Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Animal Experiments
2.4. Serum Biochemical Assays
2.5. Assays for Antioxidative Enzymes
2.6. Assays for Interleukin (IL)-6, IL-1β, IL-10, and Tumor Necrosis Factor (TNF)-α
2.7. Western Blot
2.8. Analytical Procedure for Quantification of the MG
2.9. Assay for Fecal Microbial Flora
2.10. Statistical Analysis
3. Results and Discussion
3.1. The Protection of WGP against Liver Damage Caused by MG Induction
3.2. Serum Biochemical Values
3.3. Effects of WGP on Hepatic Antioxidative Enzymes
3.4. WGP Suppressed MG-Induced Inflammatory Cytokines
3.5. HPLC Analyses of the MG Concentrations in the Rats
3.6. The Effect of WGP on Intestinal Function and Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allaman, I.; Belanger, M.; Magistretti, P.J. Methylglyoxal, the dark side of glycolysis. Front. Neurosci. 2015, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.H.; Hsu, W.H.; Huang, T.; Chang, Y.Y.; Hsu, Y.W.; Pan, T.M. Monascin improves diabetes and dyslipidemia by regulating PPARγ and inhibiting lipogenesis in fructose-rich diet-induced C57BL/6 mice. Food Funct. 2013, 4, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Hsu, W.H.; Hsu, Y.W.; Pan, T.M. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into D-lactic acid. Free Radic. Biol. Med. 2013, 60, 7–16. [Google Scholar] [CrossRef]
- Hsu, W.H.; Lee, B.H.; Chang, Y.Y.; Hsu, Y.W.; Pan, T.M. A novel natural Nrf2 activator with PPARγ-agonsit (monoscin) attenuates the toxicity of methylglyoxal and hyperglycemia. Toxicol. Appl. Pharmacol. 2013, 272, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Hsu, W.H.; Chang, Y.Y.; Kuo, H.F.; Hsu, Y.W.; Pan, T.M. Ankaflavin: A natuhral novel PPARγ agonsit upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radic. Biol. Med. 2012, 53, 2008–2016. [Google Scholar] [CrossRef]
- Zhang, L.F.; Shen, S.R.; Li, Y.H.; Lo, C.Y.; Lee, B.H.; Wu, S.C. Anti-glycation of active compounds purified from Graptopetalum paragualyense. J. Food Chem. 2016, 40, 161–169. [Google Scholar]
- Hsu, W.H.; Liao, T.H.; Lee, B.H.; Hsu, Y.W.; Pan, T.M. Ankaflavin regulates adipocyte function and attenuates hyperglycemia caused by high-fat diet via PPAR-γ activation. J. Funct. Foods 2013, 5, I24–I32. [Google Scholar] [CrossRef]
- Hsu, W.H.; Lee, B.H.; Hsu, Y.W.; Pan, T.M. Peroxisome proliferator-activated receptor-γ activators monascin and rosiglitazone attenuate carboxymethyllysine-induced fibrosis in hepatic stellate cells through regulating the oxidative stress pathway but independent of the receptor for advanced glycation end products signaling. J. Agric. Food Chem. 2013, 61, 6873–6879. [Google Scholar]
- Lee, B.H.; Hsu, W.H.; Hsu, Y.W.; Pan, T.M. Dimerumic acid protects pancreas damage and elevates insulin production in methylglyoxal-treated pancreatic RINm5F cells. J. Funct. Foods 2013, 5, 642–650. [Google Scholar] [CrossRef]
- Lee, B.H.; Hsu, K.T.; Chen, Y.Z.; Tain, Y.L.; Hou, C.Y.; Lin, Y.C.; Hsu, W.H. Polysaccharide extracts derived from defloration waste of fruit Pitaya regulates gut microbiota in a mice model. Fermentation 2022, 8, 108. [Google Scholar] [CrossRef]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.H.; Chen, C.H.; Hsu, Y.Y.; Chuang, P.T.; Shih, M.K.; Hsu, W.H. Polysaccharides obtained from Cordyceps militaris alleviate hyperglycemia by regulating gut microbiota in mice fed a high-fat/sucrose diet. Foods 2021, 10, 1870. [Google Scholar] [CrossRef]
- Kong, C.; Gao, R.; Yan, X.; Huang, L.; Qin, H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 2019, 60, 175–184. [Google Scholar] [CrossRef]
- Wu, S.C.; Su, Y.S.; Cheng, H.Y. Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem. 2011, 129, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Lee, C.C.; Cheng, Y.H.; Chang, W.C.; Hsu, W.H.; Wu, S.C. Graptopetalum paraguayense and resveratrol ameliorates carboxymethyllysine (CML)-induced pancreas dysfunction and hyperglycemia. Food Chem. Toxicol. 2013, 62, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Chen, M.K.; Yang, B.Y.; Huang, X.J.; Zhang, X.R.; He, L.Q.; Zhang, J.; Hua, Z.C. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl. Environ. Microbiol. 2015, 81, 6749–6756. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.H.; Hsu, W.H.; Huang, T.; Chang, Y.Y.; Hsu, Y.W.; Pan, T.M. Effects of monascin on anti-inflammation mediated by Nrf2 activation in advanced glycation end product-treated THP-1 monocytes and methylglyoxal-treated Wistar rats. J. Agric. Food Chem. 2013, 61, 1288–1298. [Google Scholar] [CrossRef]
- Zhu, W.; Fung, P.C. The roles played by crucial free radicals like lipid free radicals, nitric oxide, and enzymes NOS and NADPH in CCl(4)-induced acute liver injury of mice. Free Radic. Biol. Med. 2000, 29, 870–880. [Google Scholar] [CrossRef]
- Lee, B.H.; Hsu, W.H.; Hsu, Y.W.; Pan, T.M. Suppression of dimerumic acid on hepatic fibrosis caused from carboxymethyl-lysine (CML) by attenuating oxidative stress depends on Nrf2 activation in hepatic stellate cells (HSCs). Food Chem. Toxicol. 2013, 62, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Wyne, K.; Ziboh, A.; Vijapurkar, U.; Davies, M.; Meininger, G. Effects of canagliflozin on triglyceride to high density lipoprotein cholesterol ratio, a marker of insulin resistance in patients with type 2 diabetes mellitus. J. Am. Coll. Cardiol. 2015, 65, A2127. [Google Scholar] [CrossRef] [Green Version]
- Turk, Z.; Cavlovic-Naglic, M.; Turk, N. Relationship of methylglyoxal-adduct biogenesis to LDL and triglyceride levels in diabetics. Life Sci. 2011, 89, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.H.; Chen, S.J.; Liu, J.T.; Tseng, Y.F.; Lin, P.T. Effects of water extracts of Graptopetalum paraguayense on blood pressure, fasting glucose, and lipid profiles of subjects with metabolic syndrome. Biomed. Res. Int. 2013, 2013, 809234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arab, Z.N.; Khayatan, D.; Razavi, S.M.; Zare, K.; Kheradkhah, E.; Momtaz, S.; Ferretti, G.; Bacchetti, T.; Sathyapalan, T.; Emami, S.A.; et al. Phytochemicals as modulators of paraoxonase-1 in health and diseases. Antioxidants 2022, 11, 1273. [Google Scholar] [CrossRef]
- Duh, P.D.; Lin, S.L.; Wu, S.C. Hepatoprotection of Graptopetalum paraguayense E. Walther on CCl4-induced liver damage and inflammation. J. Ethnopharmacol. 2011, 134, 379–385. [Google Scholar] [PubMed]
- Chen, S.J.; Yen, C.H.; Liu, J.T.; Tseng, Y.F.; Lin, P.T. Anti-inflammatory effect of water extracts of Graptopetalum paraguayense supplementation in subjects with metabolic syndrome: A preliminary study. J. Sci. Food Agric. 2016, 96, 1772–1776. [Google Scholar] [CrossRef]
- Hsu, W.H.; Liao, S.C.; Chyan, Y.J.; Huang, K.W.; Hsu, S.L.; Chen, Y.C.; Siu, M.L.; Chang, C.C.; Chung, Y.S.; Huang, C.Y.F. Graptopetalum paraguayense inhibits liver fibrosis by blocking TGF-β signaling In Vivo and In Vitro. Int. J. Mol. Sci. 2019, 20, 2592. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.H.; Lee, B.H.; Pan, T.M. Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation. Int. J. Obesity 2015, 39, 1750–1756. [Google Scholar] [CrossRef]
- Seo, K.; Seo, S.; Han, J.Y.; Ki, S.H.; Shin, S.M. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicol. Appl. Pharmacol. 2014, 280, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Canis, M.; Heigl, F.; Suckfuell, M. Fibrinogen/LDL apheresis is a promising rescue therapy for sudden sensorineural hearing loss. Clin. Res. Cardiol. 2012, 7, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Concepcion Navarro, M.; Pilar Montilla, M.; Martin, A.; Jimenez, J.; Pilar Utrilla, M. Free radical scavenger and antihepatotoxic activity of Rosmarinus tomentosus. Plant. Med. 1993, 59, 312–314. [Google Scholar] [CrossRef]
- Al-Sadi, R.; Guo, S.; Ye, D.; Rawat, M.; Ma, T.Y. TNF-α modulation of intestinal tight junction permeabiltiy is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway. Am. J. Pathol. 2016, 186, 1151–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinashi, Y.; Hase, K. Partners in leaky gut syndrome: Intestinal dysbiosis and autoimmunity. Front. Immunol. 2021, 12, 673708. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [Green Version]
- Sen, T.; Cawthon, C.R.; Ihde, B.T.; Hajnal, A.; DiLorenzo, P.M.; de La Serre, C.B. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol. Behav. 2017, 173, 305–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Lin, X.; Xue, B.; Luo, J.; Gao, L.; Wang, Y.; Ou, S.; Peng, X. Impact of polyphenols combined with high-fat diet on rats’ gut microbiota. J. Funct. Foods 2016, 26, 763–771. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Lambertz, J.; Weiskirchen, S.; Landert, S.; Weiskrichen, R. Fructose: A dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front. Immunol. 2017, 8, 1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigeshiro, M.; Tanabe, S.; Suzuk, T. Dietary polyphenols modulate intestinal barrier defects and inflammation in a mur ine model of colitis. J. Funct. Food. 2013, S5, 949–955. [Google Scholar] [CrossRef]
- Cremonini, E.; Wang, Z.; Bettaieb, A.; Adamo, A.M.; Daveri, E.; Mills, D.A.; Kalanetra, K.M.; Haj, F.G.; Karakas, S.; Oteiza, P.I. (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biol. 2018, 14, 588–599. [Google Scholar] [CrossRef]
Groups 2 | ALT 3 | AST | ALP |
---|---|---|---|
units/L 1 | |||
Normal | 131.0 ± 45.9 b | 157.3 ± 14.2 a | 116.6 ± 26.7 b |
MG | 281.9 ± 17.0 a | 209.7 ± 41.9 a | 171.4 ± 37.9 a |
MG + NAC | 279.7 ± 32.4 a | 220.0 ± 88.5 a | 164.7 ± 16.8 ab |
MG + LWGP | 235.9 ± 84.5 a | 176.9 ± 45.2 a | 125.4 ± 35.3 ab |
MG + MWGP | 273.7 ± 26.9 a | 183.1 ± 41.8 a | 166.8 ± 15.3 a |
MG + HWGP | 240.8 ± 26.2 a | 191.5 ± 25.9 a | 145.1 ± 16.2 ab |
Groups 2 | TG 3 | TC | HDL-C | LDL-C | LDL/HDL |
---|---|---|---|---|---|
mg/dL 1 | |||||
Normal | 16.4 ± 3.1 ab | 69.3 ± 4.2 b | 17.6 ± 2.1 a | 49.6 ± 3.4 b | 2.73 ± 0.4 a |
MG | 19.9 ± 2.7 a | 102.8 ± 2.6 a | 22.4 ± 2.8 a | 76.5 ± 4.9 a | 3.44 ± 0.6 b |
MG + NAC | 20.8 ± 5.6 a | 79.1 ± 18.6 ab | 24.8 ± 6.6 a | 50.1 ± 13.9 b | 2.07 ± 0.6 a |
MG + LWGP | 18.4 ± 11.4 ab | 84.2 ± 7.3 ab | 33.3 ± 18.6 a | 47.2 ± 21.6 b | 2.02 ± 1.6 a |
MG + MWGP | 12.6 ± 3.7 ab | 81.5 ± 21.7 ab | 26.1 ± 5.7 a | 52.9 ± 15.5 b | 2.01 ± 0.2 a |
MG + HWGP | 10.1 ± 3.2 b | 79.8 ± 25.5 ab | 24.2 ± 5.4 a | 50.1 ± 15.8 b | 1.87 ± 0.6 a |
Groups 2 | GR 3 | GPx | CAT |
---|---|---|---|
nmol NADPH/min/g of Protein 1 | μmol H2O2/min/g of Protein | ||
Normal | 204.4 ± 38.0 a | 144.4 ± 1.8 bc | 605.2 ± 36.1 ab |
MG | 142.6 ± 8.3 bc | 110.7 ± 11.2 d | 346.8 ± 20.5 c |
MG + NAC | 130.4 ± 25.0 c | 143.9 ± 6.3 bc | 549.8 ± 37.2 b |
MG + LWGP | 128.5 ± 5.9 c | 136.1 ± 11.8 cd | 643.0 ± 72.4 ab |
MG + MWGP | 185.4 ± 31.9 ab | 175.8 ± 21.8 a | 672.9 ± 63.2 a |
MG + HWGP | 204.5 ± 37.2 a | 171.2 ± 25.6 ab | 685.3 ± 52.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.-H.; Shen, S.-R.; Lee, P.-S.; Huang, X.-S.; Chang, W.-C.; Wu, S.-C. Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction. Fermentation 2023, 9, 366. https://doi.org/10.3390/fermentation9040366
Lee B-H, Shen S-R, Lee P-S, Huang X-S, Chang W-C, Wu S-C. Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction. Fermentation. 2023; 9(4):366. https://doi.org/10.3390/fermentation9040366
Chicago/Turabian StyleLee, Bao-Hong, Siou-Ru Shen, Pei-Sheng Lee, Xin-Sen Huang, Wen-Chang Chang, and She-Ching Wu. 2023. "Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction" Fermentation 9, no. 4: 366. https://doi.org/10.3390/fermentation9040366
APA StyleLee, B.-H., Shen, S.-R., Lee, P.-S., Huang, X.-S., Chang, W.-C., & Wu, S.-C. (2023). Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction. Fermentation, 9(4), 366. https://doi.org/10.3390/fermentation9040366