Effects of Different Beer Compounds on Biometrically Assessed Emotional Responses in Consumers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Sensory Session Description
2.3. Computer Vision Analysis—Biometrics
2.4. Physicochemical Analyses
2.4.1. Hordenine
2.4.2. Iso-Alpha Acids
2.4.3. Sugar and Alcohol Determination
2.4.4. Other Physicochemical Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Multivariate and Univariate Analysis of Variance (MANOVA and ANOVA)
3.2. Multivariate Data Analysis
3.2.1. Correspondence Analysis
3.2.2. Multiple Factor Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bamforth, C. The foaming properties of beer. J. Inst. Brew. 1985, 91, 370–383. [Google Scholar] [CrossRef]
- Bamforth, C.; Russell, I.; Stewart, G. Beer: A Quality Perspective; Elsevier Science: Cambridge, MA, USA, 2011. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Godbole, A.; Dunshea, F. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Caboche, C.H.; Kerr, E.D.; Pegg, C.L.; Schulz, B.L.; Howell, K.; Fuentes, S. Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling. Beverages 2020, 6, 28. [Google Scholar] [CrossRef]
- Kerr, E.D.; Caboche, C.H.; Pegg, C.L.; Phung, T.K.; Gonzalez Viejo, C.; Fuentes, S.; Howes, M.T.; Howell, K.; Schulz, B.L. The post-translational modification landscape of commercial beers. Sci. Rep. 2021, 11, 15890. [Google Scholar] [CrossRef]
- Gonzalez Viejo Duran, C. The Effect of Bubble Formation within Carbonated Drinks on the Brewage Foamability, Bubble Dynamics and Sensory Perception by Consumers. Ph.D. Thesis, The University of Melbourne, Parkville, VIC, Australia, 2020. [Google Scholar]
- Gonzalez Viejo, C.; Villarreal-Lara, R.; Torrico, D.D.; Rodríguez-Velazco, Y.G.; Escobedo-Avellaneda, Z.; Ramos-Parra, P.A.; Mandal, R.; Pratap Singh, A.; Hernández-Brenes, C.; Fuentes, S. Beer and consumer response using biometrics: Associations assessment of beer compounds and elicited emotions. Foods 2020, 9, 821. [Google Scholar] [CrossRef]
- Brauers, G.; Steiner, I.; Daldrup, T. Quantification of the biogenic phenethylamine alkaloid hordenine by LC-MS/MS in beer. Toxichem Krimtech 2013, 80, 323–326. [Google Scholar]
- Bamforth, C. Perceptions of beer foam. J. Inst. Brew. 2000, 106, 229–238. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Lee, M.; Hu, Y.; Chakraborty, S.; Dunshea, F. The Effect of Soundwaves on Foamability Properties and Sensory of Beers with a Machine Learning Modeling Approach. Beverages 2018, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. The Effect of Sonication on Bubble Size and Sensory Perception of Carbonated Water to Improve Quality and Consumer Acceptability. Beverages 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Daems, V.; Delvaux, F. Multivariate analysis of descriptive sensory data on 40 commercial beers. Food Qual. Prefer. 1997, 8, 373–380. [Google Scholar] [CrossRef]
- Goiris, K.; Jaskula-Goiris, B.; Syryn, E.; Van Opstaele, F.; De Rouck, G.; Aerts, G.; De Cooman, L. The flavoring potential of hop polyphenols in beer. J. Am. Soc. Brew. Chem. 2014, 72, 135–142. [Google Scholar] [CrossRef]
- Fuentes, S.; Tongson, E.; Gonzalez Viejo, C. Novel digital technologies implemented in sensory science and consumer perception. Curr. Opin. Food Sci. 2021, 41, 99–106. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Dunshea, F. Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate. Sensors 2018, 18, 1802. [Google Scholar] [CrossRef] [Green Version]
- Dan-Glauser, E.S.; Scherer, K.R. The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance. Behav. Res. Methods 2011, 43, 468. [Google Scholar] [CrossRef] [PubMed]
- Krautheim, J.T.; Steines, M.; Dannlowski, U.; Neziroğlu, G.; Acosta, H.; Sommer, J.; Straube, B.; Kircher, T. Emotion specific neural activation for the production and perception of facial expressions. Cortex 2020, 127, 17–28. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Zhang, H.; Khamly, A.; Xing, Y.; Fuentes, S. Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference. Beverages 2021, 7, 5. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Xia, Y.; Lee, P.-Y.; Hunter, D.C.; Beresford, M.K.; Ares, G. Emoji questionnaires can be used with a range of population segments: Findings relating to age, gender and frequency of emoji/emoticon use. Food Qual. Prefer. 2018, 68, 397–410. [Google Scholar] [CrossRef]
- Zokaityte, E.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Cernauskas, D.; Klupsaite, D.; Ruzauskas, M.; Alisauskaite, J.; Baltrusaitytė, A.; Dapsas, M. Antimicrobial, antioxidant, sensory properties, and emotions induced for the consumers of nutraceutical beverages developed from technological functionalised food industry by-products. Foods 2020, 9, 1620. [Google Scholar] [CrossRef]
- Gunaratne, T.M.; Viejo, C.G.; Fuentes, S.; Torrico, D.D.; Gunaratne, N.M.; Ashman, H.; Dunshea, F.R. Development of emotion lexicons to describe chocolate using the Check-All-That-Apply (CATA) methodology across Asian and Western groups. Food Res. Int. 2019, 115, 526–534. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Gonzalez Viejo, C.; Ashman, H.; Gunaratne, N.M.; Gunaratne, T.M.; Dunshea, F.R. Images and chocolate stimuli affect physiological and affective responses of consumers: A cross-cultural study. Food Qual. Prefer. 2018, 65, 60–71. [Google Scholar] [CrossRef]
- Sommer, T.; Hübner, H.; El Kerdawy, A.; Gmeiner, P.; Pischetsrieder, M.; Clark, T. Identification of the beer component hordenine as food-derived dopamine D2 receptor agonist by virtual screening a 3D compound database. Sci. Rep. 2017, 7, 44201. [Google Scholar] [CrossRef] [Green Version]
- Sommer, T.; Dlugash, G.; Hübner, H.; Gmeiner, P.; Pischetsrieder, M. Monitoring of the dopamine D2 receptor agonists hordenine and N-methyltyramine during the brewing process and in commercial beer samples. Food Chem. 2019, 276, 745–753. [Google Scholar] [CrossRef]
- Baixauli, E. Happiness: Role of Dopamine and Serotonin on mood and negative emotions. Emerg. Med. 2017, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Evans, M. Why Beer Really Makes You Happier, According to Science. Men’s Health 2017. Available online: https://www.menshealth.com/uk/health/a758178/why-beer-really-makes-you-happier-according-to-science/ (accessed on 20 January 2023).
- Parry, L. Scientists Confirm the Obvious: Drinking Beer Makes You Happy. New York Post 2017. Available online: https://nypost.com/2017/09/28/scientists-confirm-the-obvious-drinking-beer-makes-you-happy/ (accessed on 20 January 2023).
- Sommer, T.; GÖen, T.; Budnik, N.; Pischetsrieder, M. Absorption, biokinetics, and metabolism of the dopamine D2 receptor agonist hordenine (N, N-dimethyltyramine) after beer consumption in humans. J. Agric. Food Chem. 2020, 68, 1998–2006. [Google Scholar] [CrossRef]
- Selleckchem. Hordenine. Available online: https://www.selleckchem.com/datasheet/Hordenine-S238501-DataSheet.html (accessed on 17 February 2023).
- Pietraszek, M.; Urano, T.; Sumioshi, K.; Serizawa, K.; Takahashi, S.; Takada, Y.; Takada, A. Alcohol-induced depression: Involvement of serotonin. Alcohol Alcohol. 1991, 26, 155–159. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.; Dunshea, F. Development of a biosensory computer application to assess physiological and emotional responses from sensory panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- Viejo, C.G.; Fuentes, S.; Anda-Lobo, I.C.D.; Hernandez-Brenes, C. Remote sensory assessment of beer quality based on visual perception of foamability and biometrics compared to standard emotional responses from affective images. J. Food Res. Int. 2022, 156, 111341. [Google Scholar] [CrossRef] [PubMed]
- Hofta, P.; Dostálek, P.; Sýkora, D. Liquid chromatography-diode array and electrospray high-accuracy mass spectrometry of iso-α-acids in DCHA-Iso standard and beer. J. Inst. Brew. 2007, 113, 48–54. [Google Scholar] [CrossRef]
- Vanhoenacker, G.; Sandra, P. Methods for the assay of iso-α-acids and reduced iso-α-acids in beer. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1015–1029. [Google Scholar]
- Chuck-Hernandez, C.; Perez-Carrillo, E.; Serna-Saldivar, S.O. Production of bioethanol from steam-flaked sorghum and maize. J. Cereal Sci. 2009, 50, 131–137. [Google Scholar] [CrossRef]
- American Society of Brewing Chemists. Beer 8. Total Acidity. ASBC Methods Anal. 2018. Available online: https://www.asbcnet.org/Methods/BeerMethods/Pages/Beer-8-MasterMethod.aspx (accessed on 15 January 2019).
- Da Costa Jardim, C.; De Souza, D.; Cristina Kasper Machado, I.; Massochin Nunes Pinto, L.; de Souza Ramos, R.C.; Garavaglia, J. Sensory profile, consumer preference and chemical composition of craft beers from Brazil. Beverages 2018, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- Euromonitor-International. Beer in Mexico; Euromonitor-International: London, UK, 2022. [Google Scholar]
- Fuentes, S.; Wong, Y.Y.; Gonzalez Viejo, C. Non-invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy. Foods 2020, 9, 903. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, M.F.; Rocha, R.S.; Silva, R.; Freitas, M.Q.; Pimentel, T.C.; Esmerino, E.A.; Cruz, A.G.; Fidalgo, T.K.d.S.; Maia, L.C. Probiotic fermented milks: Children’s emotional responses using a product-specific emoji list. Food Res. Int. 2021, 143, 110269. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.R.A.; Teixeira, C.G.; Lima, T.S.; Prata, E.R.B.D.A.; Vidigal, M.C.T.R.; Martins, E.; Perrone, Í.T.; de Carvalho, A.F. Health beliefs towards kefir correlate with emotion and attitude: A study using an emoji scale in Brazil. Food Res. Int. 2020, 129, 108833. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.L.; Lovett, J. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 1993, 19, 2231–2244. [Google Scholar] [CrossRef]
Beer Style | Label | Fermentation | Hordenine (mg L−1) | Alcohol (%) | IBU * | Best-by Date |
---|---|---|---|---|---|---|
Pale Lager | H | Bottom | 3.82 | 5.00 | 17.65 | Jan-23 |
Pale Lager | H0 | Bottom | 3.19 | 0.00 | 12.60 | Jan-23 |
Pilsner | Ch | Bottom | 7.02 | 4.50 | 10.90 | Jan-23 |
Pale Ale | MPA | Top | 9.66 | 6.00 | 29.15 | May-23 |
Pale American Ale | P | Top | 7.56 | 5.20 | 45.30 | Sep-22 |
American Wheat Ale | MW | Top | 3.09 | 4.30 | 31.18 | Sep-22 |
Attribute | Scale | Anchors/Options | Assessment |
---|---|---|---|
Valence | 15 cm non-structured | Unpleasant—Pleasant | Images/Beers |
Arousal1 | 15 cm non-structured | Calm—Excited | Images/Beers |
Arousal2 | 15 cm non-structured | Relaxed—Stimulated | Images |
FaceScale | 100 cm non-structured | Images/Beers (aroma, taste) | |
Check all that apply (CATA) | Multiple choice | Images/Beers (visual, aroma, taste) | |
Aroma | 15 cm non-structured | Dislike extremely—Like extremely | Beers |
Bitter | 15 cm non-structured | Dislike extremely—Like extremely | Beers |
Sweetness | 15 cm non-structured | Dislike extremely—Like extremely | Beers |
Acidic | 15 cm non-structured | Dislike extremely—Like extremely | Beers |
Overall liking | 15 cm non-structured | Dislike extremely—Like extremely | Beers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Viejo, C.; Hernandez-Brenes, C.; Villarreal-Lara, R.; De Anda-Lobo, I.C.; Ramos-Parra, P.A.; Perez-Carrillo, E.; Clorio-Carrillo, J.A.; Tongson, E.; Fuentes, S. Effects of Different Beer Compounds on Biometrically Assessed Emotional Responses in Consumers. Fermentation 2023, 9, 269. https://doi.org/10.3390/fermentation9030269
Gonzalez Viejo C, Hernandez-Brenes C, Villarreal-Lara R, De Anda-Lobo IC, Ramos-Parra PA, Perez-Carrillo E, Clorio-Carrillo JA, Tongson E, Fuentes S. Effects of Different Beer Compounds on Biometrically Assessed Emotional Responses in Consumers. Fermentation. 2023; 9(3):269. https://doi.org/10.3390/fermentation9030269
Chicago/Turabian StyleGonzalez Viejo, Claudia, Carmen Hernandez-Brenes, Raul Villarreal-Lara, Irma C. De Anda-Lobo, Perla A. Ramos-Parra, Esther Perez-Carrillo, Jorge A. Clorio-Carrillo, Eden Tongson, and Sigfredo Fuentes. 2023. "Effects of Different Beer Compounds on Biometrically Assessed Emotional Responses in Consumers" Fermentation 9, no. 3: 269. https://doi.org/10.3390/fermentation9030269
APA StyleGonzalez Viejo, C., Hernandez-Brenes, C., Villarreal-Lara, R., De Anda-Lobo, I. C., Ramos-Parra, P. A., Perez-Carrillo, E., Clorio-Carrillo, J. A., Tongson, E., & Fuentes, S. (2023). Effects of Different Beer Compounds on Biometrically Assessed Emotional Responses in Consumers. Fermentation, 9(3), 269. https://doi.org/10.3390/fermentation9030269