Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution
Abstract
:1. Introduction
2. Renewable Hydrogen
2.1. Biological Hydrogen
2.2. Integration of Dark and Photofermentation in a Biorefinery
2.3. Microbial Electro-Hydrogenesis
3. Towards Large Scale Production and Utilization of Renewable Hydrogen
4. Biomethane: A Potential Solution for the Energy Crisis
4.1. Hydrogen-Enriched Methane
4.2. Hydrogen-Enriched CNG (HCNG)/Hythane as Fuel
4.3. Techno-Economic and Life Cycle Assessment
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
AF | Acidogenic Fermentation |
Bio-H-CNG | Biohydrogen Compressed Natural Gas |
BSG | Brewery Spent Grains |
CH4 | Methane |
CNG | Compressed Natural Gas |
CO | Carbon Monoxide |
CO2 | Carbon dioxide |
COD | Chemical Oxygen Demand |
EU | European Union |
FW | Food Waste |
GDOC | Groundnut Deoiled Cake |
GHG | Greenhouse Gases |
HER | Hydrogen Evolution Reaction |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change’s |
IRENA | International Renewable Energy Agency |
LCA | Life cycle assessment |
LHV | Lower Heating Value |
MEC | Microbial Electrolysis Cell |
MSW | Municipal Solid Waste |
NOx | Nitrogen Oxides |
PNS | Purple Non-Sulfur Photosynthetic Bacteria |
POME | Palm Oil Mill Effluent |
PTC | Parabolic Trough Solar Collector |
PV | Photovoltaic Cell |
STP | Sewage Treatment Plant |
SWW | Synthetic Wastewater |
TEA | Techno-economic analysis |
VFA | Volatile fatty acid |
WTE | Waste-To-Energy |
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; ISBN 1009157949. [Google Scholar]
- Allen, M.; Antwi-Agyei, P.; Aragon-Durand, F.; Babiker, M.; Bertoldi, P.; Bind, M.; Brown, S.; Buckeridge, M.; Camilloni, I.; Cartwright, A. Technical Summary: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Riaz, S.; Park, S.-J. O, S-g-C3N4 nanotubes as photovoltaic boosters in quantum dot-sensitized all-weather solar cells: A synergistic approach for enhanced power conversion efficiency in dark-light conditions. Mater. Today Chem. 2022, 26, 101125. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Li, Y.; Li, Q.; Li, P.; Luo, L.; Zhen, F.; Zheng, G.; Sun, Y. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation 2022, 8, 562. [Google Scholar] [CrossRef]
- Fazzino, F.; Pedullà, A.; Calabrò, P.S. Boosting the Circularity of Waste Management: Pretreated Mature Landfill Leachate Enhances the Anaerobic Digestion of Market Waste. Biofuel Res. J. 2023, 10, 1764–1773. [Google Scholar] [CrossRef]
- Lai, Y.H.; Lan, J.C.-W. Enhanced polyhydroxybutyrate production through incorporation of a hydrogen fuel cell and electro-fermentation system. Int. J. Hydrogen Energy 2020, 46, 16787–16800. [Google Scholar] [CrossRef]
- Matsakas, L.; Sarkar, O.; Jansson, S.; Rova, U.; Christakopoulos, P. A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane. Bioresour. Technol. 2020, 316, 123973. [Google Scholar] [CrossRef]
- Mahmoud, A.; Zaghloul, M.S.; Hamza, R.A.; Elbeshbishy, E. Comparing VFA Composition, Biomethane Potential, and Methane Production Kinetics of Different Substrates for Anaerobic Fermentation and Digestion. Fermentation 2023, 9, 138. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Martinat, S.; Cowell, R. Community tensions, participation, and local development: Factors affecting the spatial embeddedness of anaerobic digestion in Poland and the Czech Republic. Energy Res. Soc. Sci. 2019, 55, 134–145. [Google Scholar] [CrossRef]
- Nagarajan, S.; Jones, R.J.; Oram, L.; Massanet-Nicolau, J.; Guwy, A. Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. Fermentation 2022, 8, 325. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonised life-cycle global warming impact of renewable hydrogen. J. Clean. Prod. 2017, 149, 762–772. [Google Scholar] [CrossRef]
- Sarkar, O.; Katakojwala, R.; Mohan, S.V. Low-carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chem. 2021, 23, 561–574. [Google Scholar] [CrossRef]
- Sator, A.; Waardenburg, M.; Wilthaner, M. Five Charts on Hydrogen’s Role in a Net-Zero Future; McKinsey & Company: New York, NY, USA, 2022. [Google Scholar]
- Griffiths, S.; Sovacool, B.K.; Kim, J.; Bazilian, M.; Uratani, J.M. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Res. Soc. Sci. 2021, 80, 102208. [Google Scholar] [CrossRef]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2020, 321, 124354. [Google Scholar] [CrossRef]
- Öhman, A.; Karakaya, E.; Urban, F. Enabling the transition to a fossil-free steel sector: The conditions for technology transfer for hydrogen-based steelmaking in Europe. Energy Res. Soc. Sci. 2021, 84, 102384. [Google Scholar] [CrossRef]
- Soltani, S.M.; Lahiri, A.; Bahzad, H.; Clough, P.; Gorbounov, M.; Yan, Y. Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review. Carbon Capture Sci. Technol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- LeValley, T.L.; Richard, A.R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies—A review. Int. J. Hydrogen Energy 2014, 39, 16983–17000. [Google Scholar] [CrossRef]
- Carapellucci, R.; Giordano, L. Steam, dry and autothermal methane reforming for hydrogen production: A thermodynamic equilibrium analysis. J. Power Sources 2020, 469, 228391. [Google Scholar] [CrossRef]
- Schulz, L.A.; Kahle, L.C.; Delgado, K.H.; Schunk, S.A.; Jentys, A.; Deutschmann, O.; Lercher, J.A. On the coke deposition in dry reforming of methane at elevated pressures. Appl. Catal. A Gen. 2015, 504, 599–607. [Google Scholar] [CrossRef]
- IRENA. Hydrogen: A Renewable Energy Perspective; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Zhou, Y.; Searle, S. Cost of Renewable Hydrogen Produced Onsite at Hydrogen Refueling Stations in Europe; International Council on Clean Transportation: Washington, DC, USA, 2022. [Google Scholar]
- da Silva Veras, T.; Mozer, T.S.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. Int. J. Hydrogen Energy 2017, 42, 2018–2033. [Google Scholar] [CrossRef]
- Yadav, D.; Banerjee, R. Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process. J. Clean. Prod. 2018, 183, 1131–1155. [Google Scholar] [CrossRef]
- Ning, M.; Zhang, F.; Wu, L.; Xing, X.; Wang, D.; Song, S.; Zhou, Q.; Yu, L.; Bao, J.; Chen, S.; et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 2022, 15, 3945–3957. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R. Summary for Policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Quraishi, M.; Wani, K.; Pandit, S.; Gupta, P.K.; Rai, A.K.; Lahiri, D.; Jadhav, D.A.; Ray, R.R.; Jung, S.P.; Thakur, V.K.; et al. Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation 2021, 7, 291. [Google Scholar] [CrossRef]
- Duarte, M.S.; Oliveira, J.V.; Pereira, C.; Carvalho, M.; Mesquita, D.P.; Alves, M.M. Volatile Fatty Acids (VFA) Production from Wastewaters with High Salinity—Influence of pH, Salinity and Reactor Configuration. Fermentation 2021, 7, 303. [Google Scholar] [CrossRef]
- Davila-Vazquez, G.; Arriaga, S.; Alatriste-Mondragón, F.; de León-Rodríguez, A.; Rosales-Colunga, L.M.; Razo-Flores, E. Fermentative biohydrogen production: Trends and perspectives. Rev. Environ. Sci. Bio./Technol. 2008, 7, 27–45. [Google Scholar] [CrossRef]
- Sarkar, O.; Mohan, S.V. Synergy of anoxic microenvironment and facultative anaerobes on acidogenic metabolism in a self-induced electrofermentation system. Bioresour. Technol. 2020, 313, 123604. [Google Scholar] [CrossRef]
- Gest, H.; Kamen, M.D. Photoproduction of Molecular Hydrogen by Rhodospirillum Rubrum. Science 1949, 109, 558–559. [Google Scholar] [CrossRef]
- Gaffron, H.; Rubin, J. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 1942, 26, 219–240. [Google Scholar] [CrossRef]
- Greenbaum, E. Photosynthetic Hydrogen and Oxygen Production: Kinetic Studies. Science 1982, 215, 291–293. [Google Scholar] [CrossRef]
- Puente-Sánchez, F.; Arce-Rodríguez, A.; Oggerin, M.; García-Villadangos, M.; Moreno-Paz, M.; Blanco, Y.; Rodríguez, N.; Bird, L.; Lincoln, S.A.; Tornos, F.; et al. Viable cyanobacteria in the deep continental subsurface. Proc. Natl. Acad. Sci. USA 2018, 115, 10702–10707. [Google Scholar] [CrossRef] [Green Version]
- Riaz, S.; Rhee, K.Y.; Park, S.J. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Polymers 2021, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Karmee, S.K. Moving towards the Application of Biocatalysis in Food Waste Biorefinery. Fermentation 2023, 9, 73. [Google Scholar] [CrossRef]
- Ghosh, S.; Dutta, S.; Chowdhury, R. Ameliorated hydrogen production through integrated dark-photofermentation in a flat plate photobioreactor: Mathematical modelling and optimization of energy efficiency. Energy Convers. Manag. 2020, 226, 113549. [Google Scholar] [CrossRef]
- Dahiya, S.; Kumar, A.N.; Shanthi Sravan, J.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.K.; Mondal, P. Enhancing Biohydrogen Production from Sugar Industry Wastewater Using Ni, Ni–Co and Ni–Co–P Electrodeposits as Cathodes in Microbial Electrolysis Cells. Chemosphere 2022, 286, 131728. [Google Scholar] [CrossRef]
- Rikame, S.S.; Mungray, A.A.; Mungray, A.K. Modification of Anode Electrode in Microbial Fuel Cell for Electrochemical Recovery of Energy and Copper Metal. Electrochim. Acta 2018, 275, 8–17. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Kalil, M.S.; Abdeshahian, P.; Hamid, A.A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew. Energy 2014, 71, 466–472. [Google Scholar] [CrossRef]
- Bora, A.; Mohanrasu, K.; Swetha, T.A.; Ananthi, V.; Sindhu, R.; Chi, N.T.L.; Pugazhendhi, A.; Arun, A.; Mathimani, T. Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production. Fuel 2022, 328, 125269. [Google Scholar] [CrossRef]
- Hutchinson, A.J.; Tokash, J.C.; Logan, B.E. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J. Power Sources 2011, 196, 9213–9219. [Google Scholar] [CrossRef]
- Rousseau, R.; Etcheverry, L.; Roubaud, E.; Basséguy, R.; Délia, M.-L.; Bergel, A. Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl. Energy 2020, 257, 113938. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 18871–18873. [Google Scholar] [CrossRef] [Green Version]
- Rozendal, R.A.; Jeremiasse, A.W.; Hamelers, H.V.M.; Buisman, C.J.N. Hydrogen Production with a Microbial Biocathode. Environ. Sci. Technol. 2008, 42, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Tartakovsky, B.; Manuel, M.-F.; Wang, H.; Guiot, S. High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int. J. Hydrogen Energy 2009, 34, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Nizami, A.; Rehan, M.; Ouda, O.; Sultana, S.; Ismail, I.; Shahzad, K. Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia. Appl. Energy 2017, 185, 410–420. [Google Scholar] [CrossRef]
- Balachandar, G.; Varanasi, J.L.; Singh, V.; Singh, H.; Das, D. Biological hydrogen production via dark fermentation: A holistic approach from lab-scale to pilot-scale. Int. J. Hydrogen Energy 2020, 45, 5202–5215. [Google Scholar] [CrossRef]
- Lim, X. Turning Organic Waste into Hydrogen. ACS Central Sci. 2019, 5, 203–205. [Google Scholar] [CrossRef] [Green Version]
- Schorer, L.; Schmitz, S.; Weber, A. Membrane based purification of hydrogen system (MEMPHYS). Int. J. Hydrogen Energy 2019, 44, 12708–12714. [Google Scholar] [CrossRef]
- Shamsudin, I.; Abdullah, A.; Idris, I.; Gobi, S.; Othman, M. Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon. Fuel 2019, 253, 722–730. [Google Scholar] [CrossRef]
- Zarsazi, H.; Sadeghi, S.; Moghimi, M. Investigation of a Novel Hybrid LNG Waste Heat-/Wind-Driven Hydrogen Liquefaction System: Exergoeconomic Analysis and Multi-Criteria Optimization. J. Therm. Anal. Calorim. 2022, 1–17. [Google Scholar] [CrossRef]
- Haghi, E.; Raahemifar, K.; Fowler, M. Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid. Energy Policy 2018, 113, 206–222. [Google Scholar] [CrossRef]
- McCay, M.H.; Shafiee, S. Hydrogen: An Energy Carrier. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 475–493. [Google Scholar]
- Jain, S.; Newman, D.; Nzihou, A.; Dekker, H.; Le Feuvre, P.; Richter, H.; Gobe, F.; Morton, C.; Thompson, R. Global Potential of Biogas; The World Biogas Association: London, UK, 2019; pp. 1–56. [Google Scholar]
- EBA. New Report Highlights Biomethane Ramp-Up and Best Pathways for Full Renewable Gas Deployment; European Biogas Association: Brussels, Belgium, 2021. [Google Scholar]
- IEA. Outlook for Biogas and Biomethane: Prospects for Organic Growth; IEA: Paris, France, 2020. [Google Scholar]
- Morone, P.; Yilan, G.; Imbert, E. Using fuzzy cognitive maps to identify better policy strategies to valorize organic waste flows: An Italian case study. J. Clean. Prod. 2021, 319, 128722. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V.; Perebyynis, V. Evaluation of Biogas Production and Usage Potential. Ecol. Chem. Eng. S 2016, 23, 387. [Google Scholar] [CrossRef] [Green Version]
- Lönnqvist, T.; Sanches-Pereira, A.; Sandberg, T. Biogas potential for sustainable transport—A Swedish regional case. J. Clean. Prod. 2015, 108, 1105–1114. [Google Scholar] [CrossRef]
- Uusitalo, V.; Soukka, R.; Horttanainen, M.; Niskanen, A.; Havukainen, J. Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector. Renew. Energy 2013, 51, 132–140. [Google Scholar] [CrossRef]
- Ayodele, T.; Alao, M.; Ogunjuyigbe, A.; Munda, J. Electricity generation prospective of hydrogen derived from biogas using food waste in south-western Nigeria. Biomass-Bioenergy 2019, 127, 105291. [Google Scholar] [CrossRef]
- Koroglu, E.O.; Ozdemir, O.K.; Ozkaya, B.; Demir, A. An integrated system development including PEM fuel cell/biogas purification during acidogenic biohydrogen production from dairy wastewater. Int. J. Hydrogen Energy 2019, 44, 17297–17303. [Google Scholar] [CrossRef]
- Nadaleti, W. Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning. Renew. Energy 2018, 131, 55–72. [Google Scholar] [CrossRef]
- Hajizadeh, A.; Mohamadi-Baghmolaei, M.; Saady, N.M.C.; Zendehboudi, S. Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming. Appl. Energy 2022, 309, 118442. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Heaven, S.; Banks, C. Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam. Int. J. Energy Environ. Eng. 2014, 5, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Rosa, A.; Chernicharo, C.; Lobato, L.; Silva, R.; Padilha, R.; Borges, J. Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renew. Energy 2018, 124, 21–26. [Google Scholar] [CrossRef]
- Mateus, S.; Carvalheira, M.; Cassidy, J.; Freitas, E.; Oehmen, A.; Reis, M.A. Two-stage anaerobic digestion system treating different seasonal fruit pulp wastes: Impact on biogas and hydrogen production and total energy recovery potential. Biomass-Bioenergy 2020, 141, 105694. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.-S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies. Renew. Energy 2020, 146, 1392–1407. [Google Scholar] [CrossRef]
- Levinsky, H. Why can’t we just burn hydrogen? Challenges when changing fuels in an existing infrastructure. Prog. Energy Combust. Sci. 2021, 84, 100907. [Google Scholar] [CrossRef]
- Deheri, C.; Acharya, S.K. Experimental Investigation of Biohythane Performance on Thermal Barrier-Coated Compression Ignition Engine. J. Energy Resour. Technol. 2022, 145, 11702. [Google Scholar] [CrossRef]
- Shamsapour, N.; Hajinezhad, A.; Noorollahi, Y. Developing a system dynamics approach for CNG vehicles for low-carbon urban transport: A case study. Int. J. Low-Carbon Technol. 2020, 16, 577–591. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B. Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures. Atmosphere 2021, 12, 893. [Google Scholar] [CrossRef]
- Bhasker, J.P.; Porpatham, E. Effects of compression ratio and hydrogen addition on lean combustion characteristics and emission formation in a Compressed Natural Gas fuelled spark ignition engine. Fuel 2017, 208, 260–270. [Google Scholar] [CrossRef]
- Mustafi, N.N.; Agarwal, A.K. Combustion and Emission Characteristics, and Emission Control of CNG Fueled Vehicles. In Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines; Springer: Singapore, 2020; pp. 201–228. [Google Scholar]
- Sagar, S.; Agarwal, A.K. Knocking behavior and emission characteristics of a port fuel injected hydrogen-enriched compressed natural gas fueled spark ignition engine. Appl. Therm. Eng. 2018, 141, 42–50. [Google Scholar] [CrossRef]
- Zareei, J.; Alvarez, J.R.N.; Albuerne, Y.L.; Gámez, M.R.; Linzan, R.A. A Simulation Study of the Effect of HCNG Fuel and Injector Hole Number along with a Variation of Fuel Injection Pressure in a Gasoline Engine Converted from Port Injection to Direct Injection. Processes 2022, 10, 2389. [Google Scholar] [CrossRef]
- Tlili, O. Hydrogen Systems: What Contribution to the Energy System? Findings from Multiple Modelling Approaches; Université Paris-Saclay, Espace Technologique/Immeuble Discovery: Saint-Aubin, France, 2019; p. 294. [Google Scholar]
- Sukphun, P.; Sittijunda, S.; Reungsang, A. Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. Fermentation 2021, 7, 159. [Google Scholar] [CrossRef]
- Sarkar, O.; Santhosh, J.; Dhar, A.; Mohan, S.V. Green hythane production from food waste: Integration of dark-fermentation and methanogenic process towards biogas up-gradation. Int. J. Hydrogen Energy 2021, 46, 18832–18843. [Google Scholar] [CrossRef]
- Pasupuleti, S.B.; Mohan, S.V. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresour. Technol. 2015, 189, 177–185. [Google Scholar] [CrossRef]
- Pinto, M.P.M.; Mudhoo, A.; Neves, T.D.A.; Berni, M.D.; Forster-Carneiro, T. Co–digestion of coffee residues and sugarcane vinasse for biohythane generation. J. Environ. Chem. Eng. 2018, 6, 146–155. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.; Zhang, K.; Han, Y.; Tong, Y.; Wang, J.; Xiao, B.; Liu, J. Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure. Bioresour. Technol. 2022, 344, 126173. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Ta, D.-T.; Lin, C.-Y.; Chu, C.-Y.; Ta, T.-M. Biohythane production from swine manure and pineapple waste in a single-stage two-chamber digester using gel-entrapped anaerobic microorganisms. Int. J. Hydrogen Energy 2022, 47, 25245–25255. [Google Scholar] [CrossRef]
- Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: Optimization and scale-up. Bioresour. Technol. 2020, 319, 124233. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Si, B.; Liu, Z.; Zhang, C.; Wang, Y.; Xing, X.-H. A pilot study of biohythane production from cornstalk via two-stage anaerobic fermentation. Int. J. Hydrogen Energy 2020, 45, 31719–31731. [Google Scholar] [CrossRef]
- Promnuan, K.; Higuchi, T.; Imai, T.; Kongjan, P.; Reungsang, A.; Sompong, O. Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. Int. J. Hydrogen Energy 2019, 45, 263–274. [Google Scholar] [CrossRef]
- Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Organosolv pretreated birch sawdust for the production of green hydrogen and renewable chemicals in an integrated biorefinery approach. Bioresour. Technol. 2021, 344, 126164. [Google Scholar] [CrossRef]
- Chen, C.; Sun, C.; Xia, A.; Liao, Q.; Guo, X.; Huang, Y.; Fu, Q.; Zhu, X.; Zhu, X. Sustainable biohythane production from algal bloom biomass through two-stage fermentation: Impacts of the physicochemical characteristics and fermentation performance. Int. J. Hydrogen Energy 2020, 45, 34461–34472. [Google Scholar] [CrossRef]
- Jehlee, A.; Khongkliang, P.; Suksong, W.; Rodjaroen, S.; Waewsak, J.; Reungsang, A.; Sompong, O. Biohythane production from Chlorella sp. biomass by two-stage thermophilic solid-state anaerobic digestion. Int. J. Hydrogen Energy 2017, 42, 27792–27800. [Google Scholar] [CrossRef]
- Nguyen, M.-L.T.; Hung, P.-C.; Vo, T.-P.; Lay, C.-H.; Lin, C.-Y. Effect of food to microorganisms (F/M) ratio on biohythane production via single-stage dark fermentation. Int. J. Hydrogen Energy 2020, 46, 11313–11324. [Google Scholar] [CrossRef]
- Seengenyoung, J.; Mamimin, C.; Prasertsan, P.; Sompong, O. Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. Int. J. Hydrogen Energy 2019, 44, 3347–3355. [Google Scholar] [CrossRef]
- Ali, M.M.; Mustafa, A.M.; Zhang, X.; Lin, H.; Zhang, X.; Danhassan, U.A.; Zhou, X.; Sheng, K. Impacts of molybdate and ferric chloride on biohythane production through two-stage anaerobic digestion of sulfate-rich hydrolyzed tofu processing residue. Bioresour. Technol. 2022, 355, 127239. [Google Scholar] [CrossRef]
- Chang, H.; Wu, H.; Zhang, L.; Wu, W.; Zhang, C.; Zhong, N.; Zhong, D.; Xu, Y.; He, X.; Yang, J.; et al. Gradient electro-processing strategy for efficient conversion of harmful algal blooms to biohythane with mechanisms insight. Water Res. 2022, 222, 118929. [Google Scholar] [CrossRef]
- Lunprom, S.; Phanduang, O.; Salakkam, A.; Liao, Q.; Imai, T.; Reungsang, A. Bio-hythane production from residual biomass of Chlorella sp. biomass through a two-stage anaerobic digestion. Int. J. Hydrogen Energy 2018, 44, 3339–3346. [Google Scholar] [CrossRef]
- Santhosh, J.; Sarkar, O.; Mohan, S.V. Green Hydrogen-Compressed natural gas (bio-H-CNG) production from food waste: Organic load influence on hydrogen and methane fusion. Bioresour. Technol. 2021, 340, 125643. [Google Scholar] [CrossRef]
- Sarkar, O.; Mohan, S.V. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Bioresour. Technol. 2017, 242, 68–76. [Google Scholar] [CrossRef]
- Sarkar, O.; Katari, J.K.; Chatterjee, S.; Mohan, S.V. Salinity induced acidogenic fermentation of food waste regulates biohydrogen production and volatile fatty acids profile. Fuel 2020, 276, 117794. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane production in two-stage anaerobic digestion system. Int. J. Hydrogen Energy 2018, 44, 17363–17380. [Google Scholar] [CrossRef]
- Bolzonella, D.; Battista, F.; Cavinato, C.; Gottardo, M.; Micolucci, F.; Lyberatos, G.; Pavan, P. Recent developments in biohythane production from household food wastes: A review. Bioresour. Technol. 2018, 257, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.A.A.; Banu, J.R.; Kannah, R.Y.; Yogalakshmi, K.; Kumar, G. Biohythane production from food processing wastes—Challenges and perspectives. Bioresour. Technol. 2020, 298, 122449. [Google Scholar] [CrossRef] [PubMed]
- Yeshanew, M.M.; Frunzo, L.; Pirozzi, F.; Lens, P.N.L.; Esposito, G. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 2016, 220, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Meziane, S.; Bentebbiche, A. Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine. Int. J. Hydrogen Energy 2019, 44, 15610–15621. [Google Scholar] [CrossRef]
- Panagi, K.; Laycock, C.J.; Reed, J.P.; Guwy, A.J. Highly efficient coproduction of electrical power and synthesis gas from biohythane using solid oxide fuel cell technology. Appl. Energy 2019, 255, 113854. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Bach, C.; Soltic, P.; Boulouchos, K. Hydrogen–natural gas blends fuelling passenger car engines: Combustion, emissions and well-to-wheels assessment. Int. J. Hydrogen Energy 2008, 33, 7224–7236. [Google Scholar] [CrossRef]
- Hao, D.; Mehra, R.K.; Luo, S.; Nie, Z.; Ren, X.; Fanhua, M. Experimental study of hydrogen-enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. Int. J. Hydrogen Energy 2019, 45, 5309–5325. [Google Scholar] [CrossRef]
- Tangöz, S.; Akansu, S.O.; Kahraman, N.; Malkoç, Y. Effects of compression ratio on performance and emissions of a modified diesel engine fueled by HCNG. Int. J. Hydrogen Energy 2015, 40, 15374–15380. [Google Scholar] [CrossRef]
- Hemalatha, M.; Sarkar, O.; Mohan, S.V. Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chem. Eng. J. 2019, 373, 1042–1053. [Google Scholar] [CrossRef]
- Thomassen, G.; Van Dael, M.; Van Passel, S.; You, F. How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. Green Chem. 2019, 21, 4868–4886. [Google Scholar] [CrossRef]
- Sarkar, S.; Kumar, A. Large-scale biohydrogen production from bio-oil. Bioresour. Technol. 2010, 101, 7350–7361. [Google Scholar] [CrossRef] [PubMed]
- Galera, S.; Ortiz, F.G. Techno-economic assessment of hydrogen and power production from supercritical water reforming of glycerol. Fuel 2015, 144, 307–316. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinzadeh-Bandbafha, H.; Shahbeik, H.; Tabatabaei, M. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 2022, 9, 1697–1706. [Google Scholar] [CrossRef]
- Amid, S.; Aghbashlo, M.; Tabatabaei, M.; Karimi, K.; Nizami, A.-S.; Rehan, M.; Hosseinzadeh-Bandbafha, H.; Soufiyan, M.M.; Peng, W.; Lam, S.S. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energy Convers. Manag. 2021, 227, 113637. [Google Scholar] [CrossRef]
- Gheewala, S.H. Life Cycle Assessment for Sustainability Assessment of Biofuels and Bioproducts. Biofuel Res. J. 2023, 10, 1810–1815. [Google Scholar] [CrossRef]
- Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Green hydrogen and platform chemicals production from acidogenic conversion of brewery spent grains co-fermented with cheese whey wastewater: Adding value to acidogenic CO2. Sustain. Energy Fuels 2022, 6, 778–790. [Google Scholar] [CrossRef]
Process (Acidogenesis/Methanogenesis) | Product (H2/CH4) | Energy/Electricity/ Power Potential | Reference |
---|---|---|---|
Biogas production from AD of MSW | 0.411 MT H2 derived from biogas | 19.46 million kWh/year | [66] |
Acidogenesis of DWW integrated with PEM fuel cell | bioH2 in the biogas (33–60%, v/v) | 0.2 W cm2 | [67] |
Integration of AD and dry CH4 reforming | Renewable H2: 1153.68 kg/day | 194.64 kg H2/day | [68] |
AD of FW from MSW | 6.088 tons biogas/day | 7.10 GWh | [69] |
FW processing at pilot scale biorefinery | H2 + CH4: 88 m3 | 1464 MJ/kg | [13] |
Cane molasses and GDOC | 76.2 m3 bioH2 | 763.5 MJ/kg | [51] |
Full-scale UASB-based STP | 390.1 m3 bioCH4/day | 7518 MJ/d | [70] |
AD of fruit pulp wastes | 0.30–0.37 L bioCH4/g CODdegraded | 79.5 kJ/Lreactor/day | [71] |
Two-stage fermentation of Chlorella sp. | H2 + CH4: 442.67 mLH2/g VS | 14.54 kJ/g VS | [72] |
Process and Feedstock | Biohythane (H2 + CH4)/HCNG | Energy Potential | Reference |
AF of brewery spent grains | 60 L/kg/VS | 1.54 MJ/kg/VS | [89] |
FW at various F/M ratios (0.2–7.6) | 0.249 L | 0.0027 MJ | [95] |
Two-stage thermophilic anaerobic fermentation of POME | 23.1 L/L | 0.68 MJ | [96] |
Semi-pilot scale (34 L) fermentation of distillery spent wash | 202 L | 4.82 MJ | [85] |
Two-stage AD of tofu processing residue | 797 mL/g VS | 21.8 MJ/kg/VS | [97] |
Gradient electro-processing of harmful algal blooms | 236.2 mL/g VS | 50.1 kJ/L | [98] |
Two-stage AD of algal biomass | 93.5 mL/g VS | 3.03 kJ/g VS | [99] |
Acidogenesis and methanogenesis of organosolv pretreated birch sawdust | 8–14 L | 8–9.08 kJ/g VS. | [92] |
Single stage Bio-H-CNG/biohythane production from FW | 2.51 L | 5–12.6 kJ/g COD | [100] |
Acidogenic and methanogenic degradation of FW with biogas up-gradation | 4.25 L | 12.97 kJ/g COD | [84] |
Augment FW acidogenic process with pre-aeration strategy | 162 L | 2.44 MJ | [101] |
AF of food waste- influence of salinity | 1.19 L | 29.86 kJ | [102] |
Electro-fermentation of SWW regulated under anoxic microenvironment | 57.5 L/kg COD load | 134 kJ/kg COD | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, O.; Modestra, J.A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation 2023, 9, 368. https://doi.org/10.3390/fermentation9040368
Sarkar O, Modestra JA, Rova U, Christakopoulos P, Matsakas L. Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation. 2023; 9(4):368. https://doi.org/10.3390/fermentation9040368
Chicago/Turabian StyleSarkar, Omprakash, Jampala Annie Modestra, Ulrika Rova, Paul Christakopoulos, and Leonidas Matsakas. 2023. "Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution" Fermentation 9, no. 4: 368. https://doi.org/10.3390/fermentation9040368
APA StyleSarkar, O., Modestra, J. A., Rova, U., Christakopoulos, P., & Matsakas, L. (2023). Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation, 9(4), 368. https://doi.org/10.3390/fermentation9040368