Modulation of Murrah Buffalo (Bubalus bubalis) Rumen Functions for In Vitro Fatty Acid Bio-Hydrogenation, Methane Production and Fermentation Pattern of Total Mixed Ration Supplemented with Allium sativum (Garlic) Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Substrate
2.2. Collection of Rumen Inoculum
2.3. In Vitro Incubation
2.4. Estimation of Fatty Acids Biohydrogenation
2.5. Estimation of Gas and Methane Production
2.6. In Vitro Dry Matter Degradability and Ammonia Production
2.7. Chemical and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathak, H.; Bhatia, A.; Jain, N. Greenhouse Gas Emission from Indian Agriculture: Trends, Mitigation and Policy Needs; Indian Agricultural Research Institute: New Delhi, India, 2014; p. 39. [Google Scholar]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- DAHD. Annual Report 2021: Department of Animal Husbandry and Dairying; Ministry of Fisheries, Animal Husbandry and Dairying, Govt. of India: New Delhi, India, 2022; pp. 1–183.
- Parthasarathy Rao, P.; Birthal, P.S. Livestock in Mixed Farming Systems in South Asia. 2008. Available online: https://www.semanticscholar.org/paper/Livestock-in-Mixed-Farming-Systems-in-South-Asia-Rao-Birthal/a1c53828a824dce36fb56955d3f1f3c4d5f82b72 (accessed on 23 May 2022).
- Floret, C.; Monnet, A.-F.; Micard, V.; Walrand, S.; Michon, C. Replacement of animal proteins in food: How to take advantage of nutritional and gelling properties of alternative protein sources. Crit. Rev. Food Sci. Nutr. 2021, 63, 920–946. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, G.; Trinchese, G.; Musco, N.; Infascelli, F.; De Filippo, C.; Mastellone, V.; Morittu, V.M.; Lombardi, P.; Tudisco, R.; Grossi, M. Milk from cows fed a diet with a high forage: Concentrate ratio improves inflammatory state, oxidative stress, and mitochondrial function in rats. J. Dairy Sci. 2018, 101, 1843–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tudisco, R.; Morittu, V.M.; Addi, L.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Pero, M.E.; Lombardi, P. Influence of pasture on stearoyl-coa desaturase and miRNA 103 expression in goat milk: Preliminary results. Animals 2019, 9, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. 2014, 98, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2008, 88, 308–316. [Google Scholar] [CrossRef]
- Ross, Z.; O’Gara, E.A.; Hill, D.J.; Sleightholme, H.; Maslin, D.J. Antimicrobial properties of garlic oil against human enteric bacteria: Evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl. Environ. Microbiol. 2001, 67, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Thiruvenkadan, A.; Rajendran, R.; Muralidharan, J. Buffalo genetic resources of India and their conservation. Buffalo Bull 2013, 32, 227–235. [Google Scholar]
- Bartocci, S.; Amici, A.; Verna, M.; Terramoccia, S.; Martillotti, F. Solid and fluid passage rate in buffalo, cattle and sheep fed diets with different forage to concentrate ratios. Livest. Prod. Sci. 1997, 52, 201–208. [Google Scholar] [CrossRef]
- Paul, S.; Deb, S.; Dey, A.; Somvanshi, S.; Singh, D.; Rathore, R.; Stiverson, J. 16S rDNA analysis of archaea indicates dominance of Methanobacterium and high abundance of Methanomassiliicoccaceae in rumen of Nili-Ravi buffalo. Anaerobe 2015, 35, 3–10. [Google Scholar] [CrossRef]
- Tong, F.; Wang, T.; Gao, N.L.; Liu, Z.; Cui, K.; Duan, Y.; Wu, S.; Luo, Y.; Li, Z.; Yang, C. The microbiome of the buffalo digestive tract. Nat. Commun. 2022, 13, 823. [Google Scholar] [CrossRef] [PubMed]
- Vastolo, A.; Matera, R.; Serrapica, F.; Cutrignelli, M.I.; Neglia, G.; Kiatti, D.d.; Calabrò, S. Improvement of Rumen Fermentation Efficiency Using Different Energy Sources: In Vitro Comparison between Buffalo and Cow. Fermentation 2022, 8, 351. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingaβ, H.; Becker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamra, D.N. Rumen microbial ecosystem. Curr. Sci. 2005, 89, 124–135. [Google Scholar]
- Menke, K.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Feed Sci. Technol. 1988, 28, 91–97. [Google Scholar]
- Mandal, G.; Roy, A.; Patra, A. Effects of feeding plant additives rich in saponins and essential oils on the performance, carcass traits and conjugated linoleic acid concentrations in muscle and adipose tissues of Black Bengal goats. Anim. Feed Sci. Technol. 2014, 197, 76–84. [Google Scholar] [CrossRef]
- Getachew, G.; Blümmel, M.; Makkar, H.; Becker, K. In Vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [Google Scholar] [CrossRef]
- Conway, E.J. Microdiffusion analysis and Volumetric error. In Microdiffusion Analysis and Volumetric Error, 5th ed.; Crossby Lockwood and Sons Ltd.: London, UK, 1962. [Google Scholar]
- Association of Official Analytical Chemistry—AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Van Soest Pv Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- SPSS. Statistical Packages for Social Sciences; Version 17.0; SPSS Inc.: Armonk, NY, USA, 2008. [Google Scholar]
- Snedecor, G.; Cochran, W. Statistical Methods, 8th ed.; East West Press Pvt. Ltd.: New Delhi, India, 1994; Volume 313. [Google Scholar]
- Ranjhan, S. Dairy Feeding Systems. In Smallholder Dairying in the Tropics; ILRI (International Livestock Research Institute): Nairobi, Kenya, 1999; pp. 117–132. [Google Scholar]
- Zhou, R.; Wu, J.; Lang, X.; Liu, L.; Casper, D.P.; Wang, C.; Zhang, L.; Wei, S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 2020, 103, 2303–2314. [Google Scholar] [CrossRef]
- Doreau, M.; Arturo-Schaan, M.; Laverroux, S. Garlic oil reduces ruminal fatty acid biohydrogenation in vitro. Eur. J. Lipid Sci. Technol. 2017, 119, 1500388. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Martínez-Fernández, G.; Abecia, L.; Martin-García, A.; Molina-Alcaide, E.; Yáñez-Ruiz, D. Garlic derived compounds modify ruminal fatty acid biohydrogenation and induce shifts in the Butyrivibrio community in continuous-culture fermenters. Anim. Feed Sci. Technol. 2013, 184, 38–48. [Google Scholar] [CrossRef]
- Foskolos, A.; Siurana, A.; Rodriquez-Prado, M.; Ferret, A.; Bravo, D.; Calsamiglia, S. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. J. Dairy Sci. 2015, 98, 5482–5491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kholif, S.; Morsy, T.; Abdo, M.; Matloup, O.; El-Ella, A.A. Effect of supplementing lactating goats rations with garlic, cinnamon or ginger oils on milk yield, milk composition and milk fatty acids profile. J. Life Sci. 2012, 4, 27–34. [Google Scholar] [CrossRef]
- Zhu, Z.; Mao, S.; Zhu, W. Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian-Australas. J. Anim. Sci. 2012, 25, 962. [Google Scholar] [CrossRef] [Green Version]
- Harfoot, C.; Hazlewood, G.; Hobson, P.; Stewart, C. The Rumen Microbial Ecosystem; Hobson PN and Stewart CS, Chapman & Hall: London, UK, 1997; pp. 382–426. [Google Scholar]
- Yasin, G.; Jasim, S.A.; Mahmudiono, T.; Al-Shawi, S.G.; Shichiyakh, R.A.; Shoukat, S.; Kadhim, A.J.; Iswanto, A.H.; Saleh, M.M.; Fenjan, M. Investigating the effect of garlic (Allium sativum) essential oil on foodborne pathogenic microorganisms. J. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Blanch, M.; Carro, M.; Ranilla, M.J.; Viso, A.; Vázquez-Añón, M.; Bach, A. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim. Feed Sci. Technol. 2016, 219, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Newbold, C.; Lassalas, B.; Jouany, J. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 1995, 21, 230–234. [Google Scholar] [CrossRef]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
- Kamra, D.N.; Pawar, M.; Singh, B. Effect of plant secondary metabolites on rumen methanogens and methane emissions by ruminants. In Dietary phytochemicals and Microbes; Springer: Dordrecht, The Netherlands, 2012; pp. 351–370. [Google Scholar] [CrossRef]
- Patra, A.; Yu, Z. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. J. Appl. Microbiol. 2015, 119, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Dey, A.; Paul, S.S.; Singh, M.; Dahiya, S.S.; Punia, B.S. Associative effects of plant secondary metabolites in modulating in vitro methanogenesis, volatile fatty acids production and fermentation of feed in buffalo (Bubalus bubalis). Agrofor. Syst. 2020, 94, 1555–1566. [Google Scholar] [CrossRef]
- Kamel, C.; Greathead, H.; Tejido, M.; Ranilla, M.; Carro, M. Effects of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Feed Sci. Technol. 2008, 145, 351–363. [Google Scholar] [CrossRef]
- Chanu, Y.M.; Paul, S.S.; Dey, A.; Dahiya, S.S. Reducing ruminal ammonia production with improvement in feed utilization efficiency and performance of murrah buffalo (Bubalus bubalis) through dietary supplementation of plant-based feed additive blend. Front. Vet. Sci. 2020, 7, 464. [Google Scholar] [CrossRef] [PubMed]
- Eschenlauer, S.; McKain, N.; Walker, N.; McEwan, N.; Newbold, C.; Wallace, R. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen. Appl. Environ. Microbiol. 2002, 68, 4925–4931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardozo, P.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. Anim. Sci. J. 2005, 83, 2572–2579. [Google Scholar] [CrossRef]
Attributes | Oats Hay | Concentrate Mixture * |
---|---|---|
Organic matter (OM) | 93.30 | 87.42 |
Crude protein (CP) | 7.80 | 19.50 |
Ether extract (EE) | 2.07 | 4.12 |
Total ash (TA) | 6.70 | 12.58 |
Neutral detergent fiber (NDF) | 58.40 | 31.06 |
Acid detergent fiber (ADF) | 43.70 | 19.64 |
Fatty Acids | Control | AS-2 | AS-5 | AS-10 | SEM | p Value |
---|---|---|---|---|---|---|
Individual saturated fatty acids (SFA) | ||||||
C8:0 | 36.23 | 35.99 | 35.76 | 34.69 | 0.26 | 0.21 |
C11:0 | 5.95 b | 5.58 ab | 5.20 a | 5.33 a | 0.11 | 0.02 |
C12:0 | 12.51 ab | 13.0 b | 12.17 ab | 11.82 a | 0.23 | 0.09 |
C13:0 | 3.81 | 3.66 | 3.59 | 3.55 | 0.07 | 0.62 |
C14:0 | 6.40 b | 5.83 a | 5.49 a | 5.47 a | 0.14 | 0.02 |
C15:0 | 3.27 b | 3.15 b | 0.0 a | 0.0 a | 0.55 | <0.001 |
C16:0 | 11.41 b | 11.08 ab | 10.14 a | 10.00 a | 0.25 | 0.06 |
C18:0 | 20.51 b | 18.55 ab | 17.69 a | 18.96 ab | 0.64 | 0.08 |
Total SFA | 100.09 b | 98.1 b | 90.04 a | 89.82 a | 0.76 | <0.001 |
t-vaccenic acid (C18:1) | 3.15 a | 6.16 b | 7.47 c | 8.48 c | 0.76 | <0.001 |
Dose Incubated (µL/60 mL BRF) | SFA Inhibited | t-Vaccenic Acid (C18:1) Enhanced | Gas Production Inhibited | Methane Production Inhibited | TDDM Inhibited |
---|---|---|---|---|---|
2 | 1.99 | 95.56 | 24.09 | 64.02 | 7.55 |
5 | 10.04 | 137.14 | 30.74 | 83.64 | 14.80 |
10 | 10.26 | 169.21 | 36.78 | 100.0 | 26.26 |
Attributes | Control | AS-2 | AS-5 | AS-10 | SEM | p Value |
---|---|---|---|---|---|---|
Total gas production | ||||||
mL | 95.15 c | 72.23 b | 65.90 ab | 60.15 a | 5.11 | 0.002 |
mL/g DM | 211.69 c | 161.45 bc | 145.22 b | 131.73 a | 11.59 | 0.001 |
mL/g DMD | 331.53 c | 273.57 b | 266.84 a | 280.17 bc | 10.20 | 0.020 |
Total methane production | ||||||
Methane concentration, % | 4.49 d | 2.13 c | 1.07 b | 0.0 a | 0.63 | <0.001 |
Total methane, mL | 4.28 d | 1.54 c | 0.70 b | 0.0 a | 0.62 | <0.001 |
mL/g DM | 9.52 d | 3.44 c | 1.54 b | 0.0 a | 1.37 | <0.001 |
mL/g DMD | 14.92 d | 5.82 c | 2.84 b | 0.0 a | 2.12 | <0.001 |
TDDM, % | 63.85 d | 59.03 c | 54.40 b | 47.08 a | 2.37 | 0.002 |
Ammonia N, mg/dl | 21.00 b | 19.60 b | 18.90 b | 13.30 a | 1.12 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.K.; Dey, A.; Thakur, S.; Singh, M.; Lailer, P.C. Modulation of Murrah Buffalo (Bubalus bubalis) Rumen Functions for In Vitro Fatty Acid Bio-Hydrogenation, Methane Production and Fermentation Pattern of Total Mixed Ration Supplemented with Allium sativum (Garlic) Essential Oils. Fermentation 2023, 9, 615. https://doi.org/10.3390/fermentation9070615
Singh RK, Dey A, Thakur S, Singh M, Lailer PC. Modulation of Murrah Buffalo (Bubalus bubalis) Rumen Functions for In Vitro Fatty Acid Bio-Hydrogenation, Methane Production and Fermentation Pattern of Total Mixed Ration Supplemented with Allium sativum (Garlic) Essential Oils. Fermentation. 2023; 9(7):615. https://doi.org/10.3390/fermentation9070615
Chicago/Turabian StyleSingh, Ram Kumar, Avijit Dey, Shubham Thakur, Mala Singh, and Puran Chand Lailer. 2023. "Modulation of Murrah Buffalo (Bubalus bubalis) Rumen Functions for In Vitro Fatty Acid Bio-Hydrogenation, Methane Production and Fermentation Pattern of Total Mixed Ration Supplemented with Allium sativum (Garlic) Essential Oils" Fermentation 9, no. 7: 615. https://doi.org/10.3390/fermentation9070615
APA StyleSingh, R. K., Dey, A., Thakur, S., Singh, M., & Lailer, P. C. (2023). Modulation of Murrah Buffalo (Bubalus bubalis) Rumen Functions for In Vitro Fatty Acid Bio-Hydrogenation, Methane Production and Fermentation Pattern of Total Mixed Ration Supplemented with Allium sativum (Garlic) Essential Oils. Fermentation, 9(7), 615. https://doi.org/10.3390/fermentation9070615