Regeneration of African Violet in Response to Light Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Conditions
2.1.1. Specimen Species
2.1.2. Lighting Treatments
2.2. Measurements
2.2.1. Growth Parameters
2.2.2. Photosynthetic Pigments Content
- Chl a (µg mL−1) = (12.25 × A663) − (2.79 × A646)
- Chl b (µg mL−1) = (21.50 × A646) − (5.10 × A663)
- Chl a+b (total) (µg mL−1) = Chl a + Chl b
- Car (µg mL−1) = [(1000 × A470) − (1.82 × Chl a) − (85.02 × Chl b)] ÷ 198
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Growth Responses of Roots to Light Colors
3.2. Leaf and Shoot Growth Dynamics
3.3. Photosynthetic Pigments and Vegetative Characteristics
3.4. Principal Component Analysis (PCA) of Root Growth, Shoot Growth, and Pigments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- da Silva, J.A.T.; Zeng, S.; Wicaksono, A.; Kher, M.M.; Kim, H.; Hosokawa, M.; Dewir, Y.H. In Vitro Propagation of African Violet: A Review. S. Afr. J. Bot. 2017, 112, 501–507. [Google Scholar] [CrossRef]
- Mason, J.; Cole, G.; Beermann, M.; Fraser, A. Gesneriads: African Violets, Gloxinias, Streptocarpus and Others; ACS Distance Education: Robina MDC, QLD, Australia, 2017. [Google Scholar]
- Winkelmann, T.; Grunewaldt, J. Regeneration of Plants from Protoplasts of Saintpaulia ionantha H. Wendl.(African Violet). In Plant Protoplasts and Genetic Engineering VII; Springer: Berlin/Heidelberg, Germany, 1996; pp. 141–149. [Google Scholar]
- Ghehsareh, M.G.; Kafi, M. Scientific and Practical Floriculturee; Esfahan Golbon Press: Isfahan, Iran, 2015; Volume 1. (In Persian) [Google Scholar]
- Hartmann, H.; Kester, D.; Davies, F.; Geneve, R.; Wilson, S. Plant Propagation: Principles and Practices, 9th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Marcenaro, S.; Voyiatzi, C.; Lercari, B. Photocontrol of in Vitro Bud Regeneration: A Comparative Study of the Interaction between Light and IAA in a Wild Type and an Aurea Mutant of Lycopersicon Esculentum. Physiol. Plant. 1994, 91, 329–333. [Google Scholar] [CrossRef]
- Fang, S.; Lang, T.; Cai, M.; Han, T. Light Keys Open Locks of Plant Photoresponses: A Review of Phosphors for Plant Cultivation LEDs. J. Alloys Compd. 2022, 902, 163825. [Google Scholar] [CrossRef]
- Zheng, L.; He, H.; Song, W. Application of Light-Emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review. HortScience 2019, 54, 1656–1661. [Google Scholar] [CrossRef]
- Barta, D.J.; Tibbitts, T.W.; Bula, R.J.; Morrow, R.C. Evaluation of Light Emitting Diode Characteristics for a Space-Based Plant Irradiation Source. Adv. Space Res. 1992, 12, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Barta, D.J.; Ignatius, R.W.; Martin, T.S. Light-Emitting Diodes as a Radiation Source for Plants. HortScience Publ. Am. Soc. Hortic. Sci. 1991, 26, 203–205. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Agarwal, A. Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. Light Emit. Diodes Agric. Smart Light. 2017, 1–25. [Google Scholar] [CrossRef]
- Stamford, J.D.; Stevens, J.; Mullineaux, P.M.; Lawson, T. LED Lighting: A Grower’s Guide to Light Spectra. HortScience 2023, 58, 180–196. [Google Scholar] [CrossRef]
- Folta, K.M.; Carvalho, S.D. Photoreceptors and Control of Horticultural Plant Traits. HortScience 2015, 50, 1274–1280. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Schäfer, E.; Nagy, F. Photomorphogenesis in Plants and Bacteria: Function and Signal Transduction Mechanisms, 3rd ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; ISBN 1402038119. [Google Scholar]
- Moon, H.K.; Park, S.-Y.; Kim, Y.W.; Kim, C.S. Growth of Tsuru-Rindo (Tripterospermum japonicum) Cultured in Vitro under Various Sources of Light-Emitting Diode (LED) Irradiation. J. Plant Biol. 2006, 49, 174–179. [Google Scholar] [CrossRef]
- Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In Vitro Culture of Chrysanthemum Plantlets Using Light-Emitting Diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Cavallaro, V.; Avola, G.; Fascella, G.; Pellegrino, A.; Ierna, A. Effects of Spectral Quality and Light Quantity of LEDs on In Vitro Shoot Development and Proliferation of Ananas comosus L. Merr. Agronomy 2023, 13, 1072. [Google Scholar] [CrossRef]
- Kwon, A.-R.; Cui, H.-Y.; Lee, H.; Shin, H.; Kang, K.-S.; Park, S.-Y. Light Quality Affects Shoot Regeneration, Cell Division, and Wood Formation in Elite Clones of Populus euramericana. Acta Physiol. Plant. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Martínez-Estrada, E.; Caamal-Velázquez, J.H.; Morales-Ramos, V. Effect of LED Light Quality on in Vitro Shoot Proliferation and Growth of Vanilla (Vanilla planifolia Andrews). Afr. J. Biotechnol. 2016, 15, 272–277. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. A Simple Method for Mass Propagation of Spathiphyllum Cannifolium Using an Airlift Bioreactor. In Vitro Cell. Dev. Biol. 2006, 42, 291–297. [Google Scholar] [CrossRef]
- Pawłowska, B.; Żupnik, M.; Szewczyk-Taranek, B.; Cioć, M. Impact of LED Light Sources on Morphogenesis and Levels of Photosynthetic Pigments in Gerbera jamesonii Grown in Vitro. Hortic. Environ. Biotechnol. 2018, 59, 115–123. [Google Scholar] [CrossRef]
- Kostadinova, S.; Mollov, I.; Dzhambazov, B.; Naimov, S.; Vassilev, K.; Georgiev, B. Preliminary Study on the Effect of LED Light and Cytokinin on the Growth of Pear Plants In Vitro. In Proceedings of the 5th Balkan Scientific Conference on Biology, Plovdiv, Bulgaria, 15–16 April 2021; p. 1. [Google Scholar]
- Lotfi, M. Effects of Monochromatic Red and Blue Light-Emitting Diodes and Phenyl Acetic Acid on in Vitro Mass Production of Pyrus Communis ‘Arbi’. J. Hortic. Postharvest Res. 2022, 5, 119–128. [Google Scholar] [CrossRef]
- Dewir, Y.H.; El-Mahrouk, M.E.-S.; Al-Shmgani, H.S.; Rihan, H.Z.; Teixeira da Silva, J.A.; Fuller, M.P. Photosynthetic and Biochemical Characterization of in Vitro-Derived African Violet (Saintpaulia ionantha H. Wendl) Plants to Ex Vitro Conditions. J. Plant Interact. 2015, 10, 101–108. [Google Scholar] [CrossRef]
- Siswantoro, J.; Prabuwono, A.S.; Abdulah, A. Volume Measurement of Food Product with Irregular Shape Using Computer Vision and Monte Carlo Method: A Framework. Procedia Technol. 2013, 11, 764–770. [Google Scholar] [CrossRef]
- Salokhe, V.M.; Sharma, A.K. Greenhouse Technology and Applications; Agrotech Publishing Academy: Udaipur, India, 2006; ISBN 8183210570. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. ISBN 0076-6879. [Google Scholar]
- Schroeter-Zakrzewska, A.; Kleiber, T. The Effect of Light Colour and Type of Lamps on Rooting and Nutrient Status in Cuttings of Michaelmas Daisy. Bulg. J. Agric. Sci. 2014, 20, 1426–1434. [Google Scholar]
- Li, C.-X.; Xu, Z.-G.; Dong, R.-Q.; Chang, S.-X.; Wang, L.-Z.; Khalil-Ur-Rehman, M.; Tao, J.-M. An RNA-Seq Analysis of Grape Plantlets Grown In Vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light. Front. Plant Sci. 2017, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- OuYang, F.; Mao, J.-F.; Wang, J.; Zhang, S.; Li, Y. Transcriptome Analysis Reveals That Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst.]. PLoS ONE 2015, 10, e0127896. [Google Scholar] [CrossRef]
- Meng, L.; Song, W.; Liu, S.; Dong, J.; Zhang, Y.; Wang, C.; Xu, Y.; Wang, S. Light Quality Regulates Lateral Root Development in Tobacco Seedlings by Shifting Auxin Distributions. J. Plant Growth Regul. 2015, 34, 574–583. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, Q.; Lin, J.; Deng, K.; Zhao, X.; Tang, D.; Liu, X. Arabidopsis Cryptochrome-1 Restrains Lateral Roots Growth by Inhibiting Auxin Transport. J. Plant Physiol. 2010, 167, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Q.; Xin, Y.; Mei, Z.; Gao, A.; Liu, W.; Yu, L.; Chen, X.; Chen, Z.; Wang, N. Analyses of the Photosynthetic Characteristics, Chloroplast Ultrastructure, and Transcriptome of Apple (Malus domestica) Grown under Red and Blue Lights. BMC Plant Biol. 2021, 21, 483. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue Light Alleviates ‘Red Light Syndrome’by Regulating Chloroplast Ultrastructure, Photosynthetic Traits and Nutrient Accumulation in Cucumber Plants. Sci. Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Lim, M.-J.; Murthy, H.N.; Song, H.-Y.; Lee, S.-Y.; Park, S.-Y. Influence of White, Red, Blue, and Combination of LED Lights on In Vitro Multiplication of Shoots, Rooting, and Acclimatization of Gerbera jamesonii Cv.‘Shy Pink’Plants. Agronomy 2023, 13, 2216. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Z.; He, S.; Shi, L.; Song, Y.; Lou, X.; He, D. LED-Supplied Red and Blue Light Alters the Growth, Antioxidant Status, and Photochemical Potential of in Vitro-Grown Gerbera jamesonii Plantlets. Hortic. Sci. Technol. 2019, 37, 473–489. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Wientjes, E.; Douwstra, P.; Trouwborst, G.; Van Ieperen, W.; Croce, R.; Harbinson, J. Photosynthetic Quantum Yield Dynamics: From Photosystems to Leaves. Plant Cell 2012, 24, 1921–1935. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.-H.; Kim, S.-K.; Lee, K.-H.; Park, J.-Y.; Nam, M.-W.; Choi, D.-H.; Lee, H.-I. LED Light for in Vitro and Ex Vitro Efficient Growth of Economically Important Highbush Blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant. 2016, 38, 1–9. [Google Scholar] [CrossRef]
- Kaewjampa, N.; Shimasaki, K. Effects of Green LED Lighting on Organogenesis and Superoxide Dismutase (SOD) Activities in Protocorm-like Bodies (PLBs) of Cymbidium Cultured in Vitro. Environ. Control Biol. 2012, 50, 247–254. [Google Scholar] [CrossRef]
- Trivedi, A.; Sengar, R.S. Effect of Various Light-Emittimg Diodes on Growth and Photosynthetic Pigments of Banana (Musa acuminata) CV. Grande Naine in Vitro Plantlets. Int. J. Chem. Stud. 2017, 5, 1819–1821. [Google Scholar] [CrossRef]
- Runkle, E. Light Wavebands & Their Effects on Plants. Prepr. 2015. Available online: https//gpnmag.com/article/light-wavebands-and-their-effects-plants (accessed on 10 December 2023).
- Okamoto, K.; Yanagi, T.; Kondo, S. Growth and Morphogenesis of Lettuce Seedlings Raised under Different Combinations of Red and Blue Light. In Proceedings of the II Workshop on Environmental Regulation of Plant Morphogenesis 435, Wellesbourne, UK, 8–10 May 1996; pp. 149–158. [Google Scholar]
- Fukuda, N.; Ajima, C.; Yukawa, T.; Olsen, J.E. Antagonistic Action of Blue and Red Light on Shoot Elongation in Petunia Depends on Gibberellin, but the Effects on Flowering Are Not Generally Linked to Gibberellin. Environ. Exp. Bot. 2016, 121, 102–111. [Google Scholar] [CrossRef]
- Trouwborst, G.; Hogewoning, S.W.; van Kooten, O.; Harbinson, J.; van Ieperen, W. Plasticity of Photosynthesis after the ‘Red Light Syndrome’in Cucumber. Environ. Exp. Bot. 2016, 121, 75–82. [Google Scholar] [CrossRef]
- Kim, S.-J.; Hahn, E.-J.; Heo, J.-W.; Paek, K.-Y. Effects of LEDs on Net Photosynthetic Rate, Growth and Leaf Stomata of Chrysanthemum Plantlets in Vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Phototropin Is Partly Involved in Blue-Light-Mediated Stem Elongation, Flower Initiation, and Leaf Expansion: A Comparison of Phenotypic Responses between Wild Arabidopsis and Its Phototropin Mutants. Environ. Exp. Bot. 2020, 171, 103967. [Google Scholar] [CrossRef]
- Kong, Y.; Stasiak, M.; Dixon, M.A.; Zheng, Y. Blue Light Associated with Low Phytochrome Activity Can Promote Elongation Growth as Shade-Avoidance Response: A Comparison with Red Light in Four Bedding Plant Species. Environ. Exp. Bot. 2018, 155, 345–359. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Y. Phytochrome and Light Signal Transduction in Plants. Plant Physiol. Commun. 2006, 42, 134. [Google Scholar]
- Pyke, K. Plastid Biology; Cambridge University Press: Cambridge, UK, 2009; ISBN 0521885019. [Google Scholar]
- Tanaka, A.; Tanaka, Y.; Takabe, T.; Tsuji, H. Calcium-Induced Accumulation of Apoproteins of the Light-Harvesting Chlorophyll Ab-Protein Complex in Cucumber Cotyledons in the Dark. Plant Sci. 1995, 105, 189–194. [Google Scholar] [CrossRef]
- Kusaba, M.; Ito, H.; Morita, R.; Iida, S.; Sato, Y.; Fujimoto, M.; Kawasaki, S.; Tanaka, R.; Hirochika, H.; Nishimura, M. Rice NON-YELLOW COLORING1 Is Involved in Light-Harvesting Complex II and Grana Degradation during Leaf Senescence. Plant Cell 2007, 19, 1362–1375. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.S.; Murthy, H.N.; Heo, J.W.; Hahn, E.J.; Paek, K.Y. The Effect of Light Quality on the Growth and Development of in Vitro Cultured Doritaenopsis Plants. Acta Physiol. Plant. 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Tang, Z.; Wu, Y.; Xiao, X.; Zhang, G.; Hu, L.; Liu, Z.; Lyu, J.; Yu, J. Red and Blue LED Light Supplementation in the Morning Pre-Activates the Photosynthetic System of Tomato (Solanum lycopersicum L.) Leaves and Promotes Plant Growth. Agronomy 2022, 12, 897. [Google Scholar] [CrossRef]
Light Spectra | RL (cm) | RV (cm3) | RFW (g) | RDW (g) |
---|---|---|---|---|
White | 9.10 ± 0.62 b† | 2.20 ± 0.25 b | 1.03 ± 0.12 ab | 0.09 ± 0.01 b |
Red | 7.80 ± 0.34 b | 1.50 ± 0.18 b | 0.65 ± 0.05 c | 0.06 ± 0.03 b |
Blue | 14.00 ± 0.82 a | 2.00 ± 0.15 b | 0.79 ± 0.13 bc | 0.09 ± 0.03 b |
Red + Blue | 12.70 ± 091 ab | 3.10 ± 0.35 a | 1.20 ± 0.13 a | 0.14 ± 0.01 a |
Significance | *** | ** | * | * |
Light Spectra | SN (Count) | LN (Count) | SL (cm) | SFW (g) | SDW (g) |
---|---|---|---|---|---|
White | 5.50 ± 0.17 a† | 1.30 ± 0.08 c | 1.30 ± 0.02 b | 1.24 ± 0.09 b | 0.08 ± 0.00 b |
Red | 3.80 ± 0.10 b | 0.50 ± 0.05 d | 1.40 ± 0.05 b | 0.97 ± 0.06 c | 0.04 ± 0.00 c |
Blue | 3.90 ± 0.17 b | 3.40 ± 0.03 a | 1.30 ± 0.08 b | 1.33 ± 0.08 b | 0.09 ± 0.00 b |
Red + Blue | 5.50 ± 0.35 a | 1.60 ± 0.06 b | 1.60 ± 0.03 a | 1.76 ± 0.07 a | 0.13 ± 0.00 a |
Significance | *** | *** | * | *** | *** |
Light Spectra | Chl a (mg g−1 f.w.) | Chl b (mg g−1 f.w.) | Chl a/b (mg g−1 f.w.) | Chl t (mg g−1 f.w.) | Car (mg g−1 f.w.) | TB (g) | Ro:Sh | SL:SDW Ratio |
---|---|---|---|---|---|---|---|---|
White | 0.12 ± 0.02 a† | 0.13 ± 0.01 a | 0.98 ± 0.27 bc | 0.25 ± 0.03 | 3.20 ± 0.17 ab | 2.27 ± 0.09 b | 1.08 ± 0.13 | 16.50 ± 0.97 b |
Red | 0.15 ± 0.00 a | 0.09 ± 0.00 b | 1.55 ± 0.10 a | 0.24 ± 0.01 | 2.70 ± 0.19 b | 1.62 ± 0.09 c | 1.05 ± 0.13 | 36.90 ± 4.99 a |
Blue | 0.07 ± 0.00 b | 0.13 ± 0.01 a | 0.57 ± 0.06 c | 0.20 ± 0.02 | 2.60 ± 0.18 b | 2.12 ± 0.20 b | 0.95 ± 0.24 | 14.92 ± 1.32 b |
Red + Blue | 0.14 ± 0.01 a | 0.12 ± 0.00 ab | 1.14 ± 0.52 ab | 0.26 ± 0.04 | 3.80 ± 0.44 a | 2.96 ± 0.08 a | 1.05 ± 0.05 | 12.52 ± 0.80 b |
Significance | * | * | ** | ns | * | *** | ns | *** |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
Eigenvalue | 10.038 | 5.510 | 1.452 | 0.000 |
Proportion | 0.590 | 0.324 | 0.085 | 0.000 |
Cumulative | 0.590 | 0.915 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslami, Z.; Ghehsareh, M.G.; Mahdavi, S.M.E.; Nicola, S. Regeneration of African Violet in Response to Light Quality. Horticulturae 2024, 10, 78. https://doi.org/10.3390/horticulturae10010078
Aslami Z, Ghehsareh MG, Mahdavi SME, Nicola S. Regeneration of African Violet in Response to Light Quality. Horticulturae. 2024; 10(1):78. https://doi.org/10.3390/horticulturae10010078
Chicago/Turabian StyleAslami, Zohreh, Masood Ghasemi Ghehsareh, Sayyed Mohammad Ehsan Mahdavi, and Silvana Nicola. 2024. "Regeneration of African Violet in Response to Light Quality" Horticulturae 10, no. 1: 78. https://doi.org/10.3390/horticulturae10010078
APA StyleAslami, Z., Ghehsareh, M. G., Mahdavi, S. M. E., & Nicola, S. (2024). Regeneration of African Violet in Response to Light Quality. Horticulturae, 10(1), 78. https://doi.org/10.3390/horticulturae10010078