Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Cauliflower Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Physicochemical Parameters
2.3. Ascorbic Acid Content
2.4. In Vitro Antioxidant Activity
2.4.1. Folin–Ciocalteu Reagent (FCR)
2.4.2. Oxygen Radical Absorbance Capacity (ORAC)
2.5. Total and Inorganic N
2.6. Stable Isotope Ratios’ Analysis
2.7. Statistical and Chemometric Multivariate Analysis
3. Results and Discussion
3.1. Physicochemical and Qualitative Cauliflower Parameters
3.2. Ascorbic Acid Content
3.3. In Vitro Antioxidant Activity
3.4. Total and Inorganic Nitrogen
3.5. Stable Isotope Ratios’ Analysis
3.5.1. 15N/14N and 34S/32S Analyses of Fertilizers
3.5.2. 15N/14N and 34S/32S Analyses of Soil
3.5.3. 15N/14N, 13C/12C, 34S/32S and 2H/1H, and 18O/16O Analyses of Leaves
3.5.4. 15N/14N 13C/12C and 34S/32S Analyses of Corymb Samples
3.6. Chemometric Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT DATABASE. Available online: https://www.fao.org/faostat/en/#data (accessed on 15 December 2023).
- Organic Food and Beverages Market Size, Share & Trends Analysis Report by Product (Organic Food, Organic Beverages), By Distribution Channel (Convenience Stores, Specialty Stores), by Region, and Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/organic-foods-beverages-market (accessed on 15 December 2023).
- United Nations. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 15 December 2023).
- European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europeangreendeal_en (accessed on 15 December 2023).
- ISTAT Database. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (accessed on 15 December 2023).
- ISMEA Database ‘Bio in Cifre’. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/12445 (accessed on 15 December 2023).
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; EU: Maastricht, The Netherlands, 2018.
- Bateman, A.S.; Kelly, S.D.; Jickells, T.D. Nitrogen Isotope Relationships between Crops and Fertilizer: Implications for Using Nitrogen Isotope Analysis as an Indicator of Agricultural Regime. J. Agric. Food Chem. 2005, 53, 5760–5765. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.S.; Kelly, S.D.; Woolfe, M. Nitrogen Isotope Composition of Organically and Conventionally Grown Crops. J. Agric. Food Chem. 2007, 55, 2664–2670. [Google Scholar] [CrossRef]
- Inácio, C.T.; Chalk, P.M.; Magalhães, A.M. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products. Crit. Rev. Food Sci. Nutr. 2015, 55, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Barceló, D. Isotopic Mass Spectrometry in Food and Environmental Chemistry. In Mass Spectrometry in Food and Environmental Chemistry; Picó, Y., Campo, J., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2022; Volume 119. [Google Scholar] [CrossRef]
- Rapisarda, P.; Calabretta, M.L.; Romano, G.; Intrigliolo, F. Nitrogen Metabolism Components as a Tool to Discriminate between Organic and Conventional Citrus Fruits. J. Agric. Food Chem. 2005, 53, 2664–2669. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, P.; Camin, F.; Fabroni, S.; Perini, M.; Torrisi, B.; Intrigliolo, F. Influence of Different Organic Fertilizers on Quality Parameters and the δ15N, δ13C, δ2H, δ34S, and δ18O Values of Orange Fruit (Citrus sinensis L. Osbeck). J. Agric. Food Chem. 2010, 58, 3502–3506. [Google Scholar] [CrossRef] [PubMed]
- Camin, F.; Perini, M.; Bontempo, L.; Fabroni, S.; Faedi, W.; Magnani, S.; Baruzzi, G.; Bonoli, M.; Tabilio, M.R.; Musmeci, S.; et al. Potential isotopic and chemical markers for characterizing organic fruits. Food Chem. 2011, 125, 1072–1082. [Google Scholar] [CrossRef]
- Wassenaar, L.I.; Kelly, S.D.; Douence, C.; Islam, M.; Monteiro, L.; Abrahim, A.; Rinke, P. Assessment of rapid low-cost isotope (δ15N, δ18O) analyses of nitrate in fruit extracts by Ti(III) reduction to differentiate organic from conventional production. Rapid Commun. Mass. Spectrom. 2022, 36, e9259. [Google Scholar] [CrossRef]
- Flores, P.; Fenoll, J.; Hellin, P. The Feasibility of Using δ15N and δ13C Values for Discriminating between Conventionally and Organically Fertilized Pepper (Capsicum annuum L.). J. Agric. Food Chem. 2007, 55, 5740–5745. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Ujihara, T.; Tanaka, E.; Kishi, Y.; Ogwa, H.; Matsuo, H. Annual Variation of Natural 15N Abundance in Tea Leaves and Its Practicality as an Organic Tea Indicator. J. Agric. Food Chem. 2011, 59, 10317–10321. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.-I.; Lim, S.-S.; Lee, G.-S.; Lee, S.-M.; Kim, H.-Y.; Ro, H.-M.; Choi, W.-J. Natural 15N abundance of paddy rice (Oryza sativa L.) grown with synthetic fertilizer, livestock manure compost, and hairy vetch. Biol. Fertil. Soils 2011, 47, 607–617. [Google Scholar] [CrossRef]
- Bontempo, L.; van Leeuwen, K.A.; Paolini, M.; Holst Laursen, K.; Micheloni, C.; Prenzler, P.D.; Ryan, D.; Camin, F. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 2020, 318, 126426. [Google Scholar] [CrossRef] [PubMed]
- Gatzert, X.; Chun, K.P.; Boner, M.; Hermanowski, R.; Mäder, R.; Breuer, L.; Gattinger, A.; Orlowski, N. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany. Isot. Environ. Health Stud. 2021, 57, 281–300. [Google Scholar] [CrossRef]
- Wang, H.; Hu, G.; Lou, Y.; Su, Z.; Zhuge, Y.; Meng, F. Responses of natural 15N abundance in cauliflower (Brassica oleracea L. var. botrytis) and soil to the application of organic and chemical fertilizers. Can. J. Plant Sci. 2016, 96, 819–827. [Google Scholar] [CrossRef]
- Bahar, B.; Schmidt, O.; Moloney, P.; Scrimgeour, C.M.; Begley, I.S.; Monahan, F.J. Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef. Food Chem. 2008, 106, 1299–1305. [Google Scholar] [CrossRef]
- Varrà, M.O.; Zanardi, E.; Serra, M.; Conter, M.; Ianieri, A.; Ghidini, S. Isotope Fingerprinting as a Backup for Modern Safety and Traceability Systems in the Animal-Derived Food Chain. Molecules 2023, 28, 4300. [Google Scholar] [CrossRef] [PubMed]
- Camin, F.; Bontempo, L.; Perini, M.; Piasentier, E. Stable Isotope Ratio Analysis for Assessing the Authenticity of Food of Animal Origin. Compr. Rev. Food Sci. Food Saf. 2016, 15, 868–877. [Google Scholar] [CrossRef]
- Chung, I.M.; Park, I.; Yeon, J.Y.; Yang, Y.S.; Kim, S.H. Determination of organic milk authenticity using carbon and nitrogen natural isotopes. Food Chem. 2014, 160, 214–218. [Google Scholar] [CrossRef]
- Erich, S.; Schill, S.; Annweiler, E.; Waiblinger, H.U.; Kuballa, T.; Lachenmeier, D.W.; Monakhova, Y.B. Combined chemometric analysis of 1H NMR, 13C NMR and stable isotope data to differentiate organic and conventional milk. Food Chem. 2015, 188, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kaffarnik, S.; Schröder, M.; Lehnert, K.; Baars, T.; Vetter, W. δ13C values and phytanic acid diastereomer ratios: Combined evaluation of two markers suggested for authentication of organic milk and dairy products. Eur. Food Res. Technol. 2014, 238, 819–827. [Google Scholar] [CrossRef]
- Mantha, O.L.; Laxmi Patel, M.; Hankard, R.; De Luca, A. Effect of Organic Food Intake on Nitrogen Stable Isotopes. Nutrients 2020, 12, 2965. [Google Scholar] [CrossRef]
- Fabroni, S.; Bontempo, L.; Campanelli, G.; Canali, S.; Montemurro, F. Innovative Tools for the Nitrogen Fertilization Traceability of Organic Farming Products. Horticulturae 2023, 9, 723. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Soil Survey Laboratory Methods Manual; Soil Survey Inv Rep N 42, version 3.0.; Natural Resource Conservation Service: Washington, DC, USA, 1996.
- Campanelli, G.; Canali, S. Crop Production and Environmental Effects in Conventional and Organic Vegetable Farming Systems: The Case of a Long-Term Experiment in Mediterranean Conditions (Central Italy). J. Sustain. Agric. 2012, 36, 599–619. [Google Scholar] [CrossRef]
- Amenta, M.; Ballistreri, G.; Fabroni, S.; Romeo, F.V.; Spina, A.; Rapisarda, P. Qualitative and nutraceutical aspects of lemon fruits grown on the mountainsides of the Mount Etna: A first step for a protected designation of origin or protected geographical indication application of the brand name ‘Limone dell’Etna’. Food Res. Int. 2015, 74, 250–259. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free. Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, B.; Giuffrida, A.; Stagno, F.; Intrigliolo, F.; Canali, S.; Trinchera, A.; Pompili, L.; Nisini, L. Application of organic fertilizers in an orange orchard in Southern italy: Efects on soil fertility trees nutritional status, yield and quality of fruits. Proc. Int. Soc. Citric. 2004, 2, 649–653. [Google Scholar]
- Galimov, E.M. Causes of Fractionation of Isotopes. In The Biological Fractionation of Isotopes; Elsevier: Amsterdam, The Netherlands, 1985; pp. 1–15. [Google Scholar]
- Coplen, T.B. Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results. Rapid Commun. Mass. Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
- Ciaccia, C.; Canali, S.; Campanelli, G.; Testani, E.; Montemurro, F.; Leteo, F.; Delate, K. Effect of roller-crimper technology on weed management in organic zucchini production in a Mediterranean climate zone. Renew. Agric. Food Syst. 2016, 31, 111–121. [Google Scholar] [CrossRef]
- Diacono, M.; Trinchera, A.; Montemurro, F. An overview on agroecology and organic agriculture strategies for sustainable crop production. Agronomy 2021, 11, 223. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F. Sustainability of agro-ecological practices in organic horticultural: Yield, energy-use and carbon footprint. Agroecol. Sustain. Food Syst. 2020, 44, 726–746. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, L. Differential Effects of Nitrogen Supply on Skin Pigmentation and Flesh Starch Breakdown of ‘Gala’ Apple. HortScience 2011, 46, 1116–1120. [Google Scholar] [CrossRef]
- Khathir, R.; Agustina, R.; Nurba, D.; Syafriandi; Putra, D. Shelf-life estimation of cauliflower based on total soluble solids by using the Arrhenius and Q10 approach. IOP Conf. Ser. Earth Environ. Sci. 2019, 365, 012006. [Google Scholar] [CrossRef]
- Fabroni, S.; Amenta, M.; Rapisarda, S.; Torrisi, B.; Licciardello, C. Amino acid metabolism and expression of genes involved in nitrogen assimilation in common oranges cv. Valencia Late. Biol. Plant. 2022, 66, 155–162. [Google Scholar] [CrossRef]
- Silveira, B.D.S.; Torres, J.L.R.; Orioli Júnior, V.; Favaro, J.H.D.S.; Costa, L.L.; Charlo, H.C.D.O. Cover crops in the production of green and sweet corn. Hortic. Bras. 2021, 39, 094–0101. [Google Scholar] [CrossRef]
- Blundell, R.; Schmidt, J.E.; Igwe, A.; Cheung, A.L.; Vannette, R.L.; Gaudin, A.C.; Casteel, C.L. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 2020, 6, 483–491. [Google Scholar] [CrossRef]
- Fabroni, S.; Rapisarda, P. Is Plant Nitrogen Depletion Really Linked to the Biosynthesis of Carbon-Rich Defense-Related Compounds in Organic Products? Acta Sci. Agric. 2020, 4, 47–48. [Google Scholar] [CrossRef]
- Prior, R.L.; Joseph, J.A.; Cao, G.; Shukitt-Hale, B. Can Foods Forestall Aging? February Issue; Agricultural Research, USDA Magazine: Washington, DC, USA, 1999; pp. 15–17.
- Persiani, A.; Diacono, M.; Monteforte, A.; Montemurro, F. Agronomic performance, energy analysis and carbon balance comparing different fertilization strategies in horticulture under Mediterranean conditions. Environ. Sci. Pollut. Res. 2019, 26, 19250–19260. [Google Scholar] [CrossRef] [PubMed]
- Koudela, M.; Hnilička, F.; Svozilová, L.; Martinková, J. Cauliflower qualities in two irrigation levels with the using of hydrophilic agent. Hort. Sci. 2011, 38, 81–85. [Google Scholar] [CrossRef]
- Nerdy, N.; Putra, E.D.L. Spectrophotometric Method for Determination of Nitrite and Nitrate Levels in Broccoli and Cauliflower with Different Fertilization Treatment. Orient. J. Chem. 2018, 34, 2983–2991. [Google Scholar] [CrossRef]
- Pobereżny, J.; Wszelaczyńska, E.; Wichrowska, D.; Jaskulski, D. Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation simplifications applied and storage. Chil. J. Agric. Res. 2015, 75, 42–49. [Google Scholar]
- Song, J.; Yang, J.; Jeong, B.R. Growth, Quality, and Nitrogen Assimilation in Response to High Ammonium or Nitrate Supply in Cabbage (Brassica campestris L.) and Lettuce (Lactuca sativa L.). Agronomy 2021, 11, 2556. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Fabroni, S.; Benincasa, C.; Muzzalupo, I.; Rapisarda, P.; Romano, E.; Perri, E. Classificazione chemiometrica di oli d’oliva vergini di provenienza nazionale mediante marker isotopici e chimici. Acta Italus Hortus 2013, 10, 267–270. [Google Scholar]
- Chung, I.M.; Han, J.; Kong, W.; Kim, J.; An, M.; Lee, J.; An, Y.; Jung, M.Y.; Kim, S. Regional discrimination of Agaricus bisporus mushroom using the natural stable isotope ratios. Food Chem. 2018, 264, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 1983, 303, 685–687. [Google Scholar] [CrossRef]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef]
Treatment | Fertilizer | Dose (kg ha−1) | Distribution Period | N (Units ha−1) |
---|---|---|---|---|
(1) Organic | Animal pellet (3-0-0) * | 4000.00 | At transplanting | 120 |
(2) Mix-Organic | Animal pellet (3-0-0) | 1333.33 | At transplanting | 40 |
Ammonium nitrate (26-0-0) * | 307.69 | At the first mechanical weeding | 80 | |
(3) Conventional | Multielement synthetic “YaraMila Blustar” (12-12-17) * | 500.00 | At transplanting | 60 |
Ammonium nitrate (26-0-0) * | 230.77 | At the first mechanical weeding | 60 | |
(4) Mix-Conventional a | Animal pellet (3-0-0) * | 1333.33 | At transplanting | 40 |
Ammonium nitrate (26-0-0) * | 307.69 | At the first mechanical weeding | 80 | |
(5) Mix-Conventional b | Animal pellet (3-0-0) * | 2666.66 | At transplanting | 80 |
Ammonium nitrate (26-0-0) * | 153.84 | At the first mechanical weeding | 40 | |
(6) Organic + Agroecological practices | Organic vegetable amendment “Vegand” (4.1,4-0) * | 3000.00 | At transplanting | 120 |
Treatment | Corymb Weight (g FW) | pH | Total Acidity (% Citric Acid) | Total Soluble Solids (°Brix) | Corymb Head Height (cm) | Corymb Head Diameter (cm) | L* | A* | B* | Cut Resistance (N) |
---|---|---|---|---|---|---|---|---|---|---|
Organic | 981.23 ± 59.57 ab | 6.42 ± 0.05 | 0.21 ± 0.01 | 6.62 ± 0.21 b | 10.91 ± 0.57 | 15.41 ± 0.87 | 73.35 ± 2.14 | −0.41 ± 0.06 | 19.88 ± 1.00 | 50.14 ± 0.02 |
Mix-Organic | 967.78 ± 38.17 ab | 6.35 ± 0.05 | 0.21 ± 0.00 | 6.65 ± 0.13 b | 10.91 ± 048 | 15.34 ± 0.48 | 69.86 ± 1.81 | −0.43 ± 0.07 | 18.61 ± 0.39 | 50.10 ± 0.01 |
Conventional | 931.96 ± 69.92 ab | 6.42 ± 0.04 | 0.20 ± 0.01 | 7.56 ± 0.33 a | 10.34 ± 0.63 | 14.25 ± 0.63 | 71.23 ± 1.03 | −0.26 ± 0.03 | 18.34 ± 0.43 | 50.18 ± 0.05 |
Mix-Conv.—a | 863.44 ± 59.57 b | 6.47 ± 0.04 | 0.21 ± 0.01 | 7.26 ± 0.19 ab | 11.84 ± 0.35 | 15.31 ± 0.35 | 74.02 ± 1.38 | −0.27 ± 0.13 | 19.21 ± 1.22 | 50.29 ± 0.14 |
Mix-Conv.—b | 881.90 ± 36.34 ab | 6.49 ± 0.03 | 0.20 ± 0.01 | 7.04 ± 0.25 ab | 10.19 ± 0.46 | 14.09 ± 0.46 | 75.52 ± 1.18 | −0.10 ± 0.06 | 20.31 ± 0.14 | 50.22 ± 0.04 |
Organic + AEP | 1141.61 ± 80.08 a | 6.43 ± 0.04 | 0.20 ± 0.01 | 6.62 ± 0.25 b | 12.06 ± 0.76 | 15.97 ± 0.76 | 73.98 ± 1.41 | −0.36 ± 0.03 | 19.61 ± 0.59 | 49.42 ± 0.64 |
Treatments | Ascorbic Acid (mg g−1 DW) |
---|---|
Organic | 8.16 ± 0.37 a |
Mix-Organic | 6.94 ± 0.37 ab |
Conventional | 5.52 ± 0.71 abc |
Mix-Conventional—a | 5.77 ± 067 abc |
Mix-Conventional—b | 3.56 ± 0.75 c |
Organic + Agroecological practices | 3.88 ± 0.62 bc |
Treatment | Total Nitrogen (%) | Total Inorganic Nitrogen (mg kg−1 DW) | NO3− (mg kg−1 DW) | NH4 (mg kg−1 DW) |
---|---|---|---|---|
Organic | 3.77 ± 0.20 | 241.69 ± 18.44 | 27.68 ± 5.64 | 214.00 ± 13.55 |
Mix-Organic | 3.85 ± 0.12 | 290.84 ± 26.33 | 29.81 ± 3.89 | 261.03 ± 22.64 |
Conventional | 3.27 ± 0.20 | 224.00 ± 24.47 | 28.59 ± 3.32 | 195.41 ± 21.25 |
Mix-Conventional—a | 3.19 ± 0.26 | 252.84 ± 28.35 | 22.35 ± 3.86 | 230.49 ± 24.75 |
Mix-Conventional—b | 3.02 ± 024 | 225.45 ± 27.73 | 23.74 ± 4.42 | 201.71 ± 23.51 |
Organic + Agroecological practices | 3.11 ± 014 | 202.03 ± 13.71 | 16.81 ± 3.95 | 185.21 ± 13.62 |
Δ(15N) (‰ vs. AIR) | Type of Fertilizer |
---|---|
7.9 | Organic animal pellet (1st year) |
2.2 | Vegand (1st year) |
1.0 | YaraMila Blustar (1st year) |
−0.2 | Ammonium nitrate (1st year) |
8.1 | Organic animal pellet (2nd year) |
3.5 | Vegand (2nd year) |
0.7 | YaraMila Blustar (2nd year) |
−2.2 | Ammonium nitrate (2nd year) |
Function | Eigenvalue | % Variance | % Cumulated Variance | Canonical Correlation |
---|---|---|---|---|
1 | 40.767 | 67.4 | 67.4 | 0.988 |
2 | 10.431 | 17.3 | 84.7 | 0.955 |
3 | 5.512 | 9.1 | 93.8 | 0.920 |
4 | 2.338 | 3.9 | 97.7 | 0.837 |
5 | 1.407 | 2.3 | 100.0 | 0.765 |
Function | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Corymb_weight | 0.060 | 0.478 | 0.360 | 0.264 | −0.045 |
pH | −0.515 | −0.417 | 0.297 | −0.112 | 0.626 |
Total_acidity | −0.157 | −0.473 | −0.812 | 0.245 | −0.276 |
TSS | −0.717 | 1.037 | 0.679 | 0.414 | −0.108 |
Ascorbic_acid | −0.519 | 0.054 | 0.040 | −0.467 | −0.584 |
Total_polyphenols | 2.220 | 1.054 | 0.679 | 0.416 | −0.166 |
Total_nitrogen | −0.500 | −0.182 | 0.716 | −0.431 | −1.677 |
Total_inorganic_nitrogen | 0.564 | 1.783 | −1.872 | 3.361 | 1.792 |
NO3 | −1.116 | 0.760 | 1.272 | −0.383 | 0.801 |
δ15N_corymb | 0.643 | −0.134 | 0.811 | −0.247 | −0.777 |
δ13C_corymb | 0.362 | −0.365 | 0.219 | −0.173 | −0.242 |
delta_34S_corymb | 0.126 | −0.140 | −0.963 | −0.446 | 0.239 |
δ15N_soil | 0.921 | −0.523 | 0.273 | 0.374 | −0.213 |
δ34S_soil | −0.532 | 1.922 | 1.310 | 3.811 | 0.705 |
δ15N_leaves | 0.510 | 0.746 | −1.257 | −0.037 | 1.349 |
δ13C_leaves | −0.499 | 0.473 | 1.343 | 0.129 | 0.372 |
δ34S_leaves | 0.129 | −0.997 | −0.181 | 0.370 | 0.108 |
δ2H_leaves | 0.572 | −0.447 | 0.157 | 0.275 | −0.049 |
δ18O_leaves | −0.317 | 0.981 | −0.579 | −0.653 | 0.501 |
Corymb_head_height | −0.365 | −2.545 | −1.593 | −1.099 | −0.789 |
Corymb_head_diameter | 0.343 | 2.787 | 1.077 | 1.180 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanelli, G.; Amenta, M.; Bontempo, L.; Leteo, F.; Montemurro, F.; Platani, C.; Timpanaro, N.; Torrisi, B.; Fabroni, S. Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Cauliflower Case Study. Horticulturae 2024, 10, 94. https://doi.org/10.3390/horticulturae10010094
Campanelli G, Amenta M, Bontempo L, Leteo F, Montemurro F, Platani C, Timpanaro N, Torrisi B, Fabroni S. Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Cauliflower Case Study. Horticulturae. 2024; 10(1):94. https://doi.org/10.3390/horticulturae10010094
Chicago/Turabian StyleCampanelli, Gabriele, Margherita Amenta, Luana Bontempo, Fabrizio Leteo, Francesco Montemurro, Cristiano Platani, Nicolina Timpanaro, Biagio Torrisi, and Simona Fabroni. 2024. "Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Cauliflower Case Study" Horticulturae 10, no. 1: 94. https://doi.org/10.3390/horticulturae10010094
APA StyleCampanelli, G., Amenta, M., Bontempo, L., Leteo, F., Montemurro, F., Platani, C., Timpanaro, N., Torrisi, B., & Fabroni, S. (2024). Innovative Tools for Nitrogen Fertilization Traceability in Organic Farming Products: A Cauliflower Case Study. Horticulturae, 10(1), 94. https://doi.org/10.3390/horticulturae10010094