Crop Improvement: Comparison of Transgenesis and Gene Editing
Abstract
:1. Introduction
2. Improving Economically Valuable Traits in Crops
2.1. Modifying Plant Genomes Using Gene Engineering Technologies
2.2. Genome-Editing Technologies
3. Advantages and Disadvantages of Two New Molecular Technologies for Modifying Plant Genomes
3.1. Features of the Integration of Foreign Genes into the Plant Genome
3.2. Ability to Cause Mutations in the Genome of a Modified Plant
3.3. Residual Genetic Engineering Tools in the Plant Genome and Their Preservation in Generations of Transgenic and Edited Plants
4. T-DNA Mutagenesis and Editing in Solving Fundamental Problems of Gene Functioning
5. Genome-Editing Methods for Improving Economically Valuable Plant Traits
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tuncel, A.; Pan, C.; Sprink, T.; Wilhelm, R.; Barrangou, R.; Li, L.; Shih, P.M.; Varshney, R.K.; Tripathi, L.; Van Eck, J.; et al. Genome-edited foods. Nat. Rev. Bioeng. 2023, 1, 799–816. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, J.; Baur, M.; Bogucki, A.; Potrykus, I. Gene targeting in plants. EMBO J. 1988, 7, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Puchta, H.; Dujon, B.; Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993, 21, 5034–5040. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, G.; Gao, X.; Zhang, L.; Zhang, Y.; Cai, X.; Yuan, X.; Guo, X. CRISPR/Cas9 gene editing technology: A precise and efficient tool for crop quality improvement. Planta 2023, 258, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Z.; Unver, T.; Zhang, B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J. Adv. Res. 2021, 29, 207–221. [Google Scholar] [CrossRef]
- Brookes, G. Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change Associated with Pesticide Use Change. GM Crops Food 2022, 13, 262–289. [Google Scholar] [CrossRef]
- Gelvin, S.B. Integration of Agrobacterium T-DNA into the Plant Genome. Annu. Rev. Genet. 2017, 51, 195–217. [Google Scholar] [CrossRef]
- Lee, J.; Chin, J.H.; Ahn, S.N.; Koh, H. Brief History and Perspectives on Plant Breeding. In Current Technologies in Plant Molecular Breeding; Springer: Dordrecht, The Netherlands, 2015; pp. 1–14. [Google Scholar] [CrossRef]
- Jankowicz-Cieslak, J.; Mba, C.; Till, B.J. Mutagenesis for Crop Breeding and Functional Genomics. In Biotechnologies for Plant Mutation Breeding; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–18. ISBN 978-3-319-45019-3. [Google Scholar]
- Kayalvizhi, K.; Kumar, A.R.; Sankari, A.; Anand, M. Induction of Mutation in Flower Crops—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1320–1329. [Google Scholar] [CrossRef]
- Hernández-Muñoz, S.; Pedraza-Santos, M.E.; López, P.A.; Gómez-Sanabria, J.M.; Morales-García, J.L. Mutagenesis in the improvement of ornamental plants. Rev. Chapingo Ser. Hortic. 2019, 25, 151–167. [Google Scholar] [CrossRef]
- Suprasanna, P.; Ganapathi, T.R.; Ghag, S.B.; Jain, S.M. Genetic modifications of horticultural plants by induced mutations and transgenic approach. Acta Hortic. 2017, 219–232. [Google Scholar] [CrossRef]
- Shelake, R.M.; Pramanik, D.; Kim, J.Y. Evolution of plant mutagenesis tools: A shifting paradigm from random to targeted genome editing. Plant Biotechnol. Rep. 2019, 13, 423–445. [Google Scholar] [CrossRef]
- Rustgi, S.; Naveed, S.; Windham, J.; Zhang, H.; Demirer, G.S. Plant biomacromolecule delivery methods in the 21st century. Front. Genome Ed. 2022, 4, 1011934. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, R.; Kumar, S.R.; Hema, J.; Baskar, V. Advances in Plant Transgenics: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9789811396243. [Google Scholar]
- Mirzaee, M.; Osmani, Z.; Frébortová, J.; Frébort, I. Recent advances in molecular farming using monocot plants. Biotechnol. Adv. 2022, 58, 107913. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Xu, M.; Radani, Y.; Yang, L. Technological Development and Application of Plant Genetic Transformation. Int. J. Mol. Sci. 2023, 24, 10646. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Jianyu, L.; Xu, T.; Noman, M.; Jameel, A.; Na, Y.; Yuanyuan, D.; Nan, W.; Xiaowei, L.; Fawei, W.; et al. Overexpression of a Novel Cytochrome P450 Promotes Flavonoid Biosynthesis and Osmotic Stress Tolerance in Transgenic Arabidopsis. Genes 2019, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.; Jameel, A.; Qiang, W.-D.; Ahmad, N.; Liu, W.-C.; Wang, F.-W.; Li, H.-Y. Overexpression of GmCAMTA12 Enhanced Drought Tolerance in Arabidopsis and Soybean. Int. J. Mol. Sci. 2019, 20, 4849. [Google Scholar] [CrossRef]
- Song, G.Q.; Prieto, H.; Orbovic, V. Agrobacterium-mediated transformation of tree fruit crops: Methods, progress, and challenges. Front. Plant Sci. 2019, 10, 226. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, Y.; Li, R.; Qu, P.; Cheng, C. Agrobacterium-mediated in planta transformation of horticultural plants: Current status and future prospects. Sci. Hortic. 2024, 325, 112693. [Google Scholar] [CrossRef]
- Sretenović-Rajičić, T.; Ninković, S.; Vinterhalter, B.; Miljuš-Djukić, J.; Vinterhalter, D. Introduction of resistance to herbicide Basta® in Savoy cabbage. Biol. Plant. 2004, 48, 431–436. [Google Scholar] [CrossRef]
- Yi, G.; Shin, Y.M.; Choe, G.; Shin, B.; Kim, Y.S.; Kim, K.M. Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol. Lett. 2007, 29, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A.; Hussain, T.; Rahamkulov, I.; Demirel, U.; Çalışkan, M.E. Transgenic potato lines expressing CP4-EPSP synthase exhibit resistance against glyphosate. Plant Cell Tissue Organ Cult. 2020, 140, 23–34. [Google Scholar] [CrossRef]
- Benedito, V.A.; van Kronenburg-van der Ven, B.C.E.; van Tuyl, J.M.; Angenent, G.C.; Krens, F.A. Transformation of Lilium longiflorum via particle bombardment and generation of herbicide-resistant plants. Crop Breed. Appl. Biotechnol. 2005, 5, 259–264. [Google Scholar] [CrossRef]
- Veillet, F.; Perrot, L.; Chauvin, L.; Kermarrec, M.P.; Guyon-Debast, A.; Chauvin, J.E.; Nogué, F.; Mazier, M. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci. 2019, 20, 402. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Jiang, L.; Cui, X.; Zhang, J.; Guo, S.; Li, M.; Zhang, H.; Ren, Y.; Gong, G.; Zong, M.; et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 2018, 37, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Hummel, A.W.; Chauhan, R.D.; Cermak, T.; Mutka, A.M.; Vijayaraghavan, A.; Boyher, A.; Starker, C.G.; Bart, R.; Voytas, D.F.; Taylor, N.J. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J. 2018, 16, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Si, X.; Ji, X.; Fan, R.; Liu, J.; Chen, K.; Wang, D.; Gao, C. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 2018, 36, 894–900. [Google Scholar] [CrossRef]
- Tashkandi, M.; Ali, Z.; Aljedaani, F.; Shami, A.; Mahfouz, M.M. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal. Behav. 2018, 13, e1525996. [Google Scholar] [CrossRef]
- Ye, C.; Li, H. 20 years of transgenic research in China for resistance to Papaya ringspot virus. Transgenic Plant J. 2010, 4, 58–63. [Google Scholar]
- Koul, B.; Srivastava, S.; Sanyal, I.; Tripathi, B.; Sharma, V.; Amla, D.V. Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. SpringerPlus 2014, 3, 84. [Google Scholar] [CrossRef]
- Ali, S.; Mir, Z.A.; Tyagi, A.; Mehari, H.; Meena, R.P.; Bhat, J.A.; Yadav, P.; Papalou, P.; Rawat, S.; Grover, A. Overexpression of NPR1 in brassica juncea confers broad spectrum resistance to fungal pathogens. Front. Plant Sci. 2017, 8, 1693. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Lim, S.; Kang, K.K.; Jung, Y.J.; Lee, Y.H.; Choi, Y.E.; Sano, H. Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. Plant Biotechnol. 2011, 28, 393–395. [Google Scholar] [CrossRef]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2019, 2, 46. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Mohanty, J.N.; Mahanty, B.; Joshi, R.K. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta 2021, 254, 5. [Google Scholar] [CrossRef] [PubMed]
- Malnoy, M.; Viola, R.; Jung, M.-H.; Koo, O.-J.; Kim, S.; Kim, J.-S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, G.; Biricolti, S.; Locatelli, F.; Baldoni, E.; Mattana, M. Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep. 2008, 27, 1677–1686. [Google Scholar] [CrossRef]
- Subramanyam, K.; Sailaja, K.V.; Subramanyam, K.; Muralidhara Rao, D.; Lakshmidevi, K. Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tissue Organ Cult. 2011, 105, 181–192. [Google Scholar] [CrossRef]
- Jin, W.; Dong, J.; Hu, Y.; Lin, Z.; Xu, E.; Han, Z. Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. HortScience 2009, 44, 35–39. [Google Scholar] [CrossRef]
- He, R.; Zhuang, Y.; Cai, Y.; Agüero, C.B.; Liu, S.; Wu, J.; Deng, S.; Walker, M.A.; Lu, J.; Zhang, Y. Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front. Plant Sci. 2018, 9, 970. [Google Scholar] [CrossRef]
- Ahmad, R.; Kim, Y.H.; Kim, M.D.; Kwon, S.Y.; Cho, K.; Lee, H.S.; Kwak, S.S. Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol. Plant. 2010, 138, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Yarra, R.; Kirti, P.B. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct. Integr. Genom. 2019, 19, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Qiang, X.; Jia, Z.; Li, L.; Hu, J.; Yin, M.; Xia, S.; Chen, B.; Qi, J.; Li, Q.; et al. Knockout of a novel salt responsive gene SlABIG1 enhance salinity tolerance in tomato. Environ. Exp. Bot. 2022, 200, 104903. [Google Scholar] [CrossRef]
- Makhotenko, A.V.; Khromov, A.V.; Snigir, E.A.; Makarova, S.S.; Makarov, V.V.; Suprunova, T.P.; Kalinina, N.O.; Taliansky, M.E. Functional Analysis of Coilin in Virus Resistance and Stress Tolerance of Potato Solanum tuberosum using CRISPR-Cas9 Editing. Dokl. Biochem. Biophys. 2019, 484, 88–91. [Google Scholar] [CrossRef]
- Kirchner, T.W.; Niehaus, M.; Rössig, K.L.; Lauterbach, T.; Herde, M.; Küster, H.; Schenk, M.K. Molecular background of pi deficiency-induced root hair growth in brassica carinata—A fasciclin-like arabinogalactan protein is involved. Front. Plant Sci. 2018, 9, 1372. [Google Scholar] [CrossRef] [PubMed]
- Bertier, L.D.; Ron, M.; Huo, H.; Bradford, K.J.; Britt, A.B.; Michelmore, R.W. High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 Genes Genomes Genet. 2018, 8, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Teper-Bamnolker, P.; Roitman, M.; Katar, O.; Peleg, N.; Aruchamy, K.; Suher, S.; Doron-Faigenboim, A.; Leibman, D.; Omid, A.; Belausov, E.; et al. An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. Plant J. 2023, 113, 327–341. [Google Scholar] [CrossRef]
- Kaur, P.; Samuel, D.V.K.; Bansal, K.C. Fruit-specific Over-expression of LeEXP1 Gene in Tomato Alters Fruit Texture. J. Plant Biochem. Biotechnol. 2010, 19, 177–183. [Google Scholar] [CrossRef]
- Murata, M.; Nishimura, M.; Murai, N.; Haruta, M.; Homma, S.; Itoh, Y. A Transgenic Apple Callus Showing Reduced Polyphenol Oxidase Activity and Lower Browning Potential. Biosci. Biotechnol. Biochem. 2001, 65, 383–388. [Google Scholar] [CrossRef]
- Bulley, S.; Wright, M.; Rommens, C.; Yan, H.; Rassam, M.; Lin-Wang, K.; Andre, C.; Brewster, D.; Karunairetnam, S.; Allan, A.C.; et al. Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol. J. 2012, 10, 390–397. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chung, I.M.; Yang, C.H. Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid (oncidium gower ramsey). Acta Physiol. Plant. 2012, 34, 1295–1302. [Google Scholar] [CrossRef]
- Nonaka, S.; Arai, C.; Takayama, M.; Matsukura, C.; Ezura, H. Efficient increase of Γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 2017, 7, 7057. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Chen, S.; Tian, H.; Fu, D.; Zhu, B.; Luo, Y.; Zhu, H. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 2018, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.S.; Samuelsson, M.; Hofvander, P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017, 36, 117–128. [Google Scholar] [CrossRef] [PubMed]
- González, M.N.; Massa, G.A.; Andersson, M.; Turesson, H.; Olsson, N.; Fält, A.S.; Storani, L.; Décima Oneto, C.A.; Hofvander, P.; Feingold, S.E. Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. Front. Plant Sci. 2020, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Alok, A.; Shivani; Kumar, P.; Kaur, N.; Awasthi, P.; Chaturvedi, S.; Pandey, P.; Pandey, A.; Pandey, A.K.; et al. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab. Eng. 2020, 59, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Chen, K.; Zhu, H.; Zhang, R.; Zhang, H.; Li, B.; Gao, C. Fine-tuning sugar content in strawberry. Genome Biol. 2020, 21, 230. [Google Scholar] [CrossRef]
- Tian, S.; Jiang, L.; Gao, Q.; Zhang, J.; Zong, M.; Zhang, H.; Ren, Y.; Guo, S.; Gong, G.; Liu, F.; et al. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep. 2017, 36, 399–406. [Google Scholar] [CrossRef]
- Demirer, G.S.; Zhang, H.; Goh, N.S.; González-Grandío, E.; Landry, M.P. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019, 14, 2954–2971. [Google Scholar] [CrossRef]
- Peterson, D.; Barone, P.; Lenderts, B.; Schwartz, C.; Feigenbutz, L.; St. Clair, G.; Jones, S.; Svitashev, S. Advances in Agrobacterium transformation and vector design result in high frequency targeted gene insertion in maize. Plant Biotechnol. J. 2021, 19, 2000–2010. [Google Scholar] [CrossRef]
- Laforest, L.C.; Nadakuduti, S.S. Advances in Delivery Mechanisms of CRISPR Gene-Editing Reagents in Plants. Front. Genome Ed. 2022, 4, 830178. [Google Scholar] [CrossRef] [PubMed]
- Nandula, V.K. Herbicide Resistance Traits in Maize and Soybean: Current Status and Future Outlook. Plants 2019, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.R.; Shan, G.; Walsh, T.A.; Lira, J.M.; Cui, C.; Song, P.; Zhuang, M.; Arnold, N.L.; Lin, G.; Yau, K.; et al. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. USA 2010, 107, 20240–20245. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, S.M.; Williams, B.J.; Parker, K.M. Herbicide Drift from Genetically Engineered Herbicide-Tolerant Crops. Environ. Sci. Technol. 2021, 55, 1559–15568. [Google Scholar] [CrossRef] [PubMed]
- Gatehouse, A.M.R.; Ferry, N.; Edwards, M.G.; Bell, H.A. Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1438–1452. [Google Scholar] [CrossRef] [PubMed]
- Petek, M.; Gerasymenko, I.; Juter, M.; Kallam, K.; Gim, E.M.; Gondolf, J.; Nordmann, A.; Gruden, K.; Orzaez, D. Insect pest management in the age of synthetic biology. Plant Biotechnol. J. 2022, 20, 25–36. [Google Scholar] [CrossRef]
- Paper, R.; Kumar, S.; Chandra, A.; Pandey, K.C.; Grassland, I. Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. J. Environ. Biol. 2008, 29, 641–653. [Google Scholar]
- Alemu, M. Trends of Biotechnology Applications in Pest Management: A Review Role of Plant Protection for Improving. Int. J. Appl. Sci. Biotechnol. 2020, 8, 108–131. [Google Scholar] [CrossRef]
- AgbioInvestor. Global GM Crop Area Review May 2023; AgbioInvestor: Pathhead, UK, 2023. [Google Scholar]
- Sohi, M.; Pitesky, M. Analyzing public sentiment toward GMOs via social media between 2019–2021. GM Crops Food 2023, 14, 2190294. [Google Scholar] [CrossRef]
- Teferra, T.F. Should we still worry about the safety of GMO foods? Why and why not? A review. Food Sci. Nutr. 2021, 9, 5324–5331. [Google Scholar] [CrossRef]
- Mahfouz, M.M.; Li, L. TALE nucleases and next generation GM crops. GM Crops 2011, 2, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.J.; Lo, T.-W.; Zeitler, B.; Pickle, C.S.; Ralston, E.J.; Lee, A.H.; Amora, R.; Miller, J.C.; Leung, E.; Meng, X.; et al. Targeted genome editing across species using ZFNs and TALENs. Science 2011, 333, 307. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.K.; Doyon, Y.; Miller, J.C.; Dekelver, R.C.; Moehle, E.A.; Worden, S.E.; Mitchell, J.C.; Arnold, N.L.; Gopalan, S.; Meng, X.; et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, K.; Osakabe, Y.; Toki, S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA 2010, 107, 12034–12039. [Google Scholar] [CrossRef] [PubMed]
- Hilioti, Z.; Ganopoulos, I.; Ajith, S.; Bossis, I.; Tsaftaris, A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: The tomato LEC1-LIKE4 gene case. Plant Cell Rep. 2016, 35, 2241–2255. [Google Scholar] [CrossRef]
- Butler, N.M.; Baltes, N.J.; Voytas, D.F.; Douches, D.S. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Front. Plant Sci. 2016, 7, 1045. [Google Scholar] [CrossRef]
- Peer, R.; Rivlin, G.; Golobovitch, S.; Lapidot, M.; Gal-On, A.; Vainstein, A.; Tzfira, T.; Flaishman, M.A. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 2015, 241, 941–951. [Google Scholar] [CrossRef]
- Clasen, B.M.; Stoddard, T.J.; Luo, S.; Demorest, Z.L.; Li, J.; Cedrone, F.; Tibebu, R.; Davison, S.; Ray, E.E.; Daulhac, A.; et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 2016, 14, 169–176. [Google Scholar] [CrossRef]
- Lor, V.S.; Starker, C.G.; Voytas, D.F.; Weiss, D.; Olszewski, N.E. Targeted Mutagenesis of the Tomato PROCERA Gene Using Transcription Activator-like Effector Nucleases. Plant Physiol. 2014, 166, 1288–1291. [Google Scholar] [CrossRef]
- Sun, Z.; Li, N.; Huang, G.; Xu, J.; Pan, Y.; Wang, Z.; Tang, Q.; Song, M.; Wang, X. Site-Specific Gene Targeting Using Transcription Activator-like Effector (TALE)-Based Nuclease in Brassica oleracea. J. Integr. Plant Biol. 2013, 55, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013, 31, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Fineran, P.C.; Charpentier, E. Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. Virology 2012, 434, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Garneau, J.E.; Dupuis, M.È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA—Guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–822. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Li, W.; Teng, F.; Li, T.; Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31, 684–686. [Google Scholar] [CrossRef]
- Pramanik, D.; Shelake, R.M.; Kim, M.J.; Kim, J.Y. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. Mol. Plant 2021, 14, 127–150. [Google Scholar] [CrossRef]
- Jeong, Y.K.; Song, B.; Bae, S. Current Status and Challenges of DNA Base Editing Tools. Mol. Ther. 2020, 28, 1938–1952. [Google Scholar] [CrossRef]
- Molla, K.A.; Sretenovic, S.; Bansal, K.C.; Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 2021, 7, 1166–1187. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Hu, B.; Jiang, W.; Wang, Y.; Yan, J.; Ma, F.; Guan, Q.; Xu, J. Advances in Plant Epigenome Editing Research and Its Application in Plants. Int. J. Mol. Sci. 2023, 24, 3442. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Sretenovic, S.; Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 2021, 60, 101980. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Jin, S.; Zong, Y.; Yu, H.; Zhu, Z.; Liu, G.; Kou, L.; Wang, Y.; Qiu, J.L.; Li, J.; et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 2021, 39, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.K.; Puchta, H. Novel CRISPR/Cas applications in plants: From prime editing to chromosome engineering. Transgenic Res. 2021, 30, 529–549. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, Y. Beyond knockouts: Fine-tuning regulation of gene expression in plants with CRISPR-Cas-based promoter editing. New Phytol. 2023, 239, 868–874. [Google Scholar] [CrossRef]
- Moradpour, M.; Abdulah, S.N.A. CRISPR/dCas9 platforms in plants: Strategies and applications beyond genome editing. Plant Biotechnol. J. 2019, 18, 32–44. [Google Scholar] [CrossRef]
- Shelake, R.M.; Kadam, U.S.; Kumar, R.; Pramanik, D.; Singh, A.K.; Kim, J.-Y. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Commun. 2022, 3, 100417. [Google Scholar] [CrossRef]
- Theuns, I.; Windels, P.; De Buck, S.; Depicker, A.; Van Bockstaele, E.; Loose, M. De Identification and characterization of T-DNA inserts by T-DNA fingerprinting. Euphytica 2002, 123, 75–84. [Google Scholar] [CrossRef]
- Jupe, F.; Rivkin, A.C.; Michael, T.P.; Zander, M.; Motley, S.T.; Sandoval, J.P.; Keith Slotkin, R.; Chen, H.; Castanon, R.; Nery, J.R.; et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet. 2019, 15, e1007819. [Google Scholar] [CrossRef]
- Butaye, K.M.J.; Cammue, B.P.A.; Delauré, S.L.; De Bolle, M.F.C. Approaches to Minimize Variation of Transgene Expression in Plants. Mol. Breed. 2005, 16, 79–91. [Google Scholar] [CrossRef]
- Permyakova, N.V.; Deineko, E.V.; Shumny, V.K. Specific features of vector sequences insertion in the genome of transgenic plants. Russ. J. Genet. 2007, 43, 1257–1265. [Google Scholar] [CrossRef]
- Nicolia, A.; Ferradini, N.; Veronesi, F.; Rosellini, D. An insight into T-DNA integration events in Medicago sativa. Int. J. Mol. Sci. 2017, 18, 1951. [Google Scholar] [CrossRef] [PubMed]
- Pukhnacheva, N.V.; Novoselya, T.V.; Zotkevich, E.A.; Deineko, E.V. Insertion of vector sequences in the genome of transgenic plants. Russ. J. Genet. 2005, 41, 985–990. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, L.; Gupta, A.; Tricoli, D.; Edwards, K.J.; Yang, B.; Li, W. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 2019, 17, 1623–1635. [Google Scholar] [CrossRef]
- Permyakova, N.V.; Marenkova, T.V.; Belavin, P.A.; Zagorskaya, A.A.; Sidorchuk, Y.V.; Deineko, E.V. CRISPR/Cas9-Mediated Targeted DN=A Integration: Rearrangements at the Junction of Plant and Plasmid DNA. Int. J. Mol. Sci. 2022, 23, 8636. [Google Scholar] [CrossRef]
- Watakabe, I.; Hashimoto, H.; Kimura, Y.; Yokoi, S.; Naruse, K.; Higashijima, S.I. Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering. Zool. Lett. 2018, 4, 3. [Google Scholar] [CrossRef]
- Barone, P.; Wu, E.; Lenderts, B.; Anand, A.; Gordon-Kamm, W.; Svitashev, S.; Kumar, S. Efficient Gene Targeting in Maize Using Inducible CRISPR-Cas9 and Marker-free Donor Template. Mol. Plant 2020, 13, 1219–1227. [Google Scholar] [CrossRef]
- Pavani, G.; Amendola, M. Targeted Gene Delivery: Where to Land. Front. Genome Ed. 2021, 2, 609650. [Google Scholar] [CrossRef]
- Wang, M.; Lu, Y.; Botella, J.R.; Mao, Y.; Hua, K.; Zhu, J. kang Gene Targeting by Homology-Directed Repair in Rice Using a Geminivirus-Based CRISPR/Cas9 System. Mol. Plant 2017, 10, 1007–1010. [Google Scholar] [CrossRef]
- Rozov, S.M.; Permyakova, N.V.; Deineko, E.V. The Problem of the Low Rates of CRISPR/Cas9-Mediated Knock-ins in Plants: Approaches and Solutions. Int. J. Mol. Sci. 2019, 20, 3371. [Google Scholar] [CrossRef] [PubMed]
- Cantos, C.; Francisco, P.; Trijatmiko, K.R.; Slamet-loedin, I.; Chadha-mohanty, P.K. Identification of “ safe harbor ” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front. Plant Sci. 2014, 5, 302. [Google Scholar] [CrossRef]
- Kelly, J.J.; Saee-Marand, M.; Nyström, N.N.; Evans, M.M.; Chen, Y.; Martinez, F.M.; Hamilton, A.M.; Ronald, J.A. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. Sci. Adv. 2021, 7, eabc3791. [Google Scholar] [CrossRef] [PubMed]
- Aznauryan, E.; Yermanos, A.; Kinzina, E.; Devaux, A.; Kapetanovic, E.; Milanova, D.; Church, G.M.; Reddy, S.T. Discovery and validation of human genomic safe harbor sites for gene and cell therapies. Cell Rep. Methods 2022, 2, 100154. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Papapetrou, E.P.; Bushman, F.D. Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer 2012, 12, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Dong, O.X.; Yu, S.; Jain, R.; Zhang, N.; Duong, P.Q.; Butler, C.; Li, Y.; Lipzen, A.; Martin, J.A.; Barry, K.W.; et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 2020, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Lei, Y.; Li, B.; Gao, Q.; Li, Y.; Cao, W.; Yang, C.; Li, H.; Wang, Z.; Li, Y.; et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 2023, 1–23. [Google Scholar] [CrossRef]
- Gang, H.; Liu, G.; Zhang, M.; Zhao, Y.; Jiang, J.; Chen, S. Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant. BMC Genom. 2019, 20, 311. [Google Scholar] [CrossRef]
- Pucker, B.; Kleinbölting, N.; Weisshaar, B. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis. BMC Genom. 2021, 22, 599. [Google Scholar] [CrossRef]
- Lopez, L.S.; Völkner, C.; Day, P.M.; Lewis, C.M.; Lewis, C.L.; Schneider, D.; Correa Galvis, V.; Cruz, J.A.; Armbruster, U.; Kramer, D.M.; et al. The Arabidopsis T-DNA mutant SALK_008491 carries a 14-kb deletion on chromosome 3 that provides rare insights into the plant response to dynamic light stress. Plant Direct 2022, 6, e429. [Google Scholar] [CrossRef]
- Alonso, J.M.; Stepanova, A.N.; Leisse, T.J.; Kim, C.J.; Chen, H.; Shinn, P.; Stevenson, D.K.; Zimmerman, J.; Barajas, P.; Cheuk, R.; et al. Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 2003, 301, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xing, H.L.; Wang, Z.P.; Zhang, H.Y.; Yang, F.; Wang, X.C.; Chen, Q.J. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol. Biol. 2018, 96, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Hahn, F.; Nekrasov, V. CRISPR/Cas precision: Do we need to worry about off-targeting in plants? Plant Cell Rep. 2019, 38, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Modrzejewski, D.; Hartung, F.; Lehnert, H.; Sprink, T.; Kohl, C.; Keilwagen, J.; Wilhelm, R. Which Factors Affect the Occurrence of Off-Target Effects Caused by the Use of CRISPR/Cas: A Systematic Review in Plants. Front. Plant Sci. 2020, 11, 574959. [Google Scholar] [CrossRef] [PubMed]
- Boszorádová, E.; Matušíková, I.; Libantová, J.; Zimová, M.; Moravčíková, J. Cre-mediated marker gene removal for production of biosafe commercial oilseed rape. Acta Physiol. Plant. 2019, 41, 73. [Google Scholar] [CrossRef]
- Guzmann, L.K.E.K.F. Improvement of conditional Cre-lox system through application of the regulatory sequences from Cowpea mosaic virus. Plant Biotechnol. Rep. 2018, 12, 127–137. [Google Scholar] [CrossRef]
- Éva, C.; Téglás, F.; Zelenyánszki, H.; Tamás, C.; Juhász, A.; Mészáros, K.; Tamás, L. Cold inducible promoter driven Cre-lox system proved to be highly efficient for marker gene excision in transgenic barley. J. Biotechnol. 2018, 265, 15–24. [Google Scholar] [CrossRef]
- Woo, H.-J.; Cho, H.-S.; Lim, S.-H.; Shin, K.-S.; Lee, S.-M.; Lee, K.-J.; Kim, D.-H.; Cho, Y.-G. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res. 2009, 18, 455–465. [Google Scholar] [CrossRef]
- Zhao, Y.; Kim, J.Y.; Karan, R.; Jung, J.H.; Pathak, B.; Williamson, B.; Kannan, B.; Wang, D.; Fan, C.; Yu, W.; et al. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. Plant Mol. Biol. 2019, 100, 247–263. [Google Scholar] [CrossRef]
- Breitler, J.-C.; Meynard, D.; Van Boxtel, J.; Royer, M.; Bonnot, F.; Cambillau, L.; Guiderdoni, E. A Novel Two T-DNA Binary Vector Allows Efficient Generation of Marker-free Transgenic Plants in Three Elite Cultivars of Rice (Oryza sativa L.). Transgenic Res. 2004, 13, 271–287. [Google Scholar] [CrossRef]
- Huang, S.; Gilbertson, L.; Adams, T.; Malloy, K.; Reisenbigler, E.; Birr, D.; Snyder, M.; Zhang, Q.; Luethy, M. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res. 2004, 13, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Mujjassim, N.E.; Mallik, M.; Krishna, N.; Rathod, K. Cisgenesis and intragenesis a new tool for conventional plant breeding: A review. J. Pharmacogn. Phytochem. 2019, 8, 2485–2489. [Google Scholar]
- Conner, A.J.; Barrell, P.J.; Baldwin, S.J.; Lokerse, A.S.; Cooper, P.A.; Erasmuson, A.K.; Nap, J.-P.; Jacobs, J.M.E. Intragenic vectors for gene transfer without foreign DNA. Euphytica 2006, 154, 341–353. [Google Scholar] [CrossRef]
- He, Y.; Mudgett, M.; Zhao, Y. Advances in gene editing without residual transgenes in plants. Plant Physiol. 2022, 188, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Svitashev, S.; Schwartz, C.; Lenderts, B.; Young, J.K.; Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 2016, 7, 13274. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Barone, P.; Smith, M. Gene targeting and transgene stacking using intra genomic homologous recombination in plants. Plant Methods 2016, 12, 11. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 2014, 9, 2395–2410. [Google Scholar] [CrossRef]
- Marks, R.A.; Hotaling, S.; Frandsen, P.B.; Vanburen, R. Representation and participation across 20 years of plant genome sequencing. Nat. Plants 2021, 7, 1571–1578. [Google Scholar] [CrossRef]
- Sessions, A.; Burke, E.; Presting, G.; Aux, G.; Mcelver, J.; Patton, D.; Dietrich, B.; Ho, P.; Bacwaden, J.; Ko, C.; et al. A High-Throughput Arabidopsis Reverse Genetics System. Plant Cell 2002, 14, 2985–2994. [Google Scholar] [CrossRef]
- Rosso, M.G.; Li, Y.; Strizhov, N.; Reiss, B.; Dekker, K.; Weisshaar, B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 2003, 53, 247–259. [Google Scholar] [CrossRef]
- Woody, S.T.; Austin-Phillips, S.; Amasino, R.M.; Krysan, P.J. The WiscDsLox T-DNA collection: An arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J. Plant Res. 2007, 120, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Hahn, F.; Korolev, A.; Loures, L.S.; Nekrasov, V. A modular cloning toolkit for genome editing in plants. BMC Plant Biol. 2020, 20, 179. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Liang, J.; Li, Z.; Gong, B.Q.; Li, J.F. Multiplex and optimization of dCas9-TV-mediated gene activation in plants. J. Integr. Plant Biol. 2021, 63, 634–645. [Google Scholar] [CrossRef] [PubMed]
- McCarty, N.S.; Graham, A.E.; Studená, L.; Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 2020, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Stuttmann, J.; Barthel, K.; Martin, P.; Ordon, J.; Erickson, J.L.; Herr, R.; Ferik, F.; Kretschmer, C.; Berner, T.; Keilwagen, J.; et al. Highly efficient multiplex editing: One-shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants. Plant J. 2021, 106, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Rajeevkumar, S.; Anunanthini, P.; Sathishkumar, R. Epigenetic silencing in transgenic plants. Front. Plant Sci. 2015, 6, 00693. [Google Scholar] [CrossRef]
- Mysore, K.S.; Senthil-Kumar, M. (Eds.) Plant Gene Silencing; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1287, ISBN 978-1-4939-2452-3. [Google Scholar]
- Papikian, A.; Liu, W.; Gallego-Bartolomé, J.; Jacobsen, S.E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 2019, 10, 729. [Google Scholar] [CrossRef]
- Roca Paixão, J.F.; Gillet, F.X.; Ribeiro, T.P.; Bournaud, C.; Lourenço-Tessutti, I.T.; Noriega, D.D.; de Melo, B.P.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci. Rep. 2019, 9, 8080. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B. MicroRNAs in Control of Plant Development. J. Cell. Physiol. 2015, 231, 303–313. [Google Scholar] [CrossRef]
- Zhang, B.; Unver, T. A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Sci. 2018, 274, 193–200. [Google Scholar] [CrossRef]
- Lo, C.; Hernández, I.; Ceci, L.R.; Pesole, G.; Picardi, E. RNA editing in plants: A comprehensive survey of bioinformatics tools and databases. Plant Physiol. Biochem. 2019, 137, 53–61. [Google Scholar] [CrossRef]
- Nakamura, T. Editing Understanding RNA editing and its use in gene editing. Gene Genome Ed. 2022, 3–4, 100021. [Google Scholar] [CrossRef]
- Kavuri, N.R.; Ramasamy, M.; Qi, Y.; Mandadi, K. Applications of CRISPR/Cas13-Based RNA Editing in Plants. Cells 2022, 11, 2665. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Anand, U.; Pal, T.; Mandal, S.; Kumar, M.; Radha; Gopalakrishnan, A.V.; de la Lastra, J.M.P.; Dey, A. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches. Biotechnol. Bioeng. 2023, 120, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hua, K.; Lang, Z. Genome editing for horticultural crop improvement. Hortic. Res. 2019, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.S.; Zafar, S.A.; Ali, M.; Pasha, A.N.; Naveed, M.S.; Waseem, M.; Ahmad, M.; Raza, A. CRISPR-Cas Mediated Genome Editing: A Paradigm Shift towards Sustainable Agriculture and Biotechnology. Asian Plant Res. J. 2022, 9, 27–49. [Google Scholar] [CrossRef]
- Bhatta, B.P.; Malla, S. Improving horticultural crops via crispr/cas9: Current successes and prospects. Plants 2020, 9, 1360. [Google Scholar] [CrossRef]
- Maioli, A.; Gianoglio, S.; Moglia, A.; Acquadro, A.; Valentino, D.; Milani, A.M.; Prohens, J.; Orzaez, D.; Granell, A.; Lanteri, S.; et al. Simultaneous CRISPR/Cas9 Editing of Three PPO Genes Reduces Fruit Flesh Browning in Solanum melongena L. Front. Plant Sci. 2020, 11, 607161. [Google Scholar] [CrossRef]
- Son, S.; Park, S.R. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. Front. Plant Sci. 2022, 13, 902413. [Google Scholar] [CrossRef]
- Lassoued, R.; Phillips, P.W.B.; Smyth, S.J.; Hesseln, H. Estimating the cost of regulating genome edited crops: Expert judgment and overconfidence. GM Crops Food 2019, 10, 44–62. [Google Scholar] [CrossRef]
Plant | Specific Trait | Target Gene | Transgenic | Gene-Edited | Used Transgenesis | Reference |
---|---|---|---|---|---|---|
Herbicide Resistant | ||||||
Savoy cabbage (Brassica oleracea var. sabauda) | phosphinothricin (L-PPT) resistant | bar | yes | no | Yes A. tumefaciens | [23] |
Sweet potato (Ipomoea batatas L. Lam.) | phosphinothricin (L-PPT) resistant | bar | yes | no | Yes Bioballistic | [24] |
Potato (Solanum tuberosum) | glyphosate tolerance | EPSPS | yes | no | Yes A. tumefaciens | [25] |
Easter lily (Lilium longiflorum Thunb.) | phosphinothricin (L-PPT) resistant | bar | yes | no | Yes Bioballistic | [26] |
Tomato (Solanum lycopersicum L.) Potato (Solanum tuberosum) | chlorsulfuron-tolerant plants | SlALS1, SlALS2 StALS1, StALS2 | no | Cas9 + Base editor | Yes A. tumefaciens | [27] |
Watermelon (Citrullus lanatus (Thunb.)) | chlorsulfuron-tolerant plants | ALS | no | Cas9 + Base editor | Yes A. tumefaciens | [28] |
Cassava (Manihot esculenta) | glyphosate tolerance | EPSPS | no | Cas9, HDR editing | Yes A. tumefaciens | [29] |
Lettuce (Lactuca sativa L.) | paraquat | uORF of LsGGP1 and LsGGP2 | no | Cas9 | Yes A. tumefaciens | [30] |
Pathogen Resistance | ||||||
Tomato (Solanum lycopersicum L.) | tomato yellow leaf curl virus inactivation | coat protein, replicase | yes | Cas9 | Yes | [31] |
Papaya (Carica papaya L.) | resistance to papaya ringspot virus | coat protein gene | yes | no | Yes A. tumefaciens Bioballistic | [32] |
Tomato (Solanum lycopersicum L.) | resistance to larvae of Helicoverpa armigera and Spodoptera litura | cry1Ab | yes | no | Yes A. tumefaciens | [33] |
Mustard, (Brassica juncea L.) | resistance to fungal pathogens | NPR1 | yes | no | Yes A. tumefaciens | [34] |
Chrysanthemum (Chrysanthemum morifolium) | resistance to Spodoptera exigu, Aphis gossypii | CaXMT1, CaMXM1 CaDXMT1 | yes | no | Yes A. tumefaciens | [35] |
Cucumber (Cucumis sativus L.) | resistance to cucumber vein yellowing virus, zucchini yellow mosaic virus, papaya ringspot mosaic virus-W | eIF4E | yes | Cas9 | Yes A. tumefaciens | [36] |
Banana (Musa spp.) | inactivation of banana streak virus | ORFs of banana streak virus | yes | Cas9 | Yes A. tumefaciens | [37] |
Chilli pepper (Capsicum annuum L.) | resistance to Colletotrichum truncatum | CaERF28 | no | Cas9 | Yes A. tumefaciens | [38] |
Grape (grape cultivar Chardonnay) Apple (apple cultivar Golden delicious) | resistance to powdery mildew and fire blight disease | MLO-7 DIPM-1, DIPM- 2, DIPM-4 | no | Cas9 | No (RNP) | [39] |
Abiotic Stress Resistance | ||||||
Apple (Malus pumila Mill.) | adaptation to cold and drought stress | Osmyb4 | yes | no | Yes A. tumefaciens | [40] |
Chilli pepper (Capsicum annum.) | improved salt tolerance | osmotin | yes | no | Yes A. tumefaciens | [41] |
Grape (Vitis vinifera L.) | improved cold-resistance | AtDREB1b | yes | no | Yes A. tumefaciens | [42] |
Grape (Vitis vinifera L.) | resistance to drought stress | VaNCED1 | yes | no | Yes A. tumefaciens | [43] |
Potato (Solanum tuberosum) | improved resistance to salt and drought stress | SOD, APX, codA under SWPA2 promoter | yes | no | Yes A. tumefaciens | [44] |
Eggplant (Solanum melongena L.) | salinity tolerance | TaNHX2 | yes | no | Yes A. tumefaciens | [45] |
Tomato (Solanum lycopersicum L.) | improved salt tolerance | SlABIG1 | no | Cas9 | - | [46] |
Potato (Solanum tuberosum) | resistance to abiotic stress and viruses | Coilin | no | Cas9 | No, RNP Bioballistic Vacuum infiltration | [47] |
Ethiopian mustard (Brassica carinata) | reduced root length under phosphorus stress | BcFLA1 | - | Cas9 | Yes A. tumefaciens | [48] |
Lettuce (Lactuca sativa L.) | high temperature resistance | LsNCED4 | yes | Cas9 | Yes A. tumefaciens | [49] |
Potato (Solanum tuberosum) | improved cold stress resistance | VInv | no | Cas9 | No A. tumefaciens Transient expression | [50] |
Enhanced Quality | ||||||
Tomato (Solanum lycopersicum L.) | enhanced fruit softening | LeEXP1 | yes | no | Yes A. tumefaciens | [51] |
Apple (Malus domestica) | non-browning | PPO | yes | no | Yes A. tumefaciens | [52] |
Potato (Solanum tuberosum) Tomato (Solanum lycopersicum L.) Strawberry (Fragaria vesca) | higher vitamin C | GGPorVTC2 | yes | no | Yes A. tumefaciens | [53] |
Orchid (Oncidium Gower Ramsey) | early flowering | OMADS1 | yes | no | Yes A. tumefaciens | [54] |
Tomato (Solanum lycopersicum L.) | high ɣ-aminobutyric acid (GABA) | SlGAD2 SlGAD3 | - | Cas9 | Yes A. tumefaciens | [55] |
Tomato (Solanum lycopersicum L.) | high lycopene | SGR1, LCY-E, Blc, LCY-B1, LCY-B2 | - | Cas9 | Yes A. tumefaciens | [56] |
Potato (Solanum tuberosum) | high amylopectin starch | GBSS | no | Cas9 | No A. tumefaciens transient expression | [57] |
Potato (Solanum tuberosum) | non-browning | StPPO2 | no | Cas9 | No, RNP, PEG transfection | [58] |
Banana (Cavendish banana cultivar (cv.) Grand Naine) | β-carotene-enriched | LCYε | - | Cas9 | Yes A. tumefaciens | [59] |
Strawberry (Fragaria vesca) | improvement of sugar content | uORF of FvebZIPs1.1 | - | Cas9 + Base editor | Yes A. tumefaciens | [60] |
Watermellon (Citrullus lanatus (Thunb.)) | albino phenotype | CIPDS | - | Cas9 | Yes A. tumefaciens | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Permyakova, N.V.; Deineko, E.V. Crop Improvement: Comparison of Transgenesis and Gene Editing. Horticulturae 2024, 10, 57. https://doi.org/10.3390/horticulturae10010057
Permyakova NV, Deineko EV. Crop Improvement: Comparison of Transgenesis and Gene Editing. Horticulturae. 2024; 10(1):57. https://doi.org/10.3390/horticulturae10010057
Chicago/Turabian StylePermyakova, Natalya V., and Elena V. Deineko. 2024. "Crop Improvement: Comparison of Transgenesis and Gene Editing" Horticulturae 10, no. 1: 57. https://doi.org/10.3390/horticulturae10010057
APA StylePermyakova, N. V., & Deineko, E. V. (2024). Crop Improvement: Comparison of Transgenesis and Gene Editing. Horticulturae, 10(1), 57. https://doi.org/10.3390/horticulturae10010057