Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Analytical Procedure
DNA Extraction, Sequencing, and Sequence Processing
2.4. Performance Indicators
2.4.1. Volatile Solids Removal (%VSR)
2.4.2. Synergistic Effects
2.4.3. Kinetics model Application
3. Results
3.1. Substrate Characteristics
3.2. Biomethane Production
3.2.1. Mono-Substrate Digestion
3.2.2. Co-Digestion Mixtures
3.2.3. Synergistic Effect during Anaerobic Co-Digestion
3.2.4. Total VFA (TVFA) to TA Ratio, pH, and TAN
3.2.5. Kinetics Model Result and Comparison
3.3. Microbial Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devaraj, T.; Mani, Y.; Aathika, S.; Palaniyandi, S.; Gurunathan, B.; Subramanian, S. Biogas production potential in India, the latest biogas upgradation techniques and future application in a fuel cell. In Biofuels and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–231. [Google Scholar]
- Ara, E.; Sartaj, M.; Kennedy, K. Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate. Waste Manag. Res. 2015, 33, 578–587. [Google Scholar] [CrossRef]
- Salehiyoun, A.R.; Di Maria, F.; Sharifi, M.; Norouzi, O.; Zilouei, H.; Aghbashlo, M. Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters. Renew. Energy 2020, 145, 2503–2509. [Google Scholar] [CrossRef]
- Lopes, A.D.; Ebner, C.; Gerke, F.; Wehner, M.; Robra, S.; Hupfauf, S.; Bockreis, A. Residual municipal solid waste as co-substrate at wastewater treatment plants: An assessment of methane yield, dewatering potential and microbial diversity. Sci. Total Environ. 2022, 804, 149936. [Google Scholar] [CrossRef] [PubMed]
- Girault, R.; Bridoux, G.; Nauleau, F.; Poullain, C.; Buffet, J.; Peu, P.; Sadowski, A.G.; Béline, F. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: Batch versus CSTR experiments to investigate optimal design. Bioresour. Technol. 2012, 105, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, W.L.; Chong, S.; Lim, J.W.; Chan, Y.J.; Chong, M.F.; Tiong, T.J.; Chin, J.K.; Pan, G.T. Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: Case study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Alqaralleh, R.M.; Kennedy, K.; Delatolla, R.; Sartaj, M. Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: Evaluating and modeling methane production. J. Environ. Manag. 2016, 183, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Al bkoor Alrawashdeh, K.; Pugliese, A.; Slopiecka, K.; Pistolesi, V.; Massoli, S.; Bartocci, P.; Bidini, G.; Fantozzi, F. Codigestion of untreated and treated sewage sludge with the organic fraction of municipal solid wastes. Fermentation 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Abdulazeez, M.; Haroun, B.M.; Nakhla, G.; Keleman, M. Microbial communities in co-digestion of food wastes and wastewater biosolids. Bioresour. Technol. 2019, 289, 121580. [Google Scholar] [CrossRef]
- Wang, B.; Ma, J.; Zhang, L.; Su, Y.; Xie, Y.; Ahmad, Z.; Xie, B. The synergistic strategy and microbial ecology of the anaerobic co-digestion of food waste under the regulation of domestic garbage classification in China. Sci. Total Environ. 2021, 765, 144632. [Google Scholar] [CrossRef]
- Sedighi, A.; Karrabi, M.; Shahnavaz, B.; Mostafavinezhad, M. Bioenergy production from the organic fraction of municipal solid waste and sewage sludge using mesophilic anaerobic co-digestion: An experimental and kinetic modeling study. Renew. Sustain. Energy Rev. 2022, 153, 111797. [Google Scholar] [CrossRef]
- Borowski, S. Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge. J. Environ. Manag. 2015, 147, 87. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, P.; Wieczorek, A.; Ledakowicz, S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv. Environ. Res. 2003, 7, 609–616. [Google Scholar] [CrossRef]
- Elsayed, M.; Diab, A.; Soliman, M. Methane production from anaerobic co-digestion of sludge with fruit and vegetable wastes: Effect of mixing ratio and inoculum type. Biomass Convers. Biorefinery 2021, 11, 989–998. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, Y.; Liu, M.; Bin, S.; Liu, Y.; Huan, C.; Ji, G.; Wang, X.; Yan, Z.; Lyu, Q. Study on anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: Methane production, microbial community and three-dimension fluorescence excitation-emission matrix analysis. Bioresour. Technol. 2022, 347, 126748. [Google Scholar] [CrossRef] [PubMed]
- Piekutin, J.; Puchlik, M.; Haczykowski, M.; Dyczewska, K. The efficiency of the biogas plant operation depending on the substrate used. Energies 2021, 14, 3157. [Google Scholar] [CrossRef]
- Berenjkar, P.; Islam, M.; Yuan, Q. Co-treatment of sewage sludge and mature landfill leachate by anaerobic digestion. Int. J. Environ. Sci. Technol. 2019, 16, 2465–2474. [Google Scholar] [CrossRef]
- Grosser, A. Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy 2018, 143, 488–499. [Google Scholar] [CrossRef]
- Shakourifar, N.; Krisa, D.; Eskicioglu, C. Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination. Renew. Energy 2020, 154, 117. [Google Scholar] [CrossRef]
- Hao, J.; Francis, L., III; He, X. Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge. J. Environ. Manag. 2020, 268, 110708. [Google Scholar] [CrossRef]
- Salama, E.S.; Saha, S.; Kurade, M.B.; Dev, S.; Chang, S.W.; Jeon, B.H. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Prog. Energy Combust. Sci. 2019, 70, 22–42. [Google Scholar] [CrossRef]
- Alves, I.R.; Mahler, C.F.; Oliveira, L.B.; Reis, M.M.; Bassin, J.P. Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures. Energy 2022, 241, 122818. [Google Scholar] [CrossRef]
- Ferreira, J.S.; Volschan, I., Jr.; Cammarota, M.C. Enhanced biogas production in pilot digesters treating a mixture of sewage sludge, glycerol, and food waste. Energy Fuels 2018, 32, 6839–6846. [Google Scholar] [CrossRef]
- Abomohra, A.E.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; Rice, E.W., Ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Clarke, E.L.; Taylor, L.J.; Zhao, C.; Connell, A.; Lee, J.J.; Fett, B.; Bushman, F.D.; Bittinger, K. Sunbeam: An extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Aromolaran, A.; Sartaj, M. Enhancing biogas production from municipal solid waste through recirculation of blended leachate in simulated bioreactor landfills. Biomass Convers. Biorefinery 2021, 13, 2797–2812. [Google Scholar] [CrossRef]
- Brown, A.M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Methods Programs Biomed. 2001, 65, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, G.; Rodríguez-Abalde, A.; Fernández, B.; Flotats, X.; Bonmatí, A. Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour. Technol. 2011, 102, 6830–6836. [Google Scholar] [CrossRef] [PubMed]
- Ponsá, S.; Gea, T.; Sánchez, A. Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst. Eng. 2011, 108, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lv, C.; Tong, J.; Liu, J.; Liu, J.; Yu, D.; Wang, Y.; Chen, M.; Wei, Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 2016, 200, 253–261. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, S.H. Minimization of diauxic growth lag-phase for high-efficiency biogas production. J. Environ. Manag. 2017, 187, 456–463. [Google Scholar] [CrossRef]
- Xie, T.; Xie, S.; Sivakumar, M.; Nghiem, L.D. Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. Int. Biodeterior. Biodegrad. 2017, 124, 155–161. [Google Scholar] [CrossRef]
- Luostarinen, S.; Luste, S.; Sillanpää, M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour. Technol. 2009, 100, 79–85. [Google Scholar] [CrossRef]
- Feng, L.; Li, Y.; Chen, C.; Liu, X.; Xiao, X.; Ma, X.; Zhang, R.; He, Y.; Liu, G. Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. Bioresources 2013, 8, 2487–2498. [Google Scholar] [CrossRef]
- Li, L.; He, Q.; Wei, Y.; He, Q.; Peng, X. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste. Bioresour. Technol. 2014, 171, 491–494. [Google Scholar] [CrossRef]
- Akindele, A.A.; Sartaj, M. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste. Waste Manag. 2018, 71, 757–766. [Google Scholar] [CrossRef]
- Metcalf, E.; Eddy, H. Wastewater Engineering: Treatment and Reuse; MacGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Witharana, A.; Manatunge, J.; Ratnayake, N.; Nanayakkara, C.M.; Jayaweera, M. Rapid degradation of FOG discharged from food industry wastewater by lipolytic fungi as a bioaugmentation application. Environ. Technol. 2018, 39, 2062–2072. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Thakur, N.; El-Dalatony, M.M.; Salama, E.S.; Li, X. Protein biomethanation: Insight into the microbial nexus. Trends Microbiol. 2022, 30, 69–78. [Google Scholar] [CrossRef]
- Lebiocka, M.; Montusiewicz, A.; Cydzik-Kwiatkowska, A. Effect of bioaugmentation on biogas yields and kinetics in anaerobic digestion of sewage sludge. Int. J. Environ. Res. Public Health 2018, 15, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, B.S.; Wang, X.C. High-rate mesophilic co-digestion with food waste and waste activated sludge through a low-magnitude increasing loading regime: Performance and microorganism characteristics. Sci. Total Environ. 2021, 777, 146210. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, M.; Yang, S.; Gong, H.; Ma, J.; Li, C.; Wang, K. Performance and microbial community evaluation of full-scale two-phase anaerobic digestion of waste activated sludge. Sci. Total Environ. 2022, 814, 152525. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y.; Ndegwa, P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renew. Sustain. Energy Rev. 2021, 135, 110212. [Google Scholar] [CrossRef]
- Saha, S.; Jeon, B.H.; Kurade, M.B.; Chatterjee, P.K.; Chang, S.W.; Markkandan, K.; Salama, E.S.; Govindwar, S.P.; Roh, H.S. Microbial acclimatization to lipidic-waste facilitates the efficacy of acidogenic fermentation. Chem. Eng. J. 2019, 358, 188–196. [Google Scholar] [CrossRef]
- Yang, S.; Xue, W.; Liu, P.; Lu, X.; Wu, X.; Sun, L.; Zan, F. Revealing the methanogenic pathways for anaerobic digestion of key components in food waste: Performance, microbial community, and implications. Bioresour. Technol. 2022, 347, 126340. [Google Scholar] [CrossRef]
- Arelli, V.; Mamindlapelli, N.K.; Begum, S.; Juntupally, S.; Anupoju, G.R. Solid state anaerobic digestion of food waste and sewage sludge: Impact of mixing ratios and temperature on microbial diversity, reactor stability and methane yield. Sci. Total Environ. 2021, 793, 148586. [Google Scholar] [CrossRef]
Sample 1 | Inoculum (mL) | SS (g) | TWAS (mL) | OFMSW (g) | ISR 2 | Initial VS (g) |
---|---|---|---|---|---|---|
Mono-Digestion | ||||||
SS | 205 | 3.5 | 0.0 | 0.0 | 2 | 4.83 |
TWAS | 205 | 0.0 | 62.6 | 0.0 | 2 | 4.83 |
OFMSW | 205 | 0.0 | 0.0 | 38.1 | 2 | 4.83 |
Inoculum | 205 | 0.0 | 0.0 | 0.0 | - | 3.22 |
Trinary Co-Digestion | ||||||
20%SS + 10%TWAS + 70%OFMSW | 205 | 0.7 | 6.3 | 26.7 | 2 | 4.83 |
20%SS + 30%TWAS + 50%OFMSW | 205 | 0.7 | 18.8 | 19.1 | 2 | 4.83 |
20%SS + 50%TWAS + 30%OFMSW | 205 | 0.7 | 31.3 | 11.4 | 2 | 4.83 |
20%SS + 70%TWAS + 10%OFMSW | 205 | 0.7 | 43.8 | 3.8 | 2 | 4.83 |
40%SS + 10%TWAS + 50%OFMSW | 205 | 1.4 | 6.3 | 19.1 | 2 | 4.83 |
40%SS + 30%TWAS + 30%OFMSW | 205 | 1.4 | 18.8 | 11.4 | 2 | 4.83 |
40%SS + 50%TWAS + 10%OFMSW | 205 | 1.4 | 31.3 | 3.8 | 2 | 4.83 |
Parameter | TWAS | OFMSW | Sewage Scum | Inoculum |
---|---|---|---|---|
COD (mg L−1) | 66,950 ± 450 | 42,400 ± 100 | 28,965 ± 935 | 21,600 ± 100 |
pH | 5.7 ± 0.02 | 5.0 ± 0.0 | 4.8 ± 0.03 | 7.7 ± 0.02 |
TAN (mg L−1) | 215 ± 3 | 74 ± 2.65 | 93.8 ± 0.4 | 1320 ± 3 |
VFA (mg L−1) | 5670 ± 30 | 16,100 ± 201 | 11,835 ± 45 | 257 ± 10 |
Alkalinity (mg CaCO3 L−1) | 4475 ± 55 | 3195 ± 55 | 1515 ± 95 | 7330 ± 42 |
TS (g kg−1) | 33.2 ± 0.19 | 51.65 ± 4.82 | 462.3 ± 19.5 | 23.17 ± 0.74 |
VS (g kg−1) | 25.66 ± 0.15 | 42.17 ± 4.59 | 453.5 ± 19.9 | 15.7 ± 0.02 |
VS/TS | 0.77 ± 0.01 | 0.82 ± 0.02 | 0.98 ± 0.00 | 0.68 ± 0.01 |
Substrate | Net CMP (mL) | Net CMY (mL gVS−1) | CYcalculated (mL/gVS) | % Increase (Net CMY − CY)/(CY) × 100 | α | Average %CH4 | VSR (%) |
---|---|---|---|---|---|---|---|
SS | 1006.3 | 625.0 | 625.0 | - | - | 61.5 | 35.3 |
TWAS | 297.2 | 184.6 | 184.6 | - | - | 54.4 | 34.4 |
OFMSW | 406.3 | 252.3 | 252.3 | - | - | 51.8 | 40.4 |
20%SS + 10%TWAS + 70%OFMSW | 539.8 | 335.3 | 320.1 | 4.7 | 1.05 | 51.3 | 46.1 |
20%SS + 30%TWAS + 50%OFMSW | 411.5 | 255.6 | 306.6 | −16.6 | 0.83 | 56.9 | 33.5 |
20%SS + 50%TWAS + 30%OFMSW | 566.1 | 351.6 | 293.0 | 20.0 | 1.20 | 56.8 | 36.9 |
20%SS + 70%TWAS + 10%OFMSW | 393.6 | 244.5 | 279.5 | −12.5 | 0.87 | 56.6 | 34.9 |
40%SS + 10%TWAS + 50%OFMSW | 657.5 | 408.4 | 376.2 | 8.6 | 1.09 | 58.8 | 35.6 |
40%SS + 30%TWAS + 30%OFMSW | 602.1 | 374.0 | 381.1 | −1.9 | 0.98 | 56.5 | 29.9 |
40%SS + 50%TWAS + 10%OFMSW | 573.8 | 356.4 | 367.5 | −3.0 | 0.97 | 55.7 | 29.3 |
Sample | Measured CH4 | First Order Model | Modified Gompertz Model | Logistic Function | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
βo | k | R2 | ∆ | βo | Rm | λ | R2 | ∆ | βo | Rm | λ | R2 | ∆ | ||
mL gVS−1 | mL gVS−1 | hr−1 | ℅ | mL gVS−1 | mL gVS−1 hr−1 | hr | ℅ | mL gVS−1 | mL gVS−1 hr−1 | hr | % | ||||
Single substrate Experiment | |||||||||||||||
SS | 625.0 | 689.8 | 0.00292 | 0.985 | 9.4 | 614.3 | 1.81 | 61.6 | 0.999 | 1.7 | 604.0 | 1.82 | 71.7 | 0.997 | 3.5 |
TWAS | 184.6 | 174.1 | 0.0067 | 0.978 | 6.0 | 168.9 | 0.76 | 0 | 0.947 | 9.3 | 168.1 | 0.7 | 0 | 0.936 | 9.8 |
OFMSW | 252.3 | 239.0 | 0.0067 | 0.984 | 5.6 | 231.8 | 1.08 | 0 | 0.956 | 8.9 | 230.6 | 1 | 0 | 0.945 | 9.4 |
Co-digestion Experiment | |||||||||||||||
20%SS + 10%TWAS + 70%OFMSW | 335.3 | 401.2 | 0.00167 | 0.970 | 16.4 | 355.6 | 0.5 | 0 | 0.972 | 5.7 | 348.2 | 0.47 | 0 | 0.977 | 3.7 |
20%SS + 30%TWAS + 50%OFMSW | 255.6 | 270.6 | 0.0025 | 0.983 | 5.5 | 261.2 | 0.53 | 81.5 | 0.998 | 2.1 | 251.7 | 0.55 | 102.4 | 0.999 | 1.5 |
20%SS + 50%TWAS + 30%OFMSW | 351.6 | 385.4 | 0.00208 | 0.967 | 8.8 | 379.0 | 0.53 | 0 | 0.984 | 7.2 | 356.2 | 0.55 | 19.95 | 0.988 | 1.3 |
20%SS + 70%TWAS + 10%OFMSW | 244.5 | 243.2 | 0.00433 | 0.997 | 0.5 | 234.5 | 0.71 | 0 | 0.990 | 4.3 | 232.4 | 0.67 | 0 | 0.985 | 5.2 |
40%SS + 10%TWAS + 50%OFMSW | 408.4 | 438.8 | 0.00292 | 0.996 | 6.9 | 406.4 | 0.89 | 0 | 0.998 | 0.5 | 398.6 | 0.86 | 3.68 | 0.996 | 2.5 |
40%SS + 30%TWAS + 30%OFMSW | 374.0 | 496.9 | 0.00167 | 0.981 | 24.7 | 387.4 | 0.72 | 55.4 | 0.994 | 3.5 | 371.9 | 0.75 | 81.4 | 0.997 | 0.6 |
40%SS + 50%TWAS + 10%OFMSW | 356.4 | - | - | - | - | 353.3 | 1.19 | 292.2 | 0.998 | 0.9 | 347.5 | 1.14 | 294.2 | 0.997 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aromolaran, A.; Sartaj, M.; Abdallah, M. Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis. Fermentation 2023, 9, 237. https://doi.org/10.3390/fermentation9030237
Aromolaran A, Sartaj M, Abdallah M. Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis. Fermentation. 2023; 9(3):237. https://doi.org/10.3390/fermentation9030237
Chicago/Turabian StyleAromolaran, Adewale, Majid Sartaj, and Mohamed Abdallah. 2023. "Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis" Fermentation 9, no. 3: 237. https://doi.org/10.3390/fermentation9030237
APA StyleAromolaran, A., Sartaj, M., & Abdallah, M. (2023). Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis. Fermentation, 9(3), 237. https://doi.org/10.3390/fermentation9030237