Bilberries vs. Blueberries: A Comprehensive Review
Abstract
:1. Introduction
2. Botanical Description and Distribution
3. Agronomic Requirements
4. Harvesting Process of Bilberries and Blueberries
5. Climate Change Effects on Bilberries and Blueberries
6. Differences Between Cultivated and Wild Bilberries
7. Pest and Disease Management
8. Ethnobotanical, Phytochemical, and Pharmacological Properties
9. Yield and Production Analysis
10. Economics and Market Potential
11. Future Prospects and Challenges
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, G.-Q.; Hancock, J.F. Vaccinium. In Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits; Springer: Berlin/Heidelberg, Germany, 2010; pp. 197–221. [Google Scholar]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef]
- Edger, P.P.; Iorizzo, M.; Bassil, N.V.; Benevenuto, J.; Ferrão, L.F.V.; Giongo, L.; Hummer, K.; Lawas, L.M.F.; Leisner, C.P.; Li, C.; et al. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. Hortic. Res. 2022, 9, uhac083. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Amyotte, B.; Ulrich, J.; Smith, T.W.; Turner, N.J.; Pico, J.; Ciotir, C.; Sharifi, M.; Meldrum, G.; Stormes, B.; et al. Berries as a case study for crop wild relative conservation, use, and public engagement in Canada. Plants People Planet 2022, 4, 558–578. [Google Scholar] [CrossRef]
- Rakkar, M.; Jungers, J.M.; Sheaffer, C.; Bergquist, G.; Grossman, J.; Li, F.; Gutknecht, J.L. Soil health improvements from using a novel perennial grain during the transition to organic production. Agric. Ecosyst. Environ. 2023, 341, 108164. [Google Scholar] [CrossRef]
- van der Sluijs, J.P.; Vaage, N.S. Pollinators and Global Food Security: The Need for Holistic Global Stewardship. Food Ethics 2016, 1, 75–91. [Google Scholar] [CrossRef]
- Poudel, D.; Bashyal, S.; Gautam, B. A Review on cultural practice as an effective pest management approach under integrated pest management. Trop. Agroecosyst. 2022, 3, 34–40. [Google Scholar] [CrossRef]
- Zhou, w.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M.E.S. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS Omega 2024, 9, 41130–41147. [Google Scholar] [CrossRef]
- Ray, S.; Majumder, S. Water Management in Agriculture: Innovations for Efficient Irrigation. In Modern Agronomy; SSPH: Azadpur, Delhi, India, 2024; pp. 169–185. [Google Scholar]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Andersson, G.K.; Requier, F.; Fijen, T.P.; Hipólito, J.; Kleijn, D.; Pérez-Méndez, N.; Rollin, O. Complementarity and synergisms among ecosystem services supporting crop yield. Glob. Food Secur. 2018, 17, 38–47. [Google Scholar] [CrossRef]
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.A.; Martin, A.C.; et al. Enhancing climate change resilience in agricultural crops. Curr. Biol. 2023, 33, R1246–R1261. [Google Scholar] [CrossRef]
- Wakweya, R.B. Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. J. Agric. Food Res. 2023, 14, 100698. [Google Scholar] [CrossRef]
- Segovia-Villarreal, M.; Florez-Lopez, R.; Ramon-Jeronimo, J.M. Berry Supply Chain Management: An Empirical Approach. Sustainability 2019, 11, 2862. [Google Scholar] [CrossRef]
- Antonella, S.; Barreca, D.; Giuseppina, L.; Ersilia, B.; Domenico, T. Bilberry (Vaccinium myrtyllus L.). In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2018; pp. 159–163. [Google Scholar]
- Chu, W.; Cheung, S.C.; Lau, R.A.; Benzie, I.F. Bilberry (Vaccinium myrtillus L.). In Herbal Medicine; CRC Press: Boca Raton, FL, USA, 2011; pp. 55–71. [Google Scholar]
- Zoratti, L.; Klemettilä, H.; Jaakola, L. Bilberry (Vaccinium myrtillus L.) Ecotypes. In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2015; pp. 83–99. [Google Scholar]
- Padmanabhan, P.; Correa-Betanzo, J.; Paliyath, G. Berries and Related Fruits. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Vaneková, Z.; Rollinger, J.M. Bilberries: Curative and Miraculous—A Review on Bioactive Constituents and Clinical Research. Front. Pharmacol. 2022, 13, 909914. [Google Scholar] [CrossRef] [PubMed]
- Ehlenfeldt, M. Domestication of the Highbush Blueberry at Whitesbog, New Jersey, 1911–1916. Acta Hortic. 2009, 810, 17. [Google Scholar] [CrossRef]
- Prodorutti, D.; Pertot, I.; Giongo, L.; Gessler, C. Global Science Books Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology. Eur. J. Plant Sci. Biotechnol. 2007, 1, 44–56. [Google Scholar]
- Samuel-Peterson, N. Cultural Competence in the Prevention and Treatment of Cancer: The Case of Blueberries in North America. Adv. Anthr. 2013, 3, 65–70. [Google Scholar] [CrossRef]
- Kayes, I.; Mallik, A. Boreal Forests: Distributions, Biodiversity, and Management. In Life on Land; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Nguyen, M.-P.; Lehosmaa, K.; Toth, K.; Koskimäki, J.J.; Häggman, H.; PirttilÄ, A.M. Weather in two climatic regions shapes the diversity and drives the structure of fungal endophytic community of bilberry (Vaccinium myrtillus L.) fruit. Environ. Microbiome 2024, 19, 7. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Wang, D.; Li, Q.; Wang, C.; Wu, L. Comparative Study on the Effects of Different Soil Improvement Methods in Blueberry Soil. Agronomy 2024, 14, 125. [Google Scholar] [CrossRef]
- Vaneková, Z.; Vanek, M.; Škvarenina, J.; Nagy, M. The Influence of Local Habitat and Microclimate on the Levels of Secondary Metabolites in Slovak Bilberry (Vaccinium myrtillus L.) Fruits. Plants 2020, 9, 436. [Google Scholar] [CrossRef]
- Kuepper, G.L.; Diver, S. Blueberries: Organic production. Hortic. Prod. Guide 2004, 6, 1–26. [Google Scholar]
- Caspersen, S.; Svensson, B.; Håkansson, T.; Winter, C.; Khalil, S.; Asp, H. Blueberry—Soil interactions from an organic perspective. Sci. Hortic. 2016, 208, 78–91. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Kaur, H.; Nelson, K.A.; Singh, G.; Veum, K.S.; Davis, M.P.; Udawatta, R.P.; Kaur, G. Drainage water management impacts soil properties in floodplain soils in the midwestern, USA. Agric. Water Manag. 2023, 279, 108193. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhang, X.; Gao, X.; Shao, T.; Long, X.; Rengel, Z. Effects of Soil Properties and Microbiome on Highbush Blueberry (Vaccinium corymbosum) Growth. Agronomy 2022, 12, 1263. [Google Scholar] [CrossRef]
- Li, T.; Bi, G. Container Production of Southern Highbush Blueberries Using High Tunnels. HortScience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of Sphagnum Moss, Coir, and Douglas Fir Bark as Soilless Substrates for Container Production of Highbush Blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Braha, S.; Kullaj, E. Effects of the growing systems on growth and yield of high-bush blueberries (V. corymbosum L.). Bulg. J. Agric. Sci. 2024, 30, 445–450. [Google Scholar]
- Johansson, M. Biomass, decomposition and nutrient release of Vaccinium myrtillus leaf litter in four forest stands. Scand. J. For. Res. 1993, 8, 466–479. [Google Scholar] [CrossRef]
- Hejcman, M.; Dvorak, I.J.; Kocianova, M.; Pavlu, V.; Nezerkova, P.; Vitek, O.; Rauch, O.; Jenik, J. Snow Depth and Vegetation Pattern in a Late-melting Snowbed Analyzed by GPS and GIS in the Giant Mountains, Czech Republic. Arctic Antarct. Alp. Res. 2006, 38, 90–98. [Google Scholar] [CrossRef]
- Frak, E.; Ponge, J.F. The influence of altitude on the distribution of subterranean organs and humus components in Vaccinium myrtillus car-pets. J. Veg. Sci. 2002, 13, 17–26. [Google Scholar] [CrossRef]
- Zeidler, M.; Banaš, M. Bilberry Expansion in the Changing Subalpine Belt. Plants 2024, 13, 2633. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, A.A.D.; Bahn, M.; Pritchard, W.J.; Newbold, L.K.; Goodall, T.; Guinta, A.; Snell, H.S.K.; Cordero, I.; Michas, A.; Grant, H.K.; et al. Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecol. Lett. 2022, 25, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Pato, J.; Obeso, J.R. Fruit mass variability in Vaccinium myrtillus as a response to altitude, simulated herbivory and nutrient availability. Basic Appl. Ecol. 2012, 13, 338–346. [Google Scholar] [CrossRef]
- Bokhorst, S.; Bjerke, J.W.; Davey, M.P.; Taulavuori, K.; Taulavuori, E.; Laine, K.; Callaghan, T.V.; Phoenix, G.K. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol. Plant. 2010, 140, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Nestby, R.; Krogstad, T.; Joner, E.; Vohník, M. The effect of NP fertilization on European blueberry (Vaccinium myrtillus L.) development on cultivated land in mid-Norway. J. Berry Res. 2014, 4, 147–157. [Google Scholar] [CrossRef]
- Taulavuori, K.; Laine, K.; Taulavuori, E.; Pakonen, T.; Saari, E. Accelerated dehardening in bilberry (Vaccinium myrtillus L.) induced by a small elevation in air temperature. Environ. Pollut. 1997, 98, 91–95. [Google Scholar] [CrossRef]
- Taulavuori, K.; Laine, K.; Taulavuori, E. Experimental studies on Vaccinium myrtillus and Vaccinium vitis-idaea in relation to air pollution and global change at northern high latitudes: A review. Environ. Exp. Bot. 2013, 87, 191–196. [Google Scholar] [CrossRef]
- Nestby, R.; Martinussen, I.; Krogstad, T.; Uleberg, E. Effect of fertilization, tiller cutting and environment on plant growth and yield of European blueberry (Vaccinium myrtillus L.) in Norwegian forest fields. J. Berry Res. 2014, 4, 79–95. [Google Scholar] [CrossRef]
- Zydlik, Z.; Cieśliński, S.; Mai, V.C.; Kafkas, E.; Morkunas, I. Soil Preparation, Running Highbush Blueberry (Vaccinium corymbosum L.) Plantation and Biological Properties of Fruits. In Modern Fruit Industry; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Campa, A.; Ferreira, J.J. Genetic diversity assessed by genotyping by sequencing (GBS) and for phenological traits in blueberry cultivars. PLoS ONE 2018, 13, e0206361. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, N.W.; Kaiser, C. Midwest Blueberry Production Guide; University of Kentucky Cooperative Extension: Burkesville, KY, USA, 2013. [Google Scholar]
- Manzanero, B.R.; Kulkarni, K.P.; Vorsa, N.; Reddy, U.K.; Natarajan, P.; Elavarthi, S.; Iorizzo, M.; Melmaiee, K. Genomic and evolutionary relationships among wild and cultivated blueberry species. BMC Plant Biol. 2023, 23, 126. [Google Scholar] [CrossRef] [PubMed]
- Thornton, J.M.; Palazzi, E.; Pepin, N.C.; Cristofanelli, P.; Essery, R.; Kotlarski, S.; Giuliani, G.; Guigoz, Y.; Kulonen, A.; Pritchard, D.; et al. Toward a definition of Essential Mountain Climate Variables. One Earth 2021, 4, 805–827. [Google Scholar] [CrossRef]
- Körner, C. The use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Boscutti, F.; Casolo, V.; Beraldo, P.; Braidot, E.; Zancani, M.; Rixen, C. Shrub growth and plant diversity along an elevation gradient: Evidence of indirect effects of climate on alpine ecosystems. PLoS ONE 2018, 13, e0196653. [Google Scholar] [CrossRef]
- Nestby, R.; Percival, D.; Martinussen, I.; Opstad, N.; Rohloff, J. The European blueberry (Vaccinium myrtillus L.) and the potential for cultivation. Eur. J. Plant Sci. Biotechnol. 2011, 5, 5–16. [Google Scholar]
- Ru, S.; Sanz-Saez, A.; Leisner, C.P.; Rehman, T.; Busby, S. Review on blueberry drought tolerance from the perspective of cultivar improvement. Front. Plant Sci. 2024, 15, 1352768. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.H.; Jinhui, W.; Li, X.; Hameed, M.K.; Manzoor, M.A.; Li, P.; Zhang, Y.; Niu, Q.; Chang, L. Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops. Sci. Hortic. 2024, 327, 112832. [Google Scholar] [CrossRef]
- Fang, Y.; Williamson, J.; Darnell, R.; Li, Y.; Liu, G. Optimizing Nitrogen Fertigation Rates for Young Southern Highbush Blueberry. Agronomy 2020, 10, 389. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Adams, H.D.; Wang, A.; Wu, J.; Jin, C.; Guan, D.; Yuan, F. Responses of woody plant functional traits to nitrogen addition: A meta-analysis of leaf economics, gas exchange, and hydraulic traits. Front. Plant Sci. 2018, 9, 683. [Google Scholar] [CrossRef]
- Lähdesmäki, P.; Pakonen, T.; Saari, E.; Laine, K.; Tasanen, L.; Havas, P. Changes in total nitrogen, protein, amino acids and NH+4 in tissues of bilberry, Vaccinium myrtillus, during the growing season. Ecography 1990, 13, 31–38. [Google Scholar] [CrossRef]
- Hart, A.T.; Landhäusser, S.M.; Wiley, E. Tracing carbon and nitrogen reserve remobilization during spring leaf flush and growth following defoliation. Tree Physiol. 2024, tpae015. [Google Scholar] [CrossRef]
- Fontaine, N.; Gauthier, P.; Caillon, S.; Thompson, J.D.; Boulangeat, I. Sustainability of Artemisia umbelliformis gathering in the wild: An integration of ecological conditions and harvesting exposure. Glob. Ecol. Conserv. 2024, 51, e02886. [Google Scholar] [CrossRef]
- Vári, A.; Arany, I.; Kalóczkai, A.; Kelemen, K.; Papp, J.; Czúcz, B. Berries, greens, and medicinal herbs—Mapping and assessing wild plants as an ecosystem service in Transylvania (Romania). J. Ethnobiol. Ethnomed. 2020, 16, 13. [Google Scholar] [CrossRef]
- Tadić, V.M.; Nešić, I.; Martinović, M.; Rój, E.; Brašanac-Vukanović, S.; Maksimović, S.; Žugić, A. Old Plant, New Possibilities: Wild Bilberry (Vaccinium myrtillus L., Ericaceae) in Topical Skin Preparation. Antioxidants 2021, 10, 465. [Google Scholar] [CrossRef]
- Cid, B.; Hilker, F.M.; Liz, E. Harvest timing and its population dynamic consequences in a discrete single-species model. Math. Biosci. 2014, 248, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Ghaffariyan, M.R.; Dupuis, E. Analysing the Impact of Harvesting Methods on the Quantity of Harvesting Residues: An Australian Case Study. Forests 2021, 12, 1212. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.-S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Lõhmus, A.; Remm, L. Disentangling the effects of seminatural forestry on an ecosystem good: Bilberry (Vaccinium myrtillus) in Estonia. For. Ecol. Manag. 2017, 404, 75–83. [Google Scholar] [CrossRef]
- Hellström, J.; Karhu, S.; Karhu, J.; Järvenpää, E.; Välimaa, A.-L. Phenolic profiles differentiate wild bilberry and cultivated blueberry fruit. LWT 2024, 199, 116080. [Google Scholar] [CrossRef]
- Kaur, B.; Mansi, S.; Dimri, S.; Singh, J.; Mishra, S.; Chauhan, N.; Kukreti, T.; Sharma, B.; Singh, S.P.; Arora, S.; et al. Insights into the harvesting tools and equipment’s for horticultural crops: From then to now. J. Agric. Food Res. 2023, 14, 100814. [Google Scholar] [CrossRef]
- Bohlin, I.; Maltamo, M.; Hedenås, H.; Lämås, T.; Dahlgren, J.; Mehtätalo, L. Predicting bilberry and cowberry yields using airborne laser scanning and other auxiliary data combined with National Forest Inventory field plot data. For. Ecol. Manag. 2021, 502, 119737. [Google Scholar] [CrossRef]
- Kubov, M.; Fleischer, P.; Tomes, J.; Mukarram, M.; Janík, R.; Turyasingura, B.; Fleischer, P.; Schieber, B. Differential Responses of Bilberry (Vaccinium myrtillus) Phenology and Density to a Changing Environment: A Study from Western Carpathians. Plants 2024, 13, 2406. [Google Scholar] [CrossRef] [PubMed]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Remm, L.; Rünkla, M.; Lõhmus, A. How bilberry pickers use estonian forests: Implications for sustaining a non-timber value. Balt. For. 2018, 24, 287–295. [Google Scholar]
- Manninen, O.; Peltola, R. Effects of picking methods on the berry production of bilberry (Vaccinium myrtillus), lingonberry (V. vitis-idaea) and crowberry (Empetrum nigrum ssp. hermaphroditum) in Northern Finland. Silva Fenn. 2013, 47, 972. [Google Scholar] [CrossRef]
- Brondino, L.; Borra, D.; Giuggioli, N.R.; Massaglia, S. Mechanized Blueberry Harvesting: Preliminary Results in the Italian Context. Agriculture 2021, 11, 1197. [Google Scholar] [CrossRef]
- Brondino, L.; Briano, R.; Massaglia, S.; Giuggioli, N. Influence of harvest method on the quality and storage of highbush blueberry. J. Agric. Food Res. 2022, 10, 100415. [Google Scholar] [CrossRef]
- Malfasi, F.; Cannone, N. Climate Warming Persistence Triggered Tree Ingression After Shrub Encroachment in a High Alpine Tundra. Ecosystems 2020, 23, 1657–1675. [Google Scholar] [CrossRef]
- Rohloff, J.; Uleberg, E.; Nes, A.; Krogstad, T.; Nestby, R.; Martinussen, I. Nutritional composition of bilberries (Vaccinium myrtillus L.) from forest fields in Norway—Effects of geographic origin, climate, fertilization and soil properties. J. Appl. Bot. Food Qual. 2015, 88, 274–287. [Google Scholar] [CrossRef]
- Selås, V.; Sønsteby, A.; Heide, O.; Opstad, N. Climatic and seasonal control of annual growth rhythm and flower formation in Vaccinium myrtillus (Ericaceae), and the impact on annual variation in berry production. Plant Ecol. Evol. 2015, 148, 350–360. [Google Scholar] [CrossRef]
- Zeppel, M.J.B.; Wilks, J.V.; Lewis, J.D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 2014, 11, 3083–3093. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Jiang, W.; Li, N.; Zhang, D.; Meinhardt, L.; Cao, B.; Li, Y.; Song, L. Elevated temperature and drought stress significantly affect fruit quality and activity of anthocyanin-related enzymes in jujube (Ziziphus jujuba Mill. cv. ‘Lingwuchangzao’). PLoS ONE 2020, 15, e0241491. [Google Scholar] [CrossRef] [PubMed]
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci. 2020, 4, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Alaba, O.A.; Bechami, S.; Chen, Y.-Y.; Gara, T.W.; Perkins, B.; Zhang, Y.-J. Will global warming reduce the nutritional quality of wild blueberries? Clim. Change Ecol. 2024, 8, 100088. [Google Scholar] [CrossRef]
- Cristea, G.; Dehelean, A.; Puscas, R.; Covaciu, F.-D.; Hategan, A.R.; Molnár, C.M.; Magdas, D.A. Characterization and Differentiation of Wild and Cultivated Berries Based on Isotopic and Elemental Profiles. Appl. Sci. 2023, 13, 2980. [Google Scholar] [CrossRef]
- Klavins, L.; Klavins, M. Cuticular Wax Composition of Wild and Cultivated Northern Berries. Foods 2020, 9, 587. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Mineral Composition of Wild and Cultivated Blueberries. Biol. Trace Element Res. 2018, 181, 173–177. [Google Scholar] [CrossRef]
- Karlsons, A.; Osvalde, A.; Čekstere, G.; Ponnale, J. Research on the mineral composition of cultivated and wild blueberries and cranberries. Agron. Res. 2018, 16, 454–463. [Google Scholar] [CrossRef]
- Gibb, T. Making Management Recommendations Using IPM. In Contemporary Insect Diagnostics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Matyjaszczyk, E. Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Manag. Sci. 2015, 71, 1201–1206. [Google Scholar] [CrossRef]
- Montesinos, E.; Bonaterra, A. Pesticides, Microbial. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tariq, M.; Khan, A.; Asif, M.; Khan, F.; Ansari, T.; Shariq, M.; Siddiqui, M.A. Biological control: A sustainable and practical approach for plant disease management. Acta Agric. Scand. Sect. B 2020, 70, 507–524. [Google Scholar] [CrossRef]
- Heimpel, G.E.; Mills, N.J. Biological Control; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control 2018, 117, 147–157. [Google Scholar] [CrossRef]
- Ramos-Bell, S.; Hernandez-Montiel, L.G.; González-Estrada, R.R.; Gutiérrez-Martínez, P. Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. LWT 2021, 149, 112046. [Google Scholar] [CrossRef]
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef]
- Neugebauer, K.A.; Mattupalli, C.; Hu, M.; Oliver, J.E.; VanderWeide, J.; Lu, Y.; Sullivan, K.; Stockwell, V.O.; Oudemans, P.; Miles, T.D. Managing fruit rot diseases of Vaccinium corymbosum. Front. Plant Sci. 2024, 15, 1428769. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.; Thompson, S.; Platts, A.E.; Body, M.J.A.; Kelsey, A.; Saad, A.; Abeli, P.; Teresi, S.J.; Schilmiller, A.; Beaudry, R.; et al. Uncovering genetic and metabolite markers associated with resistance against anthracnose fruit rot in northern highbush blueberry. Hortic. Res. 2023, 10, uhad169. [Google Scholar] [CrossRef] [PubMed]
- VanderWeide, J.; Falchi, R.; Calderan, A.; Peterlunger, E.; Vrhovsek, U.; Sivilotti, P.; Sabbatini, P. Juxtaposition of the Source-to-Sink Ratio and Fruit Exposure to Solar Radiation on cv. Merlot (Vitis vinifera L.) Berry Phenolics in a Cool versus Warm Growing Region. J. Agric. Food Chem. 2022, 70, 10429–10442. [Google Scholar] [CrossRef] [PubMed]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)–prospects and challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Nicot, P.C.; Stewart, A.; Bardin, M.; Elad, Y. Biological control and biopesticide suppression of Botrytis-incited diseases. In Botrytis-The Fungus, the Pathogen and its Management in Agricultural Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 165–187. [Google Scholar]
- O’neal, M.E.; Zontek, E.L.; Szendrei, Z.; Landis, D.A.; Isaacs, R. Ground predator abundance affects prey removal in highbush blueberry (Vaccinium corymbosum) fields and can be altered by aisle ground covers. BioControl 2005, 50, 205–222. [Google Scholar] [CrossRef]
- DuPre, M.E.; Weaver, D.K.; Seipel, T.F.; Menalled, F.D.; Zhu, J. Impacts of Dryland Cropping Systems on Ground Beetle Communities (Coleoptera: Carabidae) in the Northern Great Plains. J. Insect Sci. 2021, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, S. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- Rendon, D.; Hamby, K.A.; Arsenault-Benoit, A.L.; Taylor, C.M.; Evans, R.K.; Roubos, C.R.; Sial, A.A.; Rogers, M.; Petran, A.; Van Timmeren, S.; et al. Mulching as a cultural control strategy for Drosophila suzukii in blueberry. Pest Manag. Sci. 2020, 76, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Renkema, J.M.; Parent, J.-P. Mulches Used in Highbush Blueberry and Entomopathogenic Nematodes Affect Mortality Rates of Third-Instar Popillia japonica. Insects 2021, 12, 907. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C. Some forest pests in bilberry areas1. For. Int. J. For. Res. 1930, 4, 105–112. [Google Scholar] [CrossRef]
- Beales, P.A.; Giltrap, P.M.; Webb, K.M.; Ozolina, A. A further threat to UK heathland bilberry (Vaccinium myrtillus) by Phytophthora pseudosyringae. Plant Pathol. 2010, 59, 406. [Google Scholar] [CrossRef]
- Sharma, S. Cultivating sustainable solutions: Integrated pest management (ipm) for safer and greener agronomy. Corp. Sustain. Manag. J. 2023, 1, 103–108. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.-C.; Qian, L.-H.; Zhang, Y.-H.; Gong, P.-X.; Li, H.-J. Comparison of Health-Relevant Polyphenolic Component Content and Bioavailability of Bilberry (Vaccinium myrtillus L.), Blueberry (Vaccinium Sect. cyanococcus Rydb.) and Chokeberry (Aronia melanocarpa (Michx.) Elliott). Food Sci. Eng. 2022, 3, 120–136. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications—A Review. Curr. Pharm. Des. 2020, 26, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Murai, T.; Matsuda, S. The Chemopreventive Effects of Chlorogenic Acids, Phenolic Compounds in Coffee, against Inflammation, Cancer, and Neurological Diseases. Molecules 2023, 28, 2381. [Google Scholar] [CrossRef] [PubMed]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M.; Bhowmick, M.; Chattaraj, B.; Mohanto, S.; Srivastava, S.; et al. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. J. Agric. Food Res. 2024, 18, 101300. [Google Scholar] [CrossRef]
- Dare, A.P.; Günther, C.S.; Grey, A.C.; Guo, G.; Demarais, N.J.; Cordiner, S.; McGhie, T.K.; Boldingh, H.; Hunt, M.; Deng, C.; et al. Resolving the developmental distribution patterns of polyphenols and related primary metabolites in bilberry (Vaccinium myrtillus) fruit. Food Chem. 2022, 374, 131703. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Schantz, M.; Richling, E. High Performance Liquid Chromatography Analysis of Anthocyanins in Bilberries (Vaccinium myrtillus L.), Blueberries (Vaccinium corymbosum L.), and Corresponding Juices. J. Food Sci. 2012, 77, C340–C345. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. Int. Rev. J. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Y.; Liu, M.; Chen, X.; Xiao, X.; Wang, S.; Gong, P.; Ma, Y.; Chen, F. Structure and function of blueberry anthocyanins: A review of recent advances. J. Funct. Foods 2022, 88, 104864. [Google Scholar] [CrossRef]
- Starast, M.; Karp, K.; Vool, E.; Moor, U.; Tonutare, T.; Paal, T. Chemical Composition and Quality of Cultivated and Natural Blueberry Fruit in Estonia. J. Fruit Ornam. Plant Res. 2007, 66, 143–153. [Google Scholar] [CrossRef]
- Medic, A.; Smrke, T.; Hudina, M.; Veberic, R.; Zamljen, T. HPLC-Mass spectrometry analysis of phenolics comparing traditional bilberry and blueberry liqueurs. Food Res. Int. 2023, 173, 113373. [Google Scholar] [CrossRef]
- Riihinen, K.; Jaakola, L.; Kärenlampi, S.; Hohtola, A. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem. 2008, 110, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Bornsek, S.M.; Ziberna, L.; Polak, T.; Vanzo, A.; Ulrih, N.P.; Abram, V.; Tramer, F.; Passamonti, S. Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chem. 2012, 134, 1878–1884. [Google Scholar] [CrossRef]
- Može, S.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Ulrih, N.P.; Abram, V. Phenolics in Slovenian Bilberries (Vaccinium myrtillus L.) and Blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Rødbotten, M.; Martinsen, B.K.; Rosenfeld, H.J.; Lea, P.; Haffner, K. Quality of Highbush Blueberry (Vaccinium corymbosum L.) and Bilberry (Vaccinium myrtillus L.) Jam. Int. J. Fruit Sci. 2006, 5, 61–71. [Google Scholar] [CrossRef]
- Lyons, M.M.; Yu, C.; Toma, R.B.; Cho, S.Y.; Reiboldt, W.; Lee, J.; van Breemen, R.B. Resveratrol in Raw and Baked Blueberries and Bilberries. J. Agric. Food Chem. 2003, 51, 5867–5870. [Google Scholar] [CrossRef] [PubMed]
- Ispiryan, A.; Kraujutiene, I.; Viskelis, J. Retaining Resveratrol Content in Berries and Berry Products with Agricultural and Processing Techniques: Review. Processes 2024, 12, 1216. [Google Scholar] [CrossRef]
- Kuršvietienė, L.; Stanevičienė, I.; Mongirdienė, A.; Bernatonienė, J. Multiplicity of effects and health benefits of resveratrol. Medicina 2016, 52, 148–155. [Google Scholar] [CrossRef]
- Sova, M.; Saso, L. Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Taher, E.A.; Sheikh, B.Y.; Anjum, S.; Saeed, A.; AlAjmi, M.F.; Moustafa, M.S.; Al-Mousawi, S.M.; Farag, M.A.; Hegazy, M.E.F.; et al. Hydroxycinnamic Acids: Natural Sources, Biosynthesis, Possible Biological Activities, and Roles in Islamic Medicine. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 269–292. [Google Scholar]
- Mahmud, A.R.; Ema, T.I.; Siddiquee, M.F.-R.; Shahriar, A.; Ahmed, H.; Hasan, M.U.; Rahman, N.; Islam, R.; Uddin, M.R.; Mizan, F.R. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 47. [Google Scholar] [CrossRef]
- Do Socorro Chagas, M.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-De-Albuquerque, C.F. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Med. Cell. Longev. 2022, 1, 9966750. [Google Scholar]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods Hum. Nutr. 2017, 72, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, G.A.; Sandhu, A.K.; Miller, M.G.; Edirisinghe, I.; Burton-Freeman, B.B.; Shukitt-Hale, B. Blueberry phenolics are associated with cognitive enhancement in supplemented healthy older adults. Food Funct. 2021, 12, 107–118. [Google Scholar] [CrossRef]
- Maya-Cano, D.A.; Arango-Varela, S.; Santa-Gonzalez, G.A. Phenolic compounds of blueberries (Vaccinium spp.) as a protective strategy against skin cell damage induced by ROS: A review of antioxidant potential and antiproliferative capacity. Heliyon 2021, 7, e06297. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Nunes, A.R.; Meirinho, S.; Ayuso-Calles, M.; Roca-Couso, R.; Rivas, R.; Falcão, A.; Alves, G.; Silva, L.R.; Flores-Félix, J.D. Exploring the Antioxidant, Antidiabetic, and Antimicrobial Capacity of Phenolics from Blueberries and Sweet Cherries. Appl. Sci. 2023, 13, 6348. [Google Scholar] [CrossRef]
- Ștefănescu, R.; Marian, R. Bilberry Anthocyanins—Possible Applications in Skincare Products. Acta Biol. Marisiensis 2023, 6, 54–61. [Google Scholar] [CrossRef]
- Klavins, L.; Mezulis, M.; Nikolajeva, V.; Klavins, M. Composition, sun protective and antimicrobial activity of lipophilic bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) extract fractions. LWT 2021, 138, 110784. [Google Scholar] [CrossRef]
- Giovanelli, G.; Buratti, S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009, 112, 903–908. [Google Scholar] [CrossRef]
- Burdulis, D.; Sarkinas, A.; Jasutiené, I.; Stackevicené, E.; Nikolajevas, L.; Janulis, V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol. Pharm. 2009, 66, 399–408. [Google Scholar] [PubMed]
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef]
- Aliman, J.; Michalak, I.; Bušatlić, E.; Aliman, L.; Kulina, M.; Radović, M.; Hasanbegović, J. Study of the physicochemical properties of highbush blueberry and wild bilberry fruit in central Bosnia. Turk. J. Agric. For. 2020, 44, 156–168. [Google Scholar] [CrossRef]
- Banerjee, S.; Nayik, G.A.; Kour, J.; Nazir, N. Blueberries. In Antioxidants in Fruits: Properties and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2020; pp. 593–614. [Google Scholar]
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S. Climate change and future of agri-food production. In Future Foods: Global Trends, Opportunities, and Sustainability Challenges; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Ngoune Liliane, T.; Shelton Charles, M. Factors Affecting Yield of Crops. In Agronomy-Climate Change and Food Security; Intechopen: Rijeka, Croatia, 2020. [Google Scholar]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Baltes, N.J.; Gil-Humanes, J.; Voytas, D.F. Genome engineering and agriculture: Opportunities and challenges. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 149, pp. 1–26. [Google Scholar]
- Elisabetta, B.; Flavia, G.; Paolo, F.; Giorgio, L.; Attilio, S.G.; Fiorella, L.S.; Juri, N. Nutritional Profile and Productivity of Bilberry (Vaccinium myrtillus L.) in Different Habitats of a Protected Area of the Eastern Italian Alps. J. Food Sci. 2013, 78, C673–C678. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; An, X.; Song, Z.; Zhu, Y.; Tan, Y.; Guo, X.; Wang, D. Effects of nitrogen, phosphorus and potassium formula fertilization on the yield and berry quality of blueberry. PLoS ONE 2023, 18, e0283137. [Google Scholar] [CrossRef]
- Uleberg, E.; Rohloff, J.; Jaakola, L.; Trôst, K.; Junttila, O.; Häggman, H.; Martinussen, I. Effects of Temperature and Photoperiod on Yield and Chemical Composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 2012, 60, 10406–10414. [Google Scholar] [CrossRef]
- González-Villagra, J.; Ávila, K.; Gajardo, H.A.; Bravo, L.A.; Ribera-Fonseca, A.; Jorquera-Fontena, E.; Curaqueo, G.; Roldán, C.; Falquetto-Gomes, P.; Nunes-Nesi, A.; et al. Diurnal High Temperatures Affect the Physiological Performance and Fruit Quality of Highbush Blueberry (Vaccinium corymbosum L.) cv. Legacy. Plants 2024, 13, 1846. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, K.F.; Bryla, D.R.; Strik, B.C. Sensitivity of Northern Highbush Blueberry Cultivars to Soil Water Deficits during Various Stages of Fruit Development. HortScience 2021, 56, 154–162. [Google Scholar] [CrossRef]
- Zydlik, Z.; Zydlik, P.; Kafkas, N.E.; Yesil, B.; Cieśliński, S. Foliar Application of Some Macronutrients and Micronutrients Improves Yield and Fruit Quality of Highbush Blueberry (Vaccinium corymbosum L.). Horticulturae 2022, 8, 664. [Google Scholar] [CrossRef]
- Obsie, E.Y.; Qu, H.; Drummond, F. Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms. Comput. Electron. Agric. 2020, 178, 105778. [Google Scholar] [CrossRef]
- Alsubhi, M.; Blake, M.; Nguyen, T.; Majmudar, I.; Moodie, M.; Ananthapavan, J. Consumer willingness to pay for healthier food products: A systematic review. Obes. Rev. 2023, 24, e13525. [Google Scholar] [CrossRef] [PubMed]
- Godde, C.; Mason-D’croz, D.; Mayberry, D.; Thornton, P.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Knaut, A.; Paschmann, M. Price volatility in commodity markets with restricted participation. Energy Econ. 2019, 81, 37–51. [Google Scholar] [CrossRef]
- Herbon, A. Shelf-life extension under implementation costs. Comput. Ind. Eng. 2023, 180, 109241. [Google Scholar] [CrossRef]
- Brandão, A.S.; Gonçalves, A.; Santos, J.M. Circular bioeconomy strategies: From scientific research to commercially viable products. J. Clean. Prod. 2021, 295, 126407. [Google Scholar] [CrossRef]
- Kara, S.; Hauschild, M.; Sutherland, J.; McAloone, T. Closed-loop systems to circular economy: A pathway to environmental sustainability? CIRP Ann. 2022, 71, 505–528. [Google Scholar] [CrossRef]
- Duarte, A.L.d.C.M.; Rodrigues, V.P.; Costa, L.B.M. The sustainability challenges of fresh food supply chains: An integrative framework. Environ. Dev. Sustain. 2024, 1–25. [Google Scholar] [CrossRef]
- Vega, E.N.; García-Herrera, P.; Ciudad-Mulero, M.; Dias, M.I.; Matallana-González, M.C.; Cámara, M.; Tardío, J.; Molina, M.; Pinela, J.; Pires, T.C.; et al. Wild sweet cherry, strawberry and bilberry as underestimated sources of natural colorants and bioactive compounds with functional properties. Food Chem. 2023, 414, 135669. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit. Rev. Food Sci. Nutr. 2023, 63, 345–377. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- Ćeran, M.; Miladinović, D.; Đorđević, V.; Trkulja, D.; Radanović, A.; Glogovac, S.; Kondić-Špika, A. Genomics-assisted speed breeding for crop improvement: Present and future. Front. Sustain. Food Syst. 2024, 8, 1383302. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Pech, C.O.; Rodríguez-Magaña, A.; Briseño-Ramírez, H.; Ahumada, R. A Monte Carlo simulation case study on blueberries from Mexico. Int. Food Agribus. Manag. Rev. 2024, 27, 359–377. [Google Scholar] [CrossRef]
Aspect | Manual Harvesting | Mechanical Harvesting |
---|---|---|
Pros | Higher fruit quality and lower damage | Significant labor cost reduction |
Greater selectivity in fruit picking | Increased harvesting efficiency | |
Ability to harvest in diverse conditions | Faster harvest time | |
Minimal need for specialized equipment | Potential for reduced dependency on seasonal labor | |
Cons | High labor costs | Potential for increased fruit damage |
Time consuming process | Lower fruit quality, especially for fresh market | |
Labor availability issues | Requires investment in machinery | |
Limited harvesting speed | May require adaptation on farming practices |
Compounds | Values for Bilberries | Values for Blueberries | Health Benefits |
---|---|---|---|
Total Anthocyanins | 6102–7465 mg/100 g dry weight [120,121] | 1570–2762 mg/100 g dry weight [120] | Reduces cardiovascular disease risk, enhances neuroprotection, supports weight maintenance, and lowers type 2 diabetes risk. Acts as a prebiotic, improves gut microbiota, and reduces chronic inflammation. Enhances vision and brain function [121,122] |
405 mg/100 g fresh weight [123] | 125 mg/100 g fresh weight (‘Northblue’ blueberry) [123] | ||
1682.37 ±75.92 mg/L (in liqueur, from whole fruit) [124] | 7.36 ± 0.44 mg/L (in liqueur, from whole fruit) [124] | ||
20,256 μg/g (peels) 1040 μg/g (pulp) [125] | 6223 μg/g (peels) 19 μg/g (pulp) [125] | ||
50.00 ± 1.22 μg/L (crude extract) [126] | 50.00 ± 2.11 μg/L (crude extract) [126] | ||
340 cya-3-glu mg/100 g (Lot 1) 344 cya-3-glu mg/100 g (Lot 2) [127] | 104 cya-3-glu mg/100 g (‘Goldtraube’) 92 cya-3-glu mg/100 g (‘Patriot’) 129 cya-3-glu mg/100 g (‘Bluecrop’) 126 cya-3-glu mg/100 g (‘Darrow’) [127] | ||
0.4294 g/100 g jam [128] | 0.0872 g/100 g jam (‘Bluecrop’) 0.1375 g/100 g jam (‘Berkeley’) [128] | ||
Trans-resveratrol | 71.0 ± 15.0 pmol/g of sample (raw Polish bilberry) 89.8 ± 15.1 pmol/g of sample (heated Polish bilberry) [129] | 140.0 ± 29.9 pmol/g of sample (raw highbush Michigan blueberry) 98.3 ± 20.8 pmol/g of sample (heated highbush Michigan blueberry) [129] | Improves insulin resistance, inhibits cancer progression, enhances chemotherapy efficacy, and provides antioxidant, anti-inflammatory, antibacterial, cardioprotective, anti-aging, and neuroprotective effects [130,131] |
0.0002 g/100 g fresh weight [127] | 0.0004 g/100 g fresh weight [127] | ||
Total hydroxycinnamic acids | 117.04 ±6.20 mg/l (in liqueur, from whole fruit) [124] | 14.47 ±1.47 mg/l (in liqueur, from whole fruit) [124] | Strong antioxidants that reduce oxidative stress, lowering the risk of cardiovascular and neurodegenerative diseases, and cancer. Exhibit anti-inflammatory and antimicrobial effects [132,133] |
207 μg/g (peels) 163 μg/g (pulp) [125] | 734 μg/g (peels) 529 μg/g (pulp) [125] | ||
Total Flavonols | 9.91 ± 1.24 mg/L (in liqueur, from whole fruit) [124] | n.d. [124] | Possess antioxidant, anti-inflammatory, anticancer, antidiabetic, antimalarial, neuroprotective, cardioprotective, and hepatoprotective effects. They also show antiviral and antihypertensive properties [134,135] |
206 μg/g (peels) 15 μg/g (pulp) [125] | 562 μg/g (peels) n.d [125] | ||
0.0014 g/100 g fresh weight [127] | 0.0032 g/100 g fresh weight [127] | ||
Total Phenolics | 18.18 ± 0.59 μg/L (crude extract) [126] | 16.43 ± 0.34 μg/L (crude extract) [126] | Strong antioxidant effects, anti-inflammatory properties, anti-allergic, anti-thrombotic and potential cancer prevention. They help protect the skin from oxidative stress and UV damage, support cognitive function, and may reduce the risk of chronic diseases such as cardiovascular issues and neurodegenerative conditions [136,137,138,139,140,141] |
1903.45 ± 85.95 mg/L (in liqueur, from whole fruit) [124] | 22.10 ± 1.92 mg/L (in liqueur, from whole fruit) [124] | ||
577 gallic ac. mg/100 g (Lot 1) 614 gallic ac. mg/100 g (Lot 2) [142] | 251 gallic ac. mg/100 g (‘Goldtraube’) 310 gallic ac. mg/100 g (‘Patriot’) 299 gallic ac. mg/100 g (‘Bluecrop’) 298 gallic ac. mg/100 g (‘Darrow’) [142] | ||
0.0353 g/100 g fresh weight [127] | 0.0802 g/100 g fresh weight [127] |
Nutrients | Bilberries | Blueberries |
---|---|---|
Carbohydrate | ||
Sugar | 14.7 g | 9.96 g |
Dietary Fiber | 3.6 g | 2.4 g |
Starch | 0 | 0.03 g |
Sucrose | 163 mg | 0.11 g |
Glucose | 7222 mg | 5 g |
Fructose | 7355 g | 5 g |
Galactose | 0 | 0 |
Maltose | 0 | 0 |
Amino Acids | ||
Tryptophan | 3 mg | 3 mg |
Isoleucine | 23 mg | 23 mg |
Threonine | 20 mg | 20 mg |
Lysine | 13 mg | 13 mg |
Leucine | 44 mg | 44 mg |
Cysteine | 8 mg | 8.8 mg |
Tyrosine | 9 mg | 9 mg |
Valine | 31 mg | 31 mg |
Glutamic acid | 91 mg | 91 mg |
Aspartic acid | 57 mg | 58 mg |
Glycine | 31 mg | 31 mg |
Alanine | 31 mg | 31 mg |
Phenylalanine | 26 mg | 25 mg |
Histidine | 11 mg | 11 mg |
Vitamins | ||
B1 | 0 | 0.037 mg |
B2 | 0 | 0.041 mg |
B3 | 0.4 mg | 0.418 mg |
B5 | 0.1 mg | 0.124 mg |
B6 | - | 0.052 mg |
B9 | 6 mg | 0.005 mg |
A | 54 I.U. * | 54 I.U. * |
Acorbic acid | 9.7 mg | 9.7 mg |
Choline | 6 mg | 6 mg |
Betaine | 0.2 mg | 0.2 mg |
Minerals | ||
Fe | 0.3 mg | 0.28 mg |
Ca | 6 mg | 6 mg |
P | 12 mg | 12 mg |
Mg | 6 mg | 6 mg |
Na | 1 mg | 1 mg |
K | 77 mg | 77 mg |
Zn | 0.2 mg | 0.16 mg |
Mn | 0.3 mg | 0.34 mg |
Se | 0.1 mg | 0.1 mg |
Cu | 0.1 mg | 0.06 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrușier, C.; Colișar, A.; Rózsa, S.; Chiș, M.S.; Sîngeorzan, S.-M.; Borsai, O.; Negrean, O.-R. Bilberries vs. Blueberries: A Comprehensive Review. Horticulturae 2024, 10, 1343. https://doi.org/10.3390/horticulturae10121343
Negrușier C, Colișar A, Rózsa S, Chiș MS, Sîngeorzan S-M, Borsai O, Negrean O-R. Bilberries vs. Blueberries: A Comprehensive Review. Horticulturae. 2024; 10(12):1343. https://doi.org/10.3390/horticulturae10121343
Chicago/Turabian StyleNegrușier, Cornel, Alexandru Colișar, Sándor Rózsa, Maria Simona Chiș, Steluţa-Maria Sîngeorzan, Orsolya Borsai, and Oana-Raluca Negrean. 2024. "Bilberries vs. Blueberries: A Comprehensive Review" Horticulturae 10, no. 12: 1343. https://doi.org/10.3390/horticulturae10121343
APA StyleNegrușier, C., Colișar, A., Rózsa, S., Chiș, M. S., Sîngeorzan, S.-M., Borsai, O., & Negrean, O.-R. (2024). Bilberries vs. Blueberries: A Comprehensive Review. Horticulturae, 10(12), 1343. https://doi.org/10.3390/horticulturae10121343