |
Monensin | 43.43 e | 22.88 a | 11.44 b | 83.75 e | 1.90 e |
GP | pH | |
---|---|---|
Control | 37.46 c | 5.75 a |
Acidosis | 43.83 a | 4.81 d |
Monensin-controlled acidosis | 38.60 bc | 5.44 b |
Algae-controlled acidosis | ||
S. platensis | 39.19 bc | 4.94 cd |
C. vulgaris | 40.17 b | 5.14 c |
Schizochytrium spp. | 39.57 bc | 5.11 c |
SD | 0.94 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sucu, E. In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows. Fermentation 2023, 9, 229. https://doi.org/10.3390/fermentation9030229
Sucu E. In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows. Fermentation. 2023; 9(3):229. https://doi.org/10.3390/fermentation9030229
Chicago/Turabian StyleSucu, Ekin. 2023. "In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows" Fermentation 9, no. 3: 229. https://doi.org/10.3390/fermentation9030229
APA StyleSucu, E. (2023). In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows. Fermentation, 9(3), 229. https://doi.org/10.3390/fermentation9030229