Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes
Abstract
:1. Introduction
2. Challenges of Using Legumes as a Future Protein Crop
Attribute | Pros | Cons | Reference |
---|---|---|---|
Flavor and taste | |||
Beany flavor |
|
| [86,87,88,89] |
Bitter flavor |
|
| [90,91] |
Texture |
|
| [92,93,94,95] |
Allergens and ANF | |||
ANF |
|
| [96,97,98,99] |
Allergens |
|
| [72,100,101,102,103] |
Nutritional quality | |||
Proteins |
|
| [50] |
Carbohydrates |
|
| [104,105] |
Techno-functionality | |||
Emulsification |
|
| [85,106,107,108,109] |
Gelation |
|
| [93,110,111] |
Foaming |
|
| [107,112,113] |
Solubility |
|
| [107,114,115] |
3. Microbial Fermentation of Legumes
3.1. Traditional Fermentation of Legumes
Product, Region of Origin and Substrate | Fermentation Conditions and Microorganism(s) | Fermentation Changes, Attributes of Product and Use | References |
---|---|---|---|
Product: Adai Origin: South India Substrate: Legume seeds and cereal grains | Fermentation: Soak rice, black gram and dhal for 2 h, add sweeteners and condiments and ferment Microorganism(s): LAB (Streptococcus spp., Pediococcus spp., and Leuconostoc spp.) | Fermentation changes: Increase nutrient bioavailability and digestibility, increase vitamin and mineral availability Nature of the product: Savoury pancake with a soft center and crispy edge | [133,134] |
Product: Dawadawa Origin: West Africa Substrate: African locust bean | Fermentation: Boil cotyledons, ferment for 84 h at 35 °C Microorganism(s): Bacillus subtilis, Leuconostoc mesenteroides and Leuconostoc dextranicus | Fermentation changes: Better functional properties (emulsification) and increased mineral availability Attributes: A flavoring agent with black color medium size balls with a strong pungent smell | [135,136,137] |
Product: Dhokla Origin: India Substrate: Bengal gram, split beans | Fermentation: Soak Bengal gram, rice and split beans, and ferment at 32 °C for 18 h Microorganism(s): Leuconostoc mesenteroides, Lactobacillus fermentum, Pichia silvicola, Candida sp., Streptococcus faecalis, Torulopsis candida, Torulopsis pullulans | Fermentation changes: Increase vitamin and mineral availability (Ca, K, Fe) Attributes: Savoury light yellow color dish with a soft and spongy texture | [134,138,139] |
Product: Douchi Origin: China and Taiwan Substrate: Soybean, salt | Fermentation: Soak black soybeans and ferment at 27–32 °C for about 72 h Microorganism(s): Primarily Aspergillus oryzae; also Pichia, Bacillus, Staphylococcus and Pediococcus | Fermentation changes: Improved nutrient bioavailability, increased protein digestibility, improved flavor and aroma, and potential probiotic effects Attributes: Small balls with aromatic, pungent, earthy and salty flavor | [140,141,142,143] |
Product: Kinema Origin: India, Nepal and Bhutan Substrate: Soybean | Fermentation: Crack soybeans, soak overnight, ferment for 2–3 d at 25–40 °C Microorganism(s): Bacillus cereus, Bacillus subtilis, Bacillus licheniformis, Bacillus circulans, Bacillus thuringiensis and Bacillus sphaericu | Fermentation changes: Production of bioactive substances such as phenolics and production of exopolysaccharides Attributes: Alkaline and sticky paste with an ammoniacal odor | [144,145,146,147] |
Product: Idli Origin: India Substrate: Blackgram and rice | Fermentation: Mix parboiled rice and decorticated black gram (3:1), soak for 3–4 h, ferment for 16–18 h at ambient temperature Microorganism(s): Yeast, Leuconostoc mesenteroides | Fermentation changes: Increase availability of vitamins (A, B1, B2, B12), increase levels of essential amino acids (lysine, cysteine and methionine) Attributes: Savoury cake with a soft and spongy texture | [134,148,149] |
Product: Maseura Origin: Nepal Substrate: Blackgram or greengram | Fermentation: Make a paste from soaked seeds, ferment for 2–3 days in an open room, sun-dry for 3–5 days Microorganism(s): Bacteria and mold | Fermentation changes: Increase protein solubility and vitamin availability Attributes: Cake-like dried balls | [150,151,152] |
Product: Meju Origin: Korea Substrate: Soybean | Fermentation: Make a paste from soaked boiled soybean, compress into a cube, dry until firm, tie with rice straw, ferment for 12 days at 28 °C Microorganism(s): Fungi and Bacillus spp. | Fermentation changes: Increase bioactive peptides, decreased the total amount of isoflavonoids Attributes: Brick like appearance | [153,154,155] |
Product: Natto Origin: Japan, Korea Substrate: Soybean | Fermentation: Cooked black soybeans fermented for 48 h at 37 °C Microorganism(s): Bacillus spp. | Fermentation changes: Increase amino acids and peptide content Attributes: Sticky outlook, sour aroma, nutty flavor, slippery texture | [156,157,158] |
Product: Oncom Origin: Indonesia Substrate: Peanut meal | Fermentation: Soak peanut meal, steam for 60 min, ferment for 48 h at 25–30 °C under anaerobic conditions Microorganism(s): Rigidoporus oligosporus, Neurospora silophila, N. crassa | Fermentation changes: Increased water absorption and decreased bulk density, increased protein availability and minerals Attributes: Distinctive red or black colored powder | [141,159,160] |
Product: Sufu Origin: China Substrate: Soybean curd (tofu) | Fermentation: Ferment in a brine solution for 40–60 days Microorganism(s): Bacillus cereus | Fermentation changes: Production of flavor compounds Attributes: Soft texture with a cheese like appearance | [141,161] |
Product: Temph Origin: East Java, Indonesia Substrate: Soybean | Fermentation: Soak, dehull and cook whole soybeans, drain excess water and ferment for 1–2 days by inoculating with a piece of tempe or culture Microorganism(s): Rhizopus spp. | Fermentation changes: Degradation of ANF, Increase solubility of proteins and peptides Attributes: Compact cake with umami taste | [157,162,163] |
3.2. Modern Fermentation
3.2.1. Effect of Fermentation on Flavor Profile
Substrate Form and Characteristics (Substrate), Microorganism(s) Involved in Fermentation (Microorganism(s)), Fermentation Conditions (Conditions) and Product Type (Product) | Product Properties after Fermentation | References |
---|---|---|
Cicer arietinum (Chickpea) | ||
Substrate: Black chickpea flour made into semi liquid dough after mixing flour with water Microorganism(s): Lactiplantibacillus plantarum T0A10 Conditions: 30 °C for 24 h Product: Fortified semolina pasta containing 15% fermented chickpea flour |
| [170] |
Substrate: Chickpea flour made into dough Microorganism(s): Lactiplantibacillus plantarum CRL2211 Weissella paramesenteroides CRL2182 Conditions: 37 °C for 24 h Product: Crackers and cookies |
| [171] |
Substrate: Garbanzo chickpeas were soaked, blended and extracted with water Microorganism(s): Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus acidophilus Conditions: 42 °C for 16 h Product: Beverage from blended chickpea |
| [172] |
Substrate: Chickpea flour made into liquid sourdough Microorganism(s): Lactiplantibacillus plantarum M8d Conditions: 30 °C for 6 h, stirred at 100 rpm; inoculated by back-slopping Product: Bread fortified with chickpea flour (0, 5, 10, 20%) |
| [166] |
Substrate: Coarsely mill seeds first and then milled into flour, mix with water to form dough for fermentation Microorganism(s): Pediococcus pentosaceus, Pediococcus acidilactici Conditions: 37 °C for 72 h, SSF Product: Protein and starch enriched concentrates |
| [33] |
Lens culinaris (Lentil) | ||
Substrate: Lentil flour added to yogurt; flour addition rates of 0%,1%, 2%, 3% and 4% Microorganism(s): Streptococcus thermophilus, Lactobacillus dulbrueckii subsp. Bulgaricus Conditions: 42–45 °C, fermented until pH 4.6 was reached Product: Lentil yogurt |
| [173] |
Substrate: Over night soaked and blended lentil grains Microorganism(s): Lactobacillus strains Conditions: Proteolytic pre-enzyme treatment, then fermentation at 37 °C for 48 h Product: Lentil beverage |
| [174] |
Lupinus spp. (Lupin) | ||
Substrate: Hydrolyzed upin protein isolates Microorganism(s): Lactobacillus sakei ssp. Carnosus, Lactobacillus amylolyticus Lactobacillus helveticus Conditions: 37 °C or 42 °C for 24 h (depending on the strain) Product: Protein isolates |
| [175] |
Substrate: Pea protein suspension Microorganism(s): Lactiplantibacillus plantarum Conditions: 37 °C for 25 h Product: Pea protein hydrolysate |
| [167] |
Vicia fava (Fava bean) | ||
Substrate: Dough prepared by mixing 40 g fava bean flour with 60 mL distilled water Microorganism(s): Leuconostoc spp. and Weissella spp. Conditions: 30 °C for 24 h; Sucrose enriched or without sucrose (control) Product: Different clean label products |
| [176] |
3.2.2. Effect of Fermentation on Techno-Functional Properties
Substrate Form and Characteristics (Substrate), Microorganism(s) Involved in Fermentation (Microorganism(s)), Fermentation Conditions (Conditions), and Product Type (Product) | Product Properties after Fermentation | References |
---|---|---|
Cicer arietinum (Chickpea) | ||
Substrate: Soak seeds with water overnight, decant water and sterilize; cool before fermentation Microorganism(s): Cordyceps militaris SN-18 Conditions: 25 °C for 7 days, SSF Product: Flour |
| [177] |
Substrate form and characteristics: Soaked chickpeas Microorganism(s): Bacillus subtilis Fermentation conditions: 37 °C for 72 h, SSF, agitate every 6 h Product: Flour |
| [178] |
Glycine max (Soy bean) | ||
Substrate: Overnight soaked soybeans made into milk (soy:distilled water = 1:5) Microorganism(s): Lycoperdon pyriforme Conditions: 24 °C, for 28 h on a rotary shaker (150 rpm), dark conditions Product: Soy drink |
| [164] |
Pisum sativum (Pea) | ||
Substrate: Pea protein enriched flour Microorganism(s): Aspergillus oryzae NRRL 5590, Aspergillus niger NRRL 334 Conditions: 40 °C for 6 h, SSF Product: Pea protein enriched flour |
| [179] |
Substrate: 4% thermally treated pea protein isolate made with osmotic water and 3% sucrose Microorganism(s): LAB and yeast co-cultures Conditions: Start with an initial pH of 7 and stopped fermentation at pH 4.55 Product: Pea protein based product |
| [165] |
Vigna unguiculata (Black eyed pea) | ||
Substrate: Ground and soaked black eyed peas Microorganism(s): Aspergillus oryzae Conditions: 30 °C for 48, 72, and 96 h, SSF Product: Flour |
| [180] |
3.2.3. Effect of Fermentation on Nutritional Profile
3.2.4. Effect of Fermentation on Antinutritional Factors (ANF) and Toxins
3.2.5. Effect of Fermentation on Allergenic Profile
4. Conclusions
- The composition of the substrate including antinutritional factors
- Selection of appropriate starter culture with the desired metabolic activity to achieve target functionality
- Potential unintended consequences on other functional attributes
- The scalability and the cost of the process
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring processes for meat analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Ranganathan, J.; Waite, R.; Searchinger, T.; Hanson, C. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts. Available online: https://www.wri.org/insights/how-sustainably-feed-10-billion-people-2050-21-charts (accessed on 8 December 2022).
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Voisin, A.-S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.-H.; Magrini, M.-B.; Meynard, J.-M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Dev. 2013, 34, 361–380. [Google Scholar] [CrossRef]
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. J. Med. Food 2013, 16, 185–198. [Google Scholar] [CrossRef]
- FAO. Alternative Proteins Top the Bill for the Latest FAO–International Sustainable Bioeconomy Working Group Webinar. Available online: https://www.fao.org/in-action/sustainable-and-circular-bioeconomy/resources/news/details/en/c/1507553 (accessed on 23 June 2023).
- Ghaffari, M.; Rodrigo, P.G.K.; Ekinci, Y.; Pino, G. Consumers’ motivations for adopting a vegan diet: A mixed-methods approach. Int. J. Consum. Stud. 2021, 46, 1193–1208. [Google Scholar] [CrossRef]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2020, 247, 297–308. [Google Scholar] [CrossRef]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; A Koutinas, A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2015, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.J.; James, H.; Platts-Mills, T.A.; Commins, S. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose. J. Allergy Clin. Immunol. 2012, 129, 1334–1342.e1. [Google Scholar] [CrossRef] [Green Version]
- Clemente, A.; Olias, R. Beneficial effects of legumes in gut health. Curr. Opin. Food Sci. 2017, 14, 32–36. [Google Scholar] [CrossRef]
- Carbas, B.; Machado, N.; Pathania, S.; Brites, C.; Rosa, E.A.; Barros, A.I. Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. Food Rev. Int. 2021, 39, 160–188. [Google Scholar] [CrossRef]
- Farmer, B.; Larson, B.T.; Fulgoni, V.L., III; Rainville, A.J.; Liepa, G.U. A vegetarian dietary pattern as a nutrient-dense approach to weight management: An analysis of the national health and nutrition examination survey 1999–2004. J. Am. Diet. Assoc. 2011, 111, 819–827. [Google Scholar] [CrossRef]
- Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Kamboj, R.; Nanda, V. Proximate composition, nutritional profile and health benefits of legumes—A review. Legum. Res.- Int. J. 2017, 41, 325–332. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Chen, Y.; Peng, C.; Chen, X.; Imran, M.; Zhang, H. Impact of Fermentation on Antinutritional Factors and Protein Degradation of Legume Seeds: A Review. Food Rev. Int. 2021, 39, 1227–1249. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bull, C.; Belobrajdic, D.; Hamzelou, S.; Jones, D.; Leifert, W.; Ponce-Reyes, R.; Terefe, N.S.; Williams, G.; Colgrave, M. How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Matemu, A.; Nakamura, S.; Katayama, S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants 2021, 10, 316. [Google Scholar] [CrossRef]
- Ding, Y.; Ban, Q.; Wu, Y.; Sun, Y.; Zhou, Z.; Wang, Q.; Cheng, J.; Xiao, H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: A review. Crit. Rev. Food Sci. Nutr. 2021, 1–19. [Google Scholar] [CrossRef]
- Costa-Catala, J.; Toro-Funes, N.; Comas-Basté, O.; Hernández-Macias, S.; Sánchez-Pérez, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Castell-Garralda, V.; Vidal-Carou, M.C. Comparative Assessment of the Nutritional Profile of Meat Products and Their Plant-Based Analogues. Nutrients 2023, 15, 2807. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of Legumes in Extrusion Cooking: A Review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. Effects of high hydrostatic pressure on the quality and functionality of protein isolates, concentrates, and hydrolysates derived from pulse legumes: A review. Trends Food Sci. Technol. 2021, 107, 466–479. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. The functional modification of legume proteins by ultrasonication: A review. Trends Food Sci. Technol. 2020, 98, 107–116. [Google Scholar] [CrossRef]
- Hugenholtz, J. Traditional biotechnology for new foods and beverages. Curr. Opin. Biotechnol. 2013, 24, 155–159. [Google Scholar] [CrossRef]
- Holzapfel, W. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 2001, 75, 197–212. [Google Scholar] [CrossRef]
- Xing, Q.; Dekker, S.; Kyriakopoulou, K.; Boom, R.M.; Smid, E.J.; Schutyser, M.A. Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innov. Food Sci. Emerg. Technol. 2019, 59, 102269. [Google Scholar] [CrossRef]
- Chiang, J.H.; Loveday, S.M.; Hardacre, A.K.; Parker, M.E. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Struct. 2018, 19, 100102. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreuders, F.K.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Terefe, N.S.; Augustin, M.A. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr. 2019, 60, 2887–2913. [Google Scholar] [CrossRef]
- Licandro, H.; Ho, P.H.; Nguyen, T.K.C.; Petchkongkaew, A.; Van Nguyen, H.; Chu-Ky, S.; Lorn, D.; Waché, Y. How fermentation by lactic acid bacteria can address safety issues in legumes food products? Food Control 2019, 110, 106957. [Google Scholar] [CrossRef]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef]
- Toor, B.S.; Kaur, A.; Kaur, J. Fermentation of legumes with Rhizopus oligosporus: Effect on physicochemical, functional and microstructural properties. Int. J. Food Sci. Technol. 2022, 57, 1763–1772. [Google Scholar] [CrossRef]
- Emkani, M.; Oliete, B.; Saurel, R. Effect of Lactic Acid Fermentation on Legume Protein Properties, a Review. Fermentation 2022, 8, 244. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2021, 10, 91. [Google Scholar] [CrossRef]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Maphosa, Y.; Jideani, V.A. The Role of Legumes in Human Nutrition. In Functional Food—Improve Health through Adequate Food; Hueda, M.C., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Didinger, C.; Thompson, H.J. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients 2021, 13, 1100. [Google Scholar] [CrossRef] [PubMed]
- Surma, M.; Sznajder-Katarzyńska, K.; Wiczkowski, W.; Zieliński, H. Assessment of Bioactive Surfactant Levels in Selected Cereal Products. Appl. Sci. 2022, 12, 5242. [Google Scholar] [CrossRef]
- Bera, I.; O’sullivan, M.; Flynn, D.; Shields, D.C. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023, 28, 3204. [Google Scholar] [CrossRef]
- Chino, X.M.S.; Martinez, C.J.; Dávila-Ortiz, G.; Alvarez-Gonzalez, I.; Madrigal-Bujaidar, E. Nutrient and Nonnutrient Components of Legumes, and Its Chemopreventive Activity: A Review. Nutr. Cancer 2015, 67, 401–410. [Google Scholar] [CrossRef]
- FAO. FAO/INFOODS Global Database for Pulses on Dry Matter Basis—Version 1.0 (PulsesDM1.0)—2017. 2017. Available online: https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/ (accessed on 2 February 2023).
- Erbersdobler, H.F.; Barth, C.A.; Jahreis, G. Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernahr. Umsch. 2017, 64, 134–139. [Google Scholar] [CrossRef]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Sayyar Khan, M. Nutritional quality of important food legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- Amarowicz, R. Legume Seeds as an Important Component of Human Diet. Foods 2020, 9, 1812. [Google Scholar] [CrossRef]
- Abbas, Y.; Ahmad, A. Impact of Processing on Nutritional and Antinutritional Factors of Legumes: A Review. Ann. Food Sci. Technol. 2018, 19, 199–215. Available online: https://www.researchgate.net/publication/352510016_IMPACT_OF_PROCESSING_ON_NUTRITIONAL_AND_ANTINUTRITIONAL_FACTORS_OF_LEUMES_A_REVIEW (accessed on 25 March 2023).
- FAO. Pulses, Nutritious Seeds for a Sustainable Future; FAO: Rome, Italy, 2016. [Google Scholar]
- Bergsveinson, J.; Kajala, I.; Ziola, B. Next-generation sequencing approaches for improvement of lactic acid bacteria-fermented plant-based beverages. AIMS Microbiol. 2017, 3, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Elzerman, J.E.; Hoek, A.C.; van Boekel, M.A.; Luning, P.A. Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual. Prefer. 2011, 22, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Tournier, C.; Sulmont-Rossé, C.; Guichard, E. Flavour Perception: Aroma, Taste and Texture Interactions. Food 2007, 1, 246–257. [Google Scholar]
- Fischer, E.; Cayot, N.; Cachon, R. Potential of Microorganisms to Decrease the “Beany” Off-Flavor: A Review. J. Agric. Food Chem. 2022, 70, 4493–4508. [Google Scholar] [CrossRef]
- Malcolmson, L.; Frohlich, P.; Boux, G.; Bellido, A.-S.; Boye, J.; Warkentin, T.D. Aroma and flavour properties of Saskatchewan grown field peas (Pisum sativum L.). Can. J. Plant Sci. 2014, 94, 1419–1426. [Google Scholar] [CrossRef] [Green Version]
- Roland, W.S.U.; Pouvreau, L.; Curran, J.; Van De Velde, F.; De Kok, P.M.T. Flavor Aspects of Pulse Ingredients. Cereal Chem. 2017, 94, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Sharma, P.; Singh, J.; Singh, S.; Nain, L. Prospecting the Potential of Agroresidues as Substrate for Microbial Flavor Production. Front. Sustain. Food Syst. 2020, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Ferawati, F.; Witthöft, C.; Bergström, M. Characterization of volatile compounds in Swedish yellow and gray peas: Implications for new legume-based ingredients. Legume Sci. 2020, 2, e55. [Google Scholar] [CrossRef]
- Baysal, T.; Demirdöven, A. Lipoxygenase in fruits and vegetables: A review. Enzym. Microb. Technol. 2007, 40, 491–496. [Google Scholar] [CrossRef]
- Trindler, C.; Kopf-Bolanz, K.A.; Denkel, C. Aroma of peas, its constituents and reduction strategies—Effects from breeding to processing. Food Chem. 2021, 376, 131892. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Surmounting the off-flavor challenge in plant-based foods. Crit. Rev. Food Sci. Nutr. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Cosson, A.; Correia, L.O.; Descamps, N.; Saint-Eve, A.; Souchon, I. Identification and characterization of the main peptides in pea protein isolates using ultra high-performance liquid chromatography coupled with mass spectrometry and bioinformatics tools. Food Chem. 2021, 367, 130747. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.; Vincken, J.-P.; van Koningsveld, G.; Legger, A.; Gruppen, H.; van Boekel, T.; Roozen, J.; Voragen, F. Bitterness of saponins and their content in dry peas. J. Sci. Food Agric. 2006, 86, 1225–1231. [Google Scholar] [CrossRef]
- Jeyakumar, E.; Lawrence, R. 10—Microbial fermentation for reduction of antinutritional factors. In Current Developments in Biotechnology and Bioengineering; Rai, A.K., Singh, S.P., Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–260. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Becker, P.M.; Yu, P. What makes protein indigestible from tissue-related, cellular, and molecular aspects? Mol. Nutr. Food Res. 2013, 57, 1695–1707. [Google Scholar] [CrossRef]
- Margier, M.; Georgé, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.-J.; Reboul, E. Nutritional Com-position and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef] [Green Version]
- Shimelis, E.A.; Rakshit, S.K. Antinutritional factors and in vitro protein digestibility of improved haricot bean (Phaseolus vulgarisL.) varieties grown in Ethiopia. Int. J. Food Sci. Nutr. 2005, 56, 377–387. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Tsopmo, A.; Ejike, C.E.; Udenigwe, C.C. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci. Technol. 2020, 101, 213–222. [Google Scholar] [CrossRef]
- Uusiku, N.P.; Oelofse, A.; Duodu, K.G.; Bester, M.J.; Faber, M. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. J. Food Compos. Anal. 2010, 23, 499–509. [Google Scholar] [CrossRef]
- Cabanillas, B.; Jappe, U.; Novak, N. Allergy to Peanut, Soybean, and Other Legumes: Recent Advances in Allergen Characterization, Stability to Processing and IgE Cross-Reactivity. Mol. Nutr. Food Res. 2017, 62. [Google Scholar] [CrossRef]
- Taylor, S.L.; Marsh, J.T.; Koppelman, S.J.; Kabourek, J.L.; Johnson, P.E.; Baumert, J.L. A perspective on pea allergy and pea allergens. Trends Food Sci. Technol. 2021, 116, 186–198. [Google Scholar] [CrossRef]
- Hildebrand, H.V.; Arias, A.; Simons, E.; Gerdts, J.; Povolo, B.; Rothney, J.; Protudjer, J.L. Adult and Pediatric Food Allergy to Chickpea, Pea, Lentil, and Lupine: A Scoping Review. J. Allergy Clin. Immunol. Pract. 2020, 9, 290–301.e2. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Kumar, S.; Das, M.; Dwivedi, P.D. A Comprehensive Review of Legume Allergy. Clin. Rev. Allergy Immunol. 2013, 45, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Mennini, M.; Dahdah, L.; Mazzina, O.; Fiocchi, A. Lupin and Other Potentially Cross-Reactive Allergens in Peanut Allergy. Curr. Allergy Asthma Rep. 2016, 16, 84. [Google Scholar] [CrossRef]
- Vogelsang-O’dwyer, M.; Zannini, E.; Arendt, E.K. Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends Food Sci. Technol. 2021, 110, 364–374. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and plant proteins as natural food emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Rahmati, K.; Tehrani, M.M.; Daneshvar, K. Soy milk as an emulsifier in mayonnaise: Physico-chemical, stability and sensory evaluation. J. Food Sci. Technol. 2012, 51, 3341–3347. [Google Scholar] [CrossRef] [Green Version]
- Semba, R.D.; Ramsing, R.; Rahman, N.; Kraemer, K.; Bloem, M.W. Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 2021, 28, 100520. [Google Scholar] [CrossRef]
- Amin, S.; Borchgrevink, C.P. A Culinology® Perspective of Dry Beans and Other Pulses. 2021, pp. 453–480. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119776802.ch18 (accessed on 2 July 2023).
- Sharma, A. A review on traditional technology and safety challenges with regard to antinutrients in legume foods. J. Food Sci. Technol. 2020, 58, 2863–2883. [Google Scholar] [CrossRef] [PubMed]
- Skalickova, S.; Ridoskova, A.; Slama, P.; Skladanka, J.; Skarpa, P.; Smykalova, I.; Horacek, J.; Dostalova, R.; Horky, P. Effect of Lactic Fermentation and Cooking on Nutrient and Mineral Digestibility of Peas. Front. Nutr. 2022, 9, 838963. [Google Scholar] [CrossRef]
- Serventi, L. Upcycling Legume Water: From Wastewater Food Ingredients, 1st ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Wang, Y.; He, S.; Zhou, F.; Sun, H.; Cao, X.; Ye, Y.; Li, J. Detection of Lectin Protein Allergen of Kidney Beans (Phaseolus vulgaris L.) and Desensitization Food Processing Technology. J. Agric. Food Chem. 2021, 69, 14723–14741. [Google Scholar] [CrossRef] [PubMed]
- Hill, H. Utilization of Dry Beans and Other Pulses as Ingredients in Diverse Food Products. In Dry Beans and Pulses; Wiley: Hoboken, NJ, USA, 2022; pp. 307–329. [Google Scholar]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Perera, D.; Devkota, L.; Garnier, G.; Panozzo, J.; Dhital, S. Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chem. 2023, 415, 135743. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 38, 1064–1102. [Google Scholar] [CrossRef]
- Wang, R.; Guo, S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2081–2105. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT Food Sci. Technol. 2021, 138, 110796. [Google Scholar] [CrossRef]
- Kanwal, F.; Ren, D.; Kanwal, W.; Ding, M.; Su, J.; Shang, X. The potential role of nondigestible Raffinose family oligosaccharides as prebiotics. Glycobiology 2023, 33, 274–288. [Google Scholar] [CrossRef]
- Ali, A.; Devarajan, S.; Manickavasagan, A.; Ata, A. Antinutritional Factors and Biological Constraints in the Utilization of Plant Protein Foods. In Plant Protein Foods; Springer: Berlin/Heidelberg, Germany, 2022; pp. 407–438. [Google Scholar] [CrossRef]
- Albert, N.W.; Lafferty, D.J.; Moss, S.M.A.; Davies, K.M. Flavonoids—flowers, fruit, forage and the future. J. R. Soc. N. Z. 2022, 53, 304–331. [Google Scholar] [CrossRef]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci. 2021, 4, e111. [Google Scholar] [CrossRef]
- Smits, M.; Meijerink, M.; Le, T.-M.; Knulst, A.; de Jong, A.; Caspers, M.P.M.; Lima, E.S.; Babé, L.; Ladics, G.; McClain, S.; et al. Predicting the allergenicity of legume proteins using a PBMC gene expression assay. BMC Immunol. 2021, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, M.; Nucara, A. Legume Proteins and Peptides as Compounds in Nutraceuticals: A Structural Basis for Dietary Health Effects. Nutrients 2022, 14, 1188. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.; Fanidi, A.; Bishop, T.R.P.; Sharp, S.J.; Imamura, F.; Dietrich, S.; Akbaraly, T.; Bes-Rastrollo, M.; Beulens, J.W.J.; Byberg, L.; et al. Associations of Total Legume, Pulse, and Soy Consumption with Incident Type 2 Diabetes: Federated Meta-Analysis of 27 Studies from Diverse World Regions. J. Nutr. 2021, 151, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, U.; Brennan, C. Chapter 8—Pulses nonstarch polysaccharides. In Pulse Foods, 2nd ed.; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: Oxford, UK, 2021; pp. 177–192. [Google Scholar]
- Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and Edible Uses of Soy Protein Products. Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [Google Scholar] [CrossRef]
- Goldstein, N.; Reifen, R. The potential of legume-derived proteins in the food industry. Grain Oil Sci. Technol. 2022, 5, 167–178. [Google Scholar] [CrossRef]
- Stone, A.K.; Nosworthy, M.G.; Chiremba, C.; House, J.; Nickerson, M.T. A comparative study of the functionality and protein quality of a variety of legume and cereal flours. Cereal Chem. 2019, 96, 1159–1169. [Google Scholar] [CrossRef]
- Xia, N.; Lu, X.; Zheng, Z.; Mu, D.; Zhong, X.; Luo, S.; Zhao, Y. Study on preparation of acylated soy protein and stability of emulsion. J. Sci. Food Agric. 2021, 101, 4959–4968. [Google Scholar] [CrossRef]
- Goff, H.D.; Guo, Q. The Role of Hydrocolloids in the Development of Food Structure. In Handbook of Food Structure Development; Spyropoulos, F., Lazidis, A., Norton, I., Eds.; The Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Yu, L. Pulse proteins: Secondary structure, functionality and applications. J. Food Sci. Technol. 2019, 56, 2787–2798. [Google Scholar] [CrossRef]
- Affrifah, N.S.; Uebersax, M.A.; Amin, S. Nutritional significance, value-added applications, and consumer perceptions of food legumes: A review. Legum. Sci. 2023. [Google Scholar] [CrossRef]
- Amagliani, L.; Silva, J.V.C.; Saffon, M.; Dombrowski, J. On the foaming properties of plant proteins: Current status and future opportunities. Trends Food Sci. Technol. 2021, 118, 261–272. [Google Scholar] [CrossRef]
- Day, L. Protein: Food Sources. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 530–537. [Google Scholar]
- Nasrabadi, M.N.; Doost, A.S.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, J.; Yang, S.; Wen, R.; Liu, L.; Du, P.; Li, C.; Zhang, G. Fermentation of mung bean milk by Lactococcus lactis: Focus on the physicochemical properties, antioxidant capacities and sensory evaluation. Food Biosci. 2022, 48, 101798. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Gbashi, S.; Phoku, J.Z.; Kayitesi, E. Fermented pulse-based food products in developing nations as functional foods and ingredients. In Functional Food—Improve Health through Adequate Food; Hueda, M.C., Ed.; InTech: Rijeka, Croatia, 2017; pp. 77–109. [Google Scholar] [CrossRef] [Green Version]
- Magro, A.E.A.; Silva, L.C.; Rasera, G.B.; de Castro, R.J.S. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: Enhancing their antioxidant and antidiabetic potentials. Bioresour. Bioprocess. 2019, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Geraldo, R.; Santos, C.S.; Pinto, E.; Vasconcelos, M.W. Widening the Perspectives for Legume Consumption: The Case of Bioactive Non-nutrients. Front. Plant Sci. 2022, 13, 772054. [Google Scholar] [CrossRef]
- Ying, X.; Agyei, D.; Udenigwe, C.; Adhikari, B.; Wang, B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. Front. Sustain. Food Syst. 2021, 5, 769028. [Google Scholar] [CrossRef]
- Verni, M.; Verardo, V.; Rizzello, C. How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [Green Version]
- Bennetau-Pelissero, C. Plant Proteins from Legumes. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–43. [Google Scholar]
- Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.-S. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021, 10, 636. [Google Scholar] [CrossRef]
- Nwagu, T.N.; Ugwuodo, C.J.; Onwosi, C.O.; Inyima, O.; Uchendu, O.C.; Akpuru, C. Evaluation of the probiotic attributes of Bacillus strains isolated from traditional fermented African locust bean seeds (Parkia biglobosa), “daddawa”. Ann. Microbiol. 2020, 70, 1–15. [Google Scholar] [CrossRef]
- Granito, M.; Champ, M.; Guerra, M.; Frias, J. Effect of natural and controlled fermentation on flatus-producing compounds of beans (Phaseolus vulgaris). J. Sci. Food Agric. 2003, 83, 1004–1009. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Hao, L.; Zhang, G.; Jin, Z.; Li, C.; Yang, Y.; Rao, J.; Chen, B. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 2020, 62, 1971–1989. [Google Scholar] [CrossRef] [PubMed]
- de Lima, F.S.; Kurozawa, L.E.; Ida, E.I. The effects of soybean soaking on grain properties and isoflavones loss. LWT 2014, 59, 1274–1282. [Google Scholar] [CrossRef]
- Andorrà, I.; Landi, S.; Mas, A.; Esteve-Zarzoso, B.; Guillamón, J.M. Effect of fermentation temperature on microbial population evolution using culture-independent and dependent techniques. Food Res. Int. 2010, 43, 773–779. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Y.; Qu, X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr. Polym. 2018, 207, 317–332. [Google Scholar] [CrossRef]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Furukawa, S.; Watanabe, T.; Toyama, H.; Morinaga, Y. Significance of microbial symbiotic coexistence in traditional fermentation. J. Biosci. Bioeng. 2013, 116, 533–539. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Mohapatra, D.; Tripathi, M.K.; Sadvatha, R.H. Kodo millet-nutritional value and utilization in Indian foods. J. Grain Process. Storage 2015, 2, 16–23. [Google Scholar]
- Ray, M.; Ghosh, K.; Singh, S.; Mondal, K.C. Folk to functional: An explorative overview of rice-based fermented foods and beverages in India. J. Ethn. Foods 2016, 3, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, J.A.; Kayitesi, E.; Njobeh, P.B. Mycotoxins reduction in dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Food Control 2020, 112, 107141. [Google Scholar] [CrossRef]
- Parkouda, C.; Nielsen, D.S.; Azokpota, P.; Ouoba, L.I.I.; Amoa-Awua, W.K.; Thorsen, L.; Hounhouigan, J.D.; Jensen, J.S.; Tano-Debrah, K.; Diawara, B.; et al. The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. Crit. Rev. Microbiol. 2009, 35, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Kappo, A.P.; Opoku, A.R. Comparative study on proximate, functional, mineral, and antinutrient composition of fermented, defatted, and protein isolate of Parkia biglobosa seed. Food Sci. Nutr. 2017, 5, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Raychaudhuri, U.; Chakraborty, R. Cereal based functional food of Indian subcontinent: A review. J. Food Sci. Technol. 2011, 49, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumari, S.; Nout, M.J.R.; Sarkar, P.K. Preparation of antinutrients-reduced dhokla using response surface process optimisation. J. Food Sci. Technol. 2018, 55, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2018, 271, 362–371. [Google Scholar] [CrossRef]
- Narayanan, S.; Amaresan, N.; Dharumadurai, D. Fermented Food Products. CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Chen, C.; Xiang, J.; Hu, W.; Xie, Y.; Wang, T.; Cui, J.; Xu, Y.; Liu, Z.; Xiang, H.; Xie, Q. Identification of key micro-organisms involved in Douchi fermentation by statistical analysis and their use in an experimental fermentation. J. Appl. Microbiol. 2015, 119, 1324–1334. [Google Scholar] [CrossRef] [Green Version]
- Que, Z.; Jin, Y.; Huang, J.; Zhou, R.; Wu, C. Flavor compounds of traditional fermented bean condiments: Classes, synthesis, and factors involved in flavor formation. Trends Food Sci. Technol. 2023, 133, 160–175. [Google Scholar] [CrossRef]
- Kharnaior, P.; Tamang, J.P. Table_2.DOCX. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Sanjukta, S.; Padhi, S.; Sarkar, P.; Singh, S.P.; Sahoo, D.; Rai, A.K. Production, characterization and molecular docking of antioxidant peptides from peptidome of kinema fermented with proteolytic Bacillus spp. Food Res. Int. 2021, 141, 110161. [Google Scholar] [CrossRef]
- Tamang, J.P. Native microorganisms in the fermentation of kinema. Indian J. Microbiol. 2003, 43, 127–130. [Google Scholar]
- Kumar, J.; Sharma, N.; Kaushal, G.; Samurailatpam, S.; Sahoo, D.; Rai, A.K.; Singh, S.P. Metagenomic Insights Into the Taxonomic and Functional Features of Kinema, a Traditional Fermented Soybean Product of Sikkim Himalaya. Front. Microbiol. 2019, 10, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aachary, A.A.; Gobinath, D.; Prapulla, S.G. Short chain xylooligosaccharides: A potential prebiotic used to improve batter fermentation and its effect on the quality attributes of idli, a cereal-legume-based Indian traditional food. Int. J. Food Sci. Technol. 2011, 46, 1346–1355. [Google Scholar] [CrossRef]
- Bhaskar, B.; Ananthanarayan, L. Changes in ACE inhibitory and antioxidant activities in alcalase treated idli batter and idli after fermentation. J. Food Sci. Technol. 2019, 56, 4025–4035. [Google Scholar] [CrossRef] [PubMed]
- Fufa, T.W.; Oselebe, H.O.; Nnamani, C.V.; Afiukwa, C.A.; Uyoh, E.A. Systematic Review on Farmers’ Perceptions, Preferences and Utilization Patterns of Taro [Colocasia esculenta (L.) Scott] for Food and Nutrition Security in Nigeria. J. Plant Sci. 2021, 9, 224. [Google Scholar] [CrossRef]
- Ghimire, A. Drying Kinetics of Indigenous Fermented Foods of the Himalaya region (Gundruk, Sinki, and Maseura). Nutr. Food Process. 2021, 4. [Google Scholar] [CrossRef] [PubMed]
- Khadka, D.B.; Lama, J.P. Chapter 2—Traditional fermented food of Nepal and their nutritional and nutraceutical potential. In Nutritional and Health Aspects of Food in South Asian Countris; Prakash, J., Waisundara, V., Prakash, V., Eds.; Academic Press: Oxford, UK, 2020; pp. 165–194. [Google Scholar]
- Oh, B.H.; Kim, Y.S.; Jeong, P.H.; Shin, D.H. Quality characteristics of Kochujang meju prepared with Aspergillus species and Bacillus subtilis. Food Sci. Biotechnol. 2006, 15, 549–554. [Google Scholar]
- Shin, D.; Jeong, D. Korean traditional fermented soybean products: Jang. J. Ethn. Foods 2015, 2, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Chourasia, R.; Phukon, L.C.; Abedin, M.; Padhi, S.; Singh, S.P.; Rai, A.K. Bioactive peptides in fermented foods and their application: A critical review. Syst. Microbiol. Biomanufacturing 2022, 3, 88–109. [Google Scholar] [CrossRef]
- Chan, E.; Wong, S.; Kezuka, M.; Oshiro, N.; Chan, H. Natto and miso: An overview on their preparation, bioactive components and health-promoting effects. Food Res. 2021, 5, 446–452. [Google Scholar] [CrossRef]
- Sarkar, P.; Nout, M.J. Handbook of Indigenous Foods Involving Alkaline Fermentation; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Zhang, L.; Wu, J.-L.; Xu, P.; Guo, S.; Zhou, T.; Li, N. Soy protein degradation drives diversity of amino-containing compounds via Bacillus subtilis natto fermentation. Food Chem. 2022, 388, 133034. [Google Scholar] [CrossRef]
- Rohimah, A.; Setiawan, B.; Roosita, K.; Palupi, E. The Amino Acid and Mineral Content of Black Oncom Processed with Fermentation Modifications. J. Gizi Dan Pangan 2021, 16, 115–120. [Google Scholar]
- Rohimah, A.; Setiawan, B.; Palupi, E.; Sulaeman, A.; Handharyani, E. Physical Characteristics and Nutritional Contents of Peanut Flour and Black Oncom (Fermented Peanut Meal) Flour. In Proceedings of the International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020), Bengkulu, Indonesia, 8 October 2020. [Google Scholar]
- Liang, J.; Li, D.; Shi, R.; Wang, J.; Guo, S.; Ma, Y.; Xiong, K. Effects of microbial community succession on volatile profiles and biogenic amine during sufu fermentation. LWT 2019, 114, 108379. [Google Scholar] [CrossRef]
- Nout, M.; Kiers, J. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, C.; Zhang, Y.; Chen, X.; Huang, Z.; Xing, G.; Dong, M. Degradation of anti-nutritional factors and reduction of immunoreactivity of tempeh by co-fermentation with Rhizopus oligosporus RT-3 and Actinomucor elegans DCY-1. Int. J. Food Sci. Technol. 2019, 54, 1836–1848. [Google Scholar] [CrossRef]
- Nedele, A.-K.; Gross, S.; Rigling, M.; Zhang, Y. Reduction of green off-flavor compounds: Comparison of key odorants during fermentation of soy drink with Lycoperdon pyriforme. Food Chem. 2020, 334, 127591. [Google Scholar] [CrossRef] [PubMed]
- El Youssef, C.; Bonnarme, P.; Fraud, S.; Péron, A.-C.; Helinck, S.; Landaud, S. Sensory Improvement of a Pea Protein-Based Product Using Microbial Co-Cultures of Lactic Acid Bacteria and Yeasts. Foods 2020, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Galli, V.; Venturi, M.; Pini, N.; Guerrini, S.; Granchi, L. Exploitation of sourdough lactic acid bacteria to reduce raffinose family oligosaccharides (RFOs) content in breads enriched with chickpea flour. Eur. Food Res. Technol. 2019, 245, 2353–2363. [Google Scholar] [CrossRef]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. LWT 2021, 150, 111927. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- De Pasquale, I.; Verni, M.; Verardo, V.; Gómez-Caravaca, A.M.; Rizzello, C.G. Nutritional and Functional Advantages of the Use of Fermented Black Chickpea Flour for Semolina-Pasta Fortification. Foods 2021, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Sáez, G.D.; Sabater, C.; Fara, A.; Zárate, G. Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. J. Appl. Microbiol. 2021, 133, 181–199. [Google Scholar] [CrossRef]
- Wang, S.; Chelikani, V.; Serventi, L. Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT 2018, 97, 570–572. [Google Scholar] [CrossRef]
- Haq, F.U.; Sameen, A.; Zaman, Q.U.; Mushtaq, B.S.; Hussain, M.B.; Javed, A.; Plygun, S.; Korneeva, O.; Shariati, M.A. Development and evalutation of yogurt supplemented with lentil flour. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 1005–1009. [Google Scholar] [CrossRef] [Green Version]
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Baruzzi, F. Design and Characterization of a Novel Fermented Beverage from Lentil Grains. Foods 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, K.; Lidzba, N.; Ueberham, E.; Eisner, P.; Schweiggert-Weisz, U. Fermentation of Lupin Protein Hydrolysates—Effects on Their Functional Properties, Sensory Profile and the Allergenic Potential of the Major Lupin Allergen Lup an 1. Foods 2021, 10, 281. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Coda, R.; Säde, E.; Tuomainen, P.; Tenkanen, M.; Katina, K. In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. Int. J. Food Microbiol. 2017, 248, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT 2015, 63, 1317–1324. [Google Scholar] [CrossRef]
- Li, W.; Wang, T. Effect of solid-state fermentation with Bacillus subtilis lwo on the proteolysis and the antioxidative properties of chickpeas. Int. J. Food Microbiol. 2020, 338, 108988. [Google Scholar] [CrossRef]
- Kumitch, H.M.; Stone, A.K.; Nickerson, M.T.; Korber, D.R.; Tanaka, T. Effect of fermentation time on the physicochemical and functional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 2020, 97, 416–428. [Google Scholar] [CrossRef]
- Chawla, P.; Bhandari, L.; Sadh, P.K.; Kaushik, R. Impact of Solid-State Fermentation (Aspergillus oryzae) on Functional Properties and Mineral Bioavailability of Black-Eyed Pea (Vigna unguiculata) Seed Flour. Cereal Chem. 2017, 94, 437–442. [Google Scholar] [CrossRef]
- Jeong, D.; Han, J.-A.; Liu, Q.; Chung, H.-J. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. Food Hydrocoll. 2018, 90, 367–376. [Google Scholar] [CrossRef]
- Keskin, S.O.; Ali, T.M.; Ahmed, J.; Shaikh, M.; Siddiq, M.; Uebersax, M.A. Physico-chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legume Sci. 2021, 4, e117. [Google Scholar] [CrossRef]
- Li, Y.; Niu, L.; Guo, Q.; Shi, L.; Deng, X.; Liu, X.; Xiao, C. Effects of fermentation with lactic bacteria on the structural characteristics and physicochemical and functional properties of soluble dietary fiber from prosomillet bran. LWT 2021, 154, 112609. [Google Scholar] [CrossRef]
- Arise, A.K.; Taiwo, G.O.; Malomo, S.A. Amino acid profile, pasting, and sensory properties of croissant snacks produced from wheat-fermented Bambara flour. Legum. Sci. 2020, 2, e53. [Google Scholar] [CrossRef]
- Awuchi, C.; Victory, I.; Echeta, C. The Functional Properties of Foods and Flours. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2019, 5, 139–160. Available online: https://www.ijaar.org/articles/Volume5-Number11/Sciences-Technology-Engineering/ijaar-ste-v5n11-nov19-p16.pdf (accessed on 2 July 2023).
- Wei, C.; Ge, Y.; Zhao, S.; Liu, D.; Jiliu, J.; Wu, Y.; Hu, X.; Wei, M.; Wang, Y.; Wang, W.; et al. Effect of Fermentation Time on Molecular Structure and Physicochemical Properties of Corn Ballast Starch. Front. Nutr. 2022, 9, 885662. [Google Scholar] [CrossRef]
- Baptista, A.; Pinho, O.; Pinto, E.; Casal, S.; Mota, C.; Ferreira, I.M.P.L.V.O. Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. J. Food Meas. Charact. 2016, 11, 442–450. [Google Scholar] [CrossRef]
- Klupsaite, D.; Juodeikiene, G.; Zadeike, D.; Bartkiene, E.; Maknickiene, Z.; Liutkute, G. The influence of lactic acid fermentation on functional properties of narrow-leaved lupine protein as functional additive for higher value wheat bread. LWT 2017, 75, 180–186. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arteaga, V.G.; Leffler, S.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Curr. Res. Food Sci. 2020, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Çabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.Z.; Subramanian, P.; Dar, B. Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. LWT 2022, 158, 113106. [Google Scholar] [CrossRef]
- Adebowale, O.; Maliki, K. Effect of fermentation period on the chemical composition and functional properties of Pigeon pea (Cajanus cajan) seed flour. Int. Food Res. J. 2011, 18, 1329–1333. [Google Scholar]
- Osman, M.A. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agric. Sci. 2011, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rul, F.; Béra-Maillet, C.; Champomier-Vergès, M.C.; El-Mecherfi, K.E.; Foligné, B.; Michalski, M.C.; Milenkovic, D.; Savary-Auzeloux, I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct. 2022, 13, 4804–4824. [Google Scholar] [CrossRef]
- Xu, Y.; Coda, R.; Holopainen-Mantila, U.; Laitila, A.; Katina, K.; Tenkanen, M. Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Res. Int. 2018, 115, 191–199. [Google Scholar] [CrossRef]
- Demarinis, C.; Verni, M.; Pinto, L.; Rizzello, C.G.; Baruzzi, F. Use of Selected Lactic Acid Bacteria for the Fermentation of Legume-Based Water Extracts. Foods 2022, 11, 3346. [Google Scholar] [CrossRef]
- Zhao, Y.-S.; Eweys, A.S.; Zhang, J.-Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.-B.; Xiao, X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- Rajendran, S.C.; Chamlagain, B.; Kariluoto, S.; Piironen, V.; Saris, P. Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, byLactococcus lactisN8 andSaccharomyces boulardiiSAA655. J. Appl. Microbiol. 2017, 122, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Kapur, S.; Chen, A.Y.; Cane, D.E.; Khosla, C. Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Proc. Natl. Acad. Sci. USA 2010, 107, 22066–22071. [Google Scholar] [CrossRef]
- Slaný, O.; Klempová, T.; Marcinčák, S.; Čertík, M. Correction to: Production of high-value bioproducts enriched with γ-linolenic acid and β-carotene by filamentous fungi Umbelopsis isabellina using solid-state fermentations. Ann. Microbiol. 2020, 70, 17. [Google Scholar] [CrossRef]
- Adeyemo, S.; Onilude, A. Enzymatic Reduction of Anti-nutritional Factors in Fermenting Soybeans by Lactobacillus plantarum Isolates from Fermenting Cereals. Niger. Food J. 2013, 31, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef]
- Cressey, P.; Saunders, D.; Goodman, J. Cyanogenic glycosides in plant-based foods available in New Zealand. Food Addit. Contam. Part A 2013, 30, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Obafemi, Y.D.; Oranusi, S.U.; Ajanaku, K.O.; Akinduti, P.A.; Leech, J.; Cotter, P.D. African fermented foods: Overview, emerging benefits, and novel approaches to microbiome profiling. NPJ Sci. Food 2022, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Timothy, B.; Iliyasu, A.H.; Anvikar, A.R. Bacteriocins of Lactic Acid Bacteria and Their Industrial Application. Curr. Top. Lact. Acid Bact. Probiotics 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Yang, A.; Zuo, L.; Cheng, Y.; Wu, Z.; Li, X.; Tong, P.; Chen, H. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food Funct. 2018, 9, 1899–1909. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Untersmayr, E.; Klems, M.; Jensen-Jarolim, E. The Effect of Digestion and Digestibility on Allergenicity of Food. Nutrients 2018, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.F.; García-Béjar, B.; Bang-Berthelsen, C.H.; Hansen, E.B. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int. J. Food Microbiol. 2022, 381, 109889. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senanayake, D.; Torley, P.J.; Chandrapala, J.; Terefe, N.S. Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes. Fermentation 2023, 9, 635. https://doi.org/10.3390/fermentation9070635
Senanayake D, Torley PJ, Chandrapala J, Terefe NS. Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes. Fermentation. 2023; 9(7):635. https://doi.org/10.3390/fermentation9070635
Chicago/Turabian StyleSenanayake, Dhananga, Peter J. Torley, Jayani Chandrapala, and Netsanet Shiferaw Terefe. 2023. "Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes" Fermentation 9, no. 7: 635. https://doi.org/10.3390/fermentation9070635
APA StyleSenanayake, D., Torley, P. J., Chandrapala, J., & Terefe, N. S. (2023). Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes. Fermentation, 9(7), 635. https://doi.org/10.3390/fermentation9070635