Evaluation of Soil Quality in Different Bletilla striata Agroforestry Systems in Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Soil Sampling
2.3. Soil Indicator Measurements
2.4. Soil Quality Evaluation Method
2.5. Statistical Analyses
3. Results
3.1. Soil Characteristics of Different Agroforestry Systems
3.2. Indicators Selection for MDS
3.3. Soil Quality Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van der Heijden, M.G.A. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef]
- Sojka, R.E.; Upchurch, D.R.; Borlaug, N.E. Quality soil management or soil quality management: Performance versus semantics. Adv. Agron. 2003, 79, 1–68. [Google Scholar] [CrossRef]
- Dai, F.Q.; Lv, Z.Q.; Liu, G.C. Assessing soil quality for sustainable cropland management based on factor analysis and fuzzy sets: A case study in the Lhasa River Valley, Tibetan Plateau. Sustainability 2018, 10, 3477. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.L.; Li, Z.W.; Liu, M.X.; Xu, C.H.; Zhang, R.F.; Luo, W. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Environ. 2019, 650, 2657–2665. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.J.; Wu, L.; Ren, Y.; Zhang, J.D.; Xu, M.G. Advance in indicator screening and methodologies of soil quality evaluation. Sci. Agric. Sin. 2021, 54, 3043–3056. [Google Scholar] [CrossRef]
- Bravo-Medina, C.; Goyes-Vera, F.; Arteaga-Crespo, Y.; Garcia-Quintana, Y.; Changoluisa, D. A soil quality index for seven productive landscapes in the Andean-Amazonian foothills of Ecuador. Land Degrad. Dev. 2021, 32, 2226–2241. [Google Scholar] [CrossRef]
- Larson, W.E.; Pierce, F. Conservation and enhancement of soil quality. In Evaluation for Sustainable Land Management in the Developing World; International Board for Soil Research and Management: Bangkok, Thailand, 1991; pp. 175–203. [Google Scholar]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosyst. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Karlen, D.L.; Hartz, T.K.; Horwath, W.R.; Pettygrove, G.S.; Scow, K.M.; Munk, D.S. On-farm assessment of soil quality in California’s central valley. Agron. J. 2002, 94, 12–23. [Google Scholar] [CrossRef]
- Li, S.F.; Gong, S.S.; Hou, Y.H.; Li, X.N.; Wang, C. The impacts of agroforestry on soil multi-functionality depending on practices and duration. Sci. Total Environ. 2022, 847, 157438. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Song, Y.; Zeng, R.; Hu, L.L.; Maffucci, K.G.; Ren, X.D.; Qu, Y. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts. Biomed. Pharmacother. 2017, 93, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.M.; Xu, H.S.; Shi, J.; Wang, Z.; Lv, J.F.; Li, L.; Wang, X. Soil microbial composition, diversity, and network stability in intercropping versus monoculture responded differently to drought. Agric. Ecosyst. Environ. 2024, 365, 108915. [Google Scholar] [CrossRef]
- Suárez, L.R.; Salazar, J.C.S.; Casanoves, F.; Bieng, M.A.N. Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agric. Ecosyst. Environ. 2021, 314, 107349. [Google Scholar] [CrossRef]
- Cardozo, F.M.; Carneiro, R.F.V.; Rocha, S.M.B.; Nunes, L.A.P.L.; dos Santos, V.M.; Feitoza, L.D.; de Araujo, A.S.F. The impact of pasture systems on soil microbial biomass and community-level physiological profiles. Land Degrad. Dev. 2018, 29, 284–291. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, B.; Zhu, X.A.; Ma, S.; Xie, E.H.; Zeng, H.H.; Li, C.; Wu, J.E. An increase in intercropped species richness improves plant water use but weakens the nutrient status of both intercropped plants and soil in rubber-tea agroforestry systems. Agric. Water Manag. 2023, 284, 108353. [Google Scholar] [CrossRef]
- Ivezić, V.; Yu, Y.; van der Werf, W. Crop yields in European agroforestry systems: A meta-analysis. Front. Sustain. Food Syst. 2021, 5, 606631. [Google Scholar] [CrossRef]
- Martin, D.A.; Osen, K.; Grass, I.; Holscher, D.; Tscharntke, T.; Wurz, A.; Kreft, H. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 2020, 13, e12740. [Google Scholar] [CrossRef]
- Langenberger, G.; Cadisch, G.; Martin, K.; Min, S.; Waibel, H. Rubber intercropping: A viable concept for the 21st century? Agrofor. Syst. 2017, 91, 577–596. [Google Scholar] [CrossRef]
- Vaupel, A.; Bednar, Z.; Herwig, N.; Hommel, B.; Moran-Rodas, V.E.; Beule, L. Tree-distance and tree-species effects on soil biota in a temperate agroforestry system. Plant Soil 2023, 487, 355–372. [Google Scholar] [CrossRef]
- Deng, P.F.; Yin, R.Y.; Wang, H.L.; Chen, L.R.; Cao, X.Q.; Xu, X.N. Comparative analyses of functional traits based on metabolome and economic traits variation of Bletilla striata: Contribution of intercropping. Front. Plant Sci. 2023, 14, 1147076. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Cao, X.Q.; Fan, W.; Deng, P.F.; Xu, X.N. Effects of intercropping systems of Phyllostachys edulis and Bletilla striata on soil bacterial community composition and function. Agrofor. Syst. 2023, 97, 617–630. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Description, 4th ed.; FAO/ISRIC: Rome, Italy, 2006; pp. 67–82. [Google Scholar]
- AS 1289.2. 1.1; Methods of Testing Soils for Engineering Purposes, Soil Moisture Content Tests—Determination of the Moisture Content of a Soil-Oven Drying Method (Standard Method). SAI Global: Sydney, Australia, 2005.
- Huang, C.; Wang, Z.C.; Ren, X.L.; Ma, X.M.; Zhou, M.Y.; Ge, X.; Liu, H.; Fu, S.L. Evaluation of soil quality in a composite pecan orchard agroforestry system based on the smallest dataset. Sustainability 2022, 14, 10665. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Nel, J.A.; Craine, J.M.; Cramer, M.D. Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C and N. Plant Soil 2018, 423, 257–271. [Google Scholar] [CrossRef]
- Chen, L.R.; Wen, Z.Y.; Yin, R.Y.; Deng, P.F.; Gao, Y.; Xu, H.; Xu, X.N. Soil Organic Carbon turnover response to nitrogen and phosphorus additions in Eastern China: Evidence from stable carbon isotopes. Forests 2023, 14, 1314. [Google Scholar] [CrossRef]
- Nakajima, T.; Lal, R.; Jiang, S. Soil quality index of a crosby silt loam in central Ohio. Soil Till Res. 2015, 146, 323–328. [Google Scholar] [CrossRef]
- Andrews, S.S.; Carroll, C.R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Shao, G.D.; Ai, J.J.; Sun, Q.W.; Hou, L.Y.; Dong, Y.F. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Yan, Q.J.; Lv, B.Q.; Wu, C.Q.; Hu, J.Y. Study on soil physical and chemical properties and soil enzyme activities of wild Bletilla striata habitat in Yanting, Sichuan. J. Sichuan For. Sci. Technol. 2023, 44, 107–112. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows (Version 22.0); IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Origin(Pro), Version 2021; OriginLab Corporation: Northampton, MA, USA, 2021.
- Zhang, X.P.; Gao, G.B.; Wu, Z.Z.; Wen, X.; Zhong, H.; Zhong, Z.K.; Bian, F.Y.; Gai, X. Agroforestry alters the rhizosphere soil bacterial and fungal communities of moso bamboo plantations in subtropical China. Appl. Soil Ecol. 2019, 143, 192–200. [Google Scholar] [CrossRef]
- Tang, L.L.; Hayashi, K.; Ohigashi, K.; Shimura, M.; Kohyama, K. Developing characterization factors to quantify management impacts on soil quality of paddy fields within life cycle assessment. J. Clean. Prod. 2019, 238, 117890. [Google Scholar] [CrossRef]
- Panicoa, S.C.; Esposito, F.; Memoli, V.; Vitale, L.; Polimeno, F.; Magliulo, V.; Maisto, G.; De Marco, A. Variations of agricultural soil quality during the growth stages of sorghum and sunflower. Appl. Soil Ecol. 2020, 152, 103569. [Google Scholar] [CrossRef]
- Mirghaed, F.A.; Souri, B. Spatial analysis of soil quality through landscape patterns in the Shoor River Basin, Southwestern Iran. Catena 2022, 211, 106028. [Google Scholar] [CrossRef]
- John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. USA 2007, 104, 864–869. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Penuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Sari, R.R.; Rozendaal, D.M.A.; Saputra, D.D.; Hairiah, K.; Roshetko, J.M.; van Noordijk, M. Balancing litterfall and decomposition in cacao agroforestry systems. Plant Soil 2022, 473, 251–271. [Google Scholar] [CrossRef]
- Sayer, E.J.; Tanner, E.V.J.; Cheesman, A.W. Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 2006, 281, 5–13. [Google Scholar] [CrossRef]
- Yengwe, J.; Gebremikael, M.T.; Buchan, D.; Lungu, O.; De Neve, S. Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agrofor. Syst. 2018, 92, 349–363. [Google Scholar] [CrossRef]
- Ngaba, M.J.Y.; Mgelwa, A.S.; Gurmesa, G.A.; Uwiragiye, Y.; Zhu, F.F.; Qiu, Q.Y.; Fang, Y.T.; Hu, B.; Rennenberg, H. Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant Soil 2024, 496, 589–607. [Google Scholar] [CrossRef]
- Isaac, M.E.; Borden, K.A. Nutrient acquisition strategies in agroforestry systems. Plant Soil 2019, 444, 1–19. [Google Scholar] [CrossRef]
- Zou, J.Y.; Luo, Y.H.; Burgess, K.S.; Tan, S.L.; Zheng, W.; Fu, C.N.; Xu, K.; Gao, L.M. Joint effect of phylogenetic relatedness and trait selection on the elevational distribution of Rhododendron species. J. Syst. Evol. 2021, 59, 1244–1255. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, W.X.; Teng, C.; Pang, Z.Y.; Peng, Y.H.; Qiu, J.; Lei, J.W.; Su, X.H.; Zhu, W.X.; Ding, C.J. Intercropping changed the soil microbial community composition but no significant effect on alpha diversity. Front. Microbiol. 2024, 15, 1370996. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Zeng, H.H.; Zhao, F.; Chen, C.F.; Jiang, X.J.; Zhu, X.A.; Wang, P.Y.; Wu, Z.X.; Liu, W.J. The nutrient status of plant roots reveals competition intensities in rubber agroforestry systems. Forests 2020, 11, 1163. [Google Scholar] [CrossRef]
- Powers, R.F.; Reynolds, P.E. Ten-year responses of ponderosa pine plantations to repeated vegetation and nutrient control along an environmental gradient. Can. J. For. Res. 1999, 29, 1027–1038. [Google Scholar] [CrossRef]
- Barrero, A.; Traba, J.; Tarjuelo, R. Increased density of conspecifics caused niche contraction in a multispecific passerine assemblage. Ecology 2024, 105, e4296. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology 2004, 85, 2380–2389. [Google Scholar] [CrossRef]
- Borden, K.A.; Thomas, S.C.; Isaac, M.E. Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar. Plant Soil 2017, 410, 323–334. [Google Scholar] [CrossRef]
- Zhang, W.; Ahanbieke, P.; Wang, B.J.; Xu, W.L.; Li, L.H.; Christie, P.; Li, L. Root distribution and interactions in jujube tree/wheat agroforestry system. Agrofor. Syst. 2013, 87, 929–939. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.J.; Gan, Y.W.; Duan, Z.P.; Hao, X.D.; Xu, W.L.; Li, L.H. Competitive interaction in jujube tree/cotton agroforestry system in Xinjiang province, northwestern China. Agrofor. Syst. 2019, 93, 591–605. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Qi, Y.B.; Darilek, J.L.; Huang, B.A.; Zhao, Y.C.; Sun, W.X.; Gu, Z.Q. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Kurmangozhinov, A.; Xue, W.; Li, X.Y.; Zeng, F.J.; Sabit, R.; Tusun, T. High biomass production with abundant leaf litterfall is critical to ameliorating soil quality and productivity in reclaimed sandy desertification land. J. Environ. Manag. 2020, 263, 110373. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Chen, Y.P.; Zhou, J.; Wang, K.B.; Wu, J.H. Soil quality should be accurate evaluated at the beginning of lifecycle after land consolidation for eco-sustainable development on the Loess Plateau. J. Clean. Prod. 2020, 267, 122244. [Google Scholar] [CrossRef]
- Guo, L.L.; Sun, Z.G.; Ouyang, Z.; Han, D.R.; Li, F.D. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena 2017, 152, 135–143. [Google Scholar] [CrossRef]
- Fohrafellner, J.; Zechmeister-Boltenstern, S.; Murugan, R.; Valkama, E. Quality assessment of meta-analyses on soil organic carbon. Soil 2023, 9, 117–140. [Google Scholar] [CrossRef]
- Fu, X.L.; Dai, Y.Z.; Cui, J.; Deng, P.F.; Fan, W.; Xu, X.N. Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China. J. For. Res. 2024, 35, 17. [Google Scholar] [CrossRef]
- McClory, R.; Ellis, R.H.; Lukac, M.; Clark, J.; Mayoral, C.; Hart, K.M.; Plackett, A.R.G.; Mackenzie, A.R. Carbon dioxide enrichment affected flower numbers transiently and increased successful post-pollination development stably but without altering final acorn production in mature pedunculate oak (Quercus robur L.). J. For. Res. 2024, 35, 73. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lin, W.Y.; Hsiao, Y.M.; Chiou, T.J. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. Plant Cell 2024, 36, 1504–1523. [Google Scholar] [CrossRef]
Indicator | CK | PeB | PoB | CcB |
---|---|---|---|---|
SWC (%) | 16.98 ± 1.07 b | 18.57 ± 0.44 b | 16.24 ± 1.34 b | 28.53 ± 1.63 a |
pH (H2O) | 5.06 ± 0.05 b | 5.84 ± 0.31 a | 5.33 ± 0.06 b | 5.15 ± 0.04 b |
NH4+-N (mg/kg) | 2.80 ± 0.36 b | 2.28 ± 0.44 b | 4.68 ± 0.82 a | 5.20 ± 0.35 a |
NO3−-N (mg/kg) | 0.82 ± 0.17 bc | 0.10 ± 0.02 c | 1.70 ± 0.35 b | 3.58 ± 0.56 a |
DOC (mg/kg) | 113.85 ± 4.36 b | 69.19 ± 3.69 c | 86.24 ± 6.45 c | 133.11 ± 8.97 a |
DON (mg/kg) | 8.88 ± 0.40 a | 6.17 ± 0.64 b | 5.83 ± 0.21 b | 8.65 ± 0.44 a |
SOC (g/kg) | 9.85 ± 1.71 b | 6.82 ± 0.71 b | 6.67 ± 0.32 b | 27.40 ± 2.74 a |
TN (g/kg) | 0.95 ± 0.14 b | 0.68 ± 0.05 b | 0.67 ± 0.02 b | 2.40 ± 0.26 a |
TP (g/kg) | 0.40 ± 0.04 b | 0.41 ± 0.09 b | 0.15 ± 0.01 c | 0.63 ± 0.06 a |
K (mg/kg) | 4.36 ± 0.07 a | 4.43 ± 0.16 a | 3.61 ± 0.12 b | 3.14 ± 0.05 c |
Mg (mg/kg) | 8.86 ± 0.63 b | 8.51 ± 1.07 b | 12.15 ± 0.84 a | 13.07 ± 0.66 a |
MBC (mg/kg) | 53.34 ± 6.51 b | 33.75 ± 5.08 bc | 16.80 ± 3.47 c | 105.47 ± 11.07 a |
MBN (mg/kg) | 16.65 ± 2.15 b | 12.54 ± 2.42 bc | 5.39 ± 1.39 c | 35.12 ± 3.73 a |
δ15N (‰) | 1.21 ± 0.19 a | 0.02 ± 0.31 b | −0.48 ± 0.19 b | 1.26 ± 0.36 a |
δ13C (‰) | −20.89 ± 0.35 b | −21.80 ± 0.90 b | −18.94 ± 0.49 a | −21.82 ± 0.21 b |
Indicator | Principal Components | Norm Value | Group | ||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | |||
SWC (%) | 0.506 | 0.551 | −0.101 | 1.681 | 2 |
pH (H2O) | −0.150 | −0.201 | 0.897 | 1.321 | 3 |
NH4+-N (mg/kg) | 0.004 | 0.833 | −0.007 | 1.786 | 2 |
NO3−-N (mg/kg) | 0.285 | 0.866 | −0.115 | 1.980 | 2 |
DOC (mg/kg) | 0.688 | 0.438 | −0.398 | 1.944 | 1 |
DON (mg/kg) | 0.870 | 0.034 | −0.072 | 2.048 | 1 |
SOC (g/kg) | 0.658 | 0.696 | 0.123 | 2.155 | 2 |
TN (g/kg) | 0.638 | 0.700 | 0.112 | 2.126 | 1 |
TP (g/kg) | 0.771 | 0.259 | 0.517 | 2.017 | 3 |
K (mg/kg) | −0.183 | −0.849 | 0.043 | 1.871 | 2 |
Mg (mg/kg) | −0.080 | 0.722 | −0.334 | 1.622 | 2 |
MBC (mg/kg) | 0.807 | 0.400 | −0.002 | 2.081 | 1 |
MBN (mg/kg) | 0.811 | 0.401 | 0.164 | 2.102 | 1 |
δ15N (‰) | 0.855 | −0.075 | −0.129 | 2.023 | 1 |
δ13C (‰) | −0.647 | 0.061 | −0.583 | 1.713 | 3 |
Eigenvalue | 5.521 | 4.596 | 1.784 | ||
Variance (%) | 36.804 | 30.643 | 11.893 | ||
Cumulative variance (%) | 36.804 | 67.447 | 79.341 |
Indicator | Total Dataset (TDS) | Minimum Dataset (MDS) | ||
---|---|---|---|---|
Communalities | Weights | Communalities | Weights | |
SWC (%) | 0.570 | 0.048 | ||
pH (H2O) | 0.868 | 0.073 | ||
NH4+-N (mg/kg) | 0.693 | 0.058 | ||
NO3−-N (mg/kg) | 0.845 | 0.071 | ||
DOC (mg/kg) | 0.823 | 0.069 | ||
DON (mg/kg) | 0.763 | 0.064 | ||
SOC (g/kg) | 0.933 | 0.078 | 0.956 | 0.355 |
TN (g/kg) | 0.910 | 0.076 | 0.952 | 0.353 |
TP (g/kg) | 0.928 | 0.078 | 0.789 | 0.292 |
K (mg/kg) | 0.757 | 0.064 | ||
Mg (mg/kg) | 0.640 | 0.054 | ||
MBC (mg/kg) | 0.811 | 0.068 | ||
MBN (mg/kg) | 0.845 | 0.071 | ||
δ15N (‰) | 0.753 | 0.063 | ||
δ13C (‰) | 0.762 | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zhang, Z.; Wang, J.; Dai, H.; Zhang, A.; Xu, X. Evaluation of Soil Quality in Different Bletilla striata Agroforestry Systems in Eastern China. Horticulturae 2024, 10, 1308. https://doi.org/10.3390/horticulturae10121308
Cao X, Zhang Z, Wang J, Dai H, Zhang A, Xu X. Evaluation of Soil Quality in Different Bletilla striata Agroforestry Systems in Eastern China. Horticulturae. 2024; 10(12):1308. https://doi.org/10.3390/horticulturae10121308
Chicago/Turabian StyleCao, Xiaoqing, Zhili Zhang, Jingjing Wang, Huiyan Dai, Aiting Zhang, and Xiaoniu Xu. 2024. "Evaluation of Soil Quality in Different Bletilla striata Agroforestry Systems in Eastern China" Horticulturae 10, no. 12: 1308. https://doi.org/10.3390/horticulturae10121308
APA StyleCao, X., Zhang, Z., Wang, J., Dai, H., Zhang, A., & Xu, X. (2024). Evaluation of Soil Quality in Different Bletilla striata Agroforestry Systems in Eastern China. Horticulturae, 10(12), 1308. https://doi.org/10.3390/horticulturae10121308