Effects of Humic Acids, Seaweed Extract and Equisetum arvense L. Extracts on Morphological, Histological and Physiological Parameters of the Ornamental Plant Ocimum basilicum Rokokó
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substances Used in Experiments
2.1.1. Equisetum arvense Extract
2.1.2. Seeweed Extract
2.1.3. Humus Extracts
2.2. Experiment Parameters
- Control: only irrigation water was used during the experiment;
- Algae extract leaf spray: concentration applied: 0.2%;
- E. arvense extract leaf spray: applied concentration: 0.2%;
- Humus extract leaf spray: applied concentration: 6.5%;
- Humus extract irrigation: 6.5%.
2.3. Morphological Evaluation
- Leaf number;
- Fresh green mass;
- Fresh root mass.
2.4. Histological Analysis
- Microscope: Euromex bScope BS.1153-PLi biological microscope, (Euromex, Duiven, The Netherlands);
- Camera: Euromex CMEX-5f 5 Mp Camera (DC.5000f), (Euromex, Duiven, The Netherlands);
- Lens: due to the sectioning procedure, oil immersion lens blocks could not be used, therefore due to the nature of the sections, a PLi Lens: PLi 4/0.1. lens was used, and because of the type of samples no oil immersion was applied. Magnification: 40 × 4/0.1. magnification: 40×;
- Ocular: WF120×/20.
2.5. Physiological Measurements
2.5.1. Chlorophyll Content
2.5.2. Proline Content Determination
2.5.3. Peroxidase Enzyme Activity
2.6. Statistical Evaluation
3. Results
3.1. Morphology
3.2. Histology
3.3. Physiology
3.3.1. Chlorophyll Content
3.3.2. Peroxidase Enzyme Activity
3.3.3. Proline Content
4. Discussion
4.1. Morphological Parameters
4.2. Histological Parameters
4.3. Physiological Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dörr, O.S.; Brezina, S.; Rauhut, D.; Mibus, H. Plant architecture and phytochemical composition of basil (Ocimum basilicum L.) under the influence of light from microwave plasma and high-pressure sodium lamps. J. Photochem. Photobiol. B Biol. 2020, 202, 111678. [Google Scholar] [CrossRef] [PubMed]
- Hozayen, W.G.; El-Desouky, M.A.; Soliman, H.A.; Ahmed, R.R.; Khaliefa, A.K. Antiosteoporotic effect of Petroselinum crispum, Ocimum basilicum and Cichorium intybus L. in glucocorticoid-induced osteoporosis in rats. BMC Complement. Altern. Med. 2016, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Bączek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Węglarz, Z. Sweet basil (Ocimum basilicum L.) productivity and raw material quality from organic cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef]
- Darrah, H.H. Investigation of the cultivars of the basils (Ocimum). Econ. Bot. 1974, 28, 63–67. [Google Scholar] [CrossRef]
- Turner, G.W.; Gershenzon, J.; Croteau, R.B. Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol. 2000, 124, 655–664. [Google Scholar] [CrossRef]
- Aghaei, K.; Pirbalouti, A.G.; Mousavi, A.; Badi, H.N.; Mehnatkesh, A. Effects of foliar spraying of l-phenylalanine and application of bio-fertilizers on growth, yield, and essential oil of hyssop [Hyssopus officinalis L. subsp. Angustifolius (Bieb.)]. Biocatal. Agric. Biotechnol. 2019, 21, 101318. [Google Scholar] [CrossRef]
- Hungarian University of Agriculture and Life Sciences. Available online: https://en.uni-mate.hu/ (accessed on 12 September 2024).
- Kisvarga, S.; Farkas, D.; Orlóci, L. The past and future of Hungarian annual and perennial ornamental plant breeding. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Innovations in Ornamentals: From Breeding to 1368, Angers, France, 14 August 2022; pp. 281–290. [Google Scholar]
- Sankar, B.; Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Somasundaram, R.; Panneerselvam, R. Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot. Croat. 2007, 66, 43–56. [Google Scholar]
- Ábrahám-Temesvári, E. A Prolin Felhalmozódás, és az Ebben Kulcsszerepet Játszó Gének Transzkripcionális Szintű Vizsgálata Arabidopsis Thaliana-Ban; MTA Biological Research Centre: Szeged, Hungary, 2004. [Google Scholar]
- Sofy, M.R.; Seleiman, M.F.; Alhammad, B.A.; Alharbi, B.M.; Mohamed, H.I. Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy 2020, 10, 699. [Google Scholar] [CrossRef]
- Jang, S.W.; Sadiq, N.B.; Hamayun, M.; Jung, J.; Lee, T.; Yang, J.S.; Lee, B.; Kim, H.Y. Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng CA Mey. Ind. Crops Prod. 2020, 156, 112848. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Wang, X.S.; Han, J.G. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agric. Sci. China 2009, 8, 431–440. [Google Scholar] [CrossRef]
- Matysik, J.; Alia, Bhalu, B.; Mohanty, P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002, 82, 525–532. [Google Scholar]
- Passardi, F.; Cosio, C.; Penel, C.; Dunand, C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005, 24, 255–265. [Google Scholar] [CrossRef]
- Jouili, H.; Bouazizi, H.; El Ferjani, E. Plant peroxidases: Biomarkers of metallic stress. Acta Physiol. Plant. 2011, 33, 2075–2082. [Google Scholar] [CrossRef]
- Kravić, N.; Marković, K.; Anđelković, V.; Hadži-Tašković Šukalović, V.; Babić, V.; Vuletić, M. Growth, proline accumulation and peroxidase activity in maize seedlings under osmotic stress. Acta Physiol. Plant. 2013, 35, 233–239. [Google Scholar] [CrossRef]
- Chen, S.L.; Kao, C.H. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul. 1995, 17, 67–71. [Google Scholar] [CrossRef]
- Ferrusquía-Jiménez, N.I.; Serrano-Jamaica, L.M.; Martínez-Camacho, J.E.; Sáenz de la, O.D.; Villagomez-Aranda, A.L.; González-Chavira, M.M.; Guerrero, B.; Pacheco, I.T.; Feregrino-Perez, A.A.; Medina-Ramos, G. Extracellular self-DNA plays a role as a damage-associated molecular pattern (DAMP) delaying zoospore germination rate and inducing stress-related responses in Phytophthora capsici. Plant Pathol. 2022, 71, 1066–1075. [Google Scholar] [CrossRef]
- Rathor, P.; Gorim, L.Y.; Thilakarathna, M.S. Plant hysiological and molecular responses triggered by humic based biostimulants-a way forward to sustainable agriculture. Plant Soil 2023, 492, 31–60. [Google Scholar] [CrossRef]
- Maričić, B.; Radman, S.; Romić, M.; Perković, J.; Major, N.; Urlić, B.; Palčić, I.; Ban, D.; Zorić, Z.; Ban, S.G. Stinging Nettle (Urtica dioica L.) as an aqueous plant-based extract fertilizer in green bean (Phaseolus vulgaris L.) sustainable agriculture. Sustainability 2021, 13, 4042. [Google Scholar] [CrossRef]
- Ricci, M.; Tilbury, L.; Daridon, B.; Sukalac, K. General principles to justify plant biostimulant claims. Front. Plant Sci. 2019, 10, 494. [Google Scholar] [CrossRef]
- Teliban, G.C.; Stoleru, V.; Burducea, M.; Lobiuc, A.; Munteanu, N.; Popa, L.D.; Caruso, G. Biochemical, physiological and yield characteristics of red basil as affected by cultivar and fertilization. Agriculture 2020, 10, 48. [Google Scholar] [CrossRef]
- Tahami, M.K.; Jahan, M.; Khalilzadeh, H.; Mehdizadeh, M. Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Ind. Crops Prod. 2017, 107, 97–104. [Google Scholar] [CrossRef]
- Jahan, M.; Amiri, M.B.; Shabahang, J.; Ahmadi, F.; Soleymani, F. The Effects of Winter Cover Crops and Plant Growth Promoting Rhizobacteria on some Soil Fertility Aspects and Crop Yield in an Organic Production System of Ocimum basilicum L. Iran. J. Field Crops Res. 2013, 11, 562–572. [Google Scholar] [CrossRef]
- Eghlima, G.; Chegini, K.G.; Farzaneh, M.; Aghamir, F. Effect of common horsetail extract on growth characteristics, essential oil yield and chemical compositions of basil (Ocimum basilicum L.). Sci. Rep. 2024, 14, 11082. [Google Scholar] [CrossRef]
- Kalteh, M.; Alipour, Z.T.; Ashraf, S.; Marashi, A.M.; Falah, N.A. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J. Chem. Health Risks 2014, 4, 49–55. [Google Scholar]
- Chele, K.H.; Steenkamp, P.; Piater, L.A.; Dubery, I.A.; Huyser, J.; Tugizimana, F. A global metabolic map defines the effects of a Si-based biostimulant on tomato plants under normal and saline conditions. Metabolites 2021, 11, 820. [Google Scholar] [CrossRef]
- Memari-Tabrizi, E.F.; Yousefpour-Dokhanieh, A.; Babashpour-Asl, M. Foliar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L.). Plant Physiol. Biochem. 2021, 165, 71–79. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 2020, 25, 1702. [Google Scholar] [CrossRef]
- Sampathkumar, P.; Dineshkumar, R.; Rasheeq, A.A.; Arumugam, A.; Nambi, K.S. Marine microalgal extracts on cultivable crops as a considerable bio-fertilizer: A Review. Indian J. Tradit. Knowl. (IJTK) 2019, 18, 849–854. [Google Scholar]
- Mafakheri, S.; Asghari, B. Effect of Seaweed Extract, Humic Acid and Chemical Fertilizers on Morphological, Physiological and Biochemical Characteristics of Trigonella foenum-graecum L. J. Agric. Sci. Technol. 2018, 20, 1505–1516. [Google Scholar]
- Latique, S.; Chernane, H.; Mansoori, M.; El Kaoua, M. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris cultivar Paulista) under hydroponic system. Eur. Sci. J. 2013, 9, 174–191. [Google Scholar]
- Jayasinghe, P.S.; Pahalawattaarachchi, V.; Ranaweera, K.K.D.S. Effect of Seaweed Liquid Fertilizer on Plant Growth of Capsicum annum. Discovery 2016, 52, 723–734. Available online: http://www.nara.ac.lk/wp-content/uploads/2018/01/No-6-Sw-Liquid-fertilizer.pdf (accessed on 20 September 2024).
- Manea, A.I.; Abbas, K.A.U. Influence of seaweed extract, organic and inorganic fertilizer on growth and yield broccoli. Int. J. Veg. Sci. 2018, 24, 550–556. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Söylemez, S.; Sarhan, T.Z. Effect of biofertilizers, seaweed extract and inorganic fertilizer on growth and yield of lettuce (Lactuca sativa var. longifolia L.). Harran Tarım Ve Gıda Bilim. Derg. 2022, 26, 60–71. [Google Scholar] [CrossRef]
- Nassar, M.A.; EL-kobisy, O.S.; Shaaban, S.A.; Abdelwahab, H.M. Seaweed extract enhancing growth, fresh herb an essential oil of sweet marjoram (Origanum majorana L.). Plant Arch. 2020, 20, 3094–3101. [Google Scholar]
- Khalid, K.A. Influence of water stress on growth, essential oil, and chemical composition of herbs [Ocimum sp.]. Int. Agrophysics 2006, 20, 289–296. [Google Scholar]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Burnett, S.E.; Mattson, N.S.; Williams, K.A. Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Sci. Hortic. 2016, 208, 111–119. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Sifola, M.I.; Barbieri, G. Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hortic. 2006, 108, 408–413. [Google Scholar] [CrossRef]
- Sirousmehr, A.; Arbabi, J.; Asgharipour, M.R. Effect of drought stress levels and organic manures on yield, essential oil content and some morphological characteristics of sweet basil (Ocimum basilicum). Adv. Environ. Biol. 2014, 8, 880–885. [Google Scholar]
- Vaughan, D. Effetto delle sostanze umiche sui processi metabolici delle piante. In Sostanze Umiche Effetti Sul Terreno e Sulle Piante; Ramo Editoriale degli Agricoltori: Roma, Italy, 1986; pp. 59–81. [Google Scholar]
- Ni, H.; Zhao, J.; Yang, Z. Effects of compound fertilizer decrement and water-soluble humic acid fertilizer application on soil properties, bacterial community structure, and shoot yield in Lei Bamboo (Phyllostachys praecox) plantations in subtropical China. Forests 2024, 15, 400. [Google Scholar] [CrossRef]
- Khazaie, H.R.; EyshiRezaie, E.; Bannayan, M. Application times and concentration of humic acid impact on aboveground biomass and oil production of hyssop (Hyssopus officinalis). J. Med. Plants Res. 2011, 5, 5148–5154. [Google Scholar]
- Olivares, F.L.; Aguiar, N.O.; Rosa, R.C.C.; Canellas, L.P. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic extracts boosts production of organic tomatoes. Sci. Hortic. 2015, 183, 100–108. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Martins, E.M.; Pillajo, J.Q.; Jones, M.L. Humic and Fulvic Acids Promote Growth and Flowering in Petunias at Low and Optimal Fertility. HortScience 2024, 59, 235–244. [Google Scholar] [CrossRef]
- Bioka Equisetum. Available online: https://www.sanaplant.sk/wp-content/uploads/2022/12/kbu_1594-bioka-equisetum.pdf (accessed on 8 October 2024).
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. J. Appl. Phycol. 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Talajreform. Available online: https://talajreform.hu/termekek/esstence (accessed on 11 August 2024).
- Klasmann-Deilmann. Available online: https://klasmann-deilmann.com/wp-content/uploads/8982_KD_Aktualisierung_Easy_Growing_EN.pdf (accessed on 21 September 2024).
- Raymond Hunt, E.; Daughtry, C.S.T. Chlorophyll Meter Calibrations for Chlorophyll Content Using Measured and Simulated Leaf Transmittances. Agron. J. 2014, 106, 931–939. [Google Scholar] [CrossRef]
- Ábrahám, E.; Houston-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. Plant Stress Toler. Methods Protoc. 2010, 639, 317–331. [Google Scholar]
- Shannon, L.M.; Kay, E.; Lew, J.Y. Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 1966, 241, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Debosz, K.; Petersen, S.O.; Kure, L.K.; Ambus, P. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil Ecol. 2002, 19, 237–248. [Google Scholar] [CrossRef]
- Zhen, L.; Kai, S.; Bin, Z.; Qingling, D.; Geng, L.; Han, H.; Li, Z.; Ning, T. Impacts of straw, biogas slurry, manure and mineral fertilizer applications on several biochemical properties and crop yield in a wheat-maize cropping system. Plant Soil Environ. 2019, 65, 1–8. [Google Scholar]
- Balas, J.; Keutgen, A.; Herzog, E. Biostimulants affect the quality and yield of tomato fruits from open-field production. In Proceedings of the VII South-Eastern Europe Symposium on Vegetables and Potatoes 2017, Maribor, Slovenia, 20–23 June 2017; Volume 1326, pp. 93–102. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic extracts on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisvarga, S.; Horotán, K.; Hamar-Farkas, D.; Orlóci, L. Effects of Humic Acids, Seaweed Extract and Equisetum arvense L. Extracts on Morphological, Histological and Physiological Parameters of the Ornamental Plant Ocimum basilicum Rokokó. Horticulturae 2024, 10, 1231. https://doi.org/10.3390/horticulturae10111231
Kisvarga S, Horotán K, Hamar-Farkas D, Orlóci L. Effects of Humic Acids, Seaweed Extract and Equisetum arvense L. Extracts on Morphological, Histological and Physiological Parameters of the Ornamental Plant Ocimum basilicum Rokokó. Horticulturae. 2024; 10(11):1231. https://doi.org/10.3390/horticulturae10111231
Chicago/Turabian StyleKisvarga, Szilvia, Katalin Horotán, Dóra Hamar-Farkas, and László Orlóci. 2024. "Effects of Humic Acids, Seaweed Extract and Equisetum arvense L. Extracts on Morphological, Histological and Physiological Parameters of the Ornamental Plant Ocimum basilicum Rokokó" Horticulturae 10, no. 11: 1231. https://doi.org/10.3390/horticulturae10111231
APA StyleKisvarga, S., Horotán, K., Hamar-Farkas, D., & Orlóci, L. (2024). Effects of Humic Acids, Seaweed Extract and Equisetum arvense L. Extracts on Morphological, Histological and Physiological Parameters of the Ornamental Plant Ocimum basilicum Rokokó. Horticulturae, 10(11), 1231. https://doi.org/10.3390/horticulturae10111231