Comparison of Crown Volume Increment in Street Trees among Six Cities in Western Countries and China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Virtual Research Data Acquisition
2.3. Calculation and Analysis of CV of Street Trees
2.4. Data Analysis
3. Results
3.1. Basic Characteristics of Street Trees in Cities
3.2. Difference in CV in Cities
3.3. Difference in CVI in Cities
4. Discussion
4.1. Exploring the Comparable CVs in Different Cities
4.2. CV Differences in Multi-City Applications of P. acerifolia
4.3. Feasibility and Limitations of Virtual Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolch, J.R.; Byrn, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi–functional and multi–scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Kardan, O.; Gozdyra, P.; Misic, B.; Moola, F.; Palmer, L.J.; Paus, T.; Berman, M.G. Neighborhood greenspace and health in a large urban center. Sci. Rep. 2015, 5, 11610. [Google Scholar] [CrossRef]
- Willis, K.J.; Petrokofsky, G. The natural capital of city trees. Science 2017, 356, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Picot, X. Thermal comfort in urban spaces: Impact of vegetation growth: Case study: Piazza della Scienza, Milan Italy. Energy Build. 2004, 36, 329–334. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot–arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Jiang, T.; Christen, A.; Martilli, A.; Oke, T.R.; Bailey, B.N.; Nazarian, N.; Voogt, J.A.; Giometto, M.G.; Stastny, A.; et al. A multi–layer urban canopy meteorological model with trees (BEP–Tree): Street tree impacts on pedestrian–level climate. Urban Clim. 2020, 32, 100590. [Google Scholar] [CrossRef]
- Lachapelle, J.A.; Krayenhoff, E.S.; Middel, A.; Coseo, P.; Warland, J. Maximizing the pedestrian radiative cooling benefit per street tree. Landsc. Urban Plan. 2022, 230, 104608. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Ossola, A.; Hahs, A.K.; Williams, N.S.G.; Wilson, L.; Livesley, S.J. Variation in vegetation structure and composition across urban green space types. Front. Ecol. Evol. 2016, 4, 512–581. [Google Scholar] [CrossRef]
- Kim, G.; Coseo, P. Urban Park systems to support sustainability: The role of urban park systems in hot arid urban climates. Forests 2018, 9, 439. [Google Scholar] [CrossRef]
- Stoffberg, G.H.; Van Rooyen, M.W.; Van Der Linde, M.J.; Groeneveld, H.T. Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For. Urban Green. 2010, 9, 9–14. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above–ground carbon storage at a city–wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Kato, A.; Moskal, L.M.; Schiess, P.; Swanson, M.E.; Calhoun, D.; Stuetzle, W. Capturing tree crown formation through implicit surface reconstruction using airborne lidar data. Remote Sens. Environ. 2009, 113, 1148–1162. [Google Scholar] [CrossRef]
- Zhang, J.; Gou, Z.; Zhang, F.; Shutter, L. A study of tree crown characteristics and their cooling effects in a subtropical city of Australia. Ecol. Eng. 2020, 158, 106027. [Google Scholar] [CrossRef]
- Morales-Gallegos, L.M.; Martínez-Trinidad, T.; Hernández-de la Rosa, P.; Gómez-Guerrero, A.; Alvarado-Rosales, D.; Saavedra-Romero, L.d.L. Tree Health Condition in Urban Green Areas Assessed through Crown Indicators and Vegetation Indices. Forests 2023, 14, 1673. [Google Scholar] [CrossRef]
- Speak, A.F.; Salbitano, F. The impact of pruning and mortality on urban tree canopy volume. Urban For. Urban Green. 2023, 79, 127810. [Google Scholar] [CrossRef]
- He, C.; Convertino, M.; Feng, Z.; Zhang, S. Using LiDAR Data to Measure the 3D Green Biomass of Beijing Urban Forest in China. PLoS ONE 2013, 8, e75920. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, R.; Cheng, L.; Zhou, X.; Ruan, X.; Xiao, Y. A Concave Hull Methodology for Calculating the Crown Volume of Individual Trees Based on Vehicle-Borne LiDAR Data. Remote Sens. 2019, 11, 623. [Google Scholar] [CrossRef]
- Carlson, T.N.; Arthur, S.T. The impact of land use–land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Whitford, V.; Ennos, A.R.; Handley, J.F. “City form and natural process”–indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc. Urban Plan. 2001, 57, 91–103. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground–based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Yoon, T.K.; Park, C.W.; Lee, S.J.; Ko, S.; Kim, K.N.; Son, Y.; Lee, K.H.; Oh, S.; Lee, W.-K.; Son, Y. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 2013, 12, 344–349. [Google Scholar] [CrossRef]
- Liang, H.L.; Li, W.Z.; Zhang, Q.P.; Zhu, W.; Chen, D.; Liu, J.; Shu, T. Using unmanned aerial vehicle data to assess the three–dimension green quantity of urban green space: A case study in Shanghai, China. Landsc. Urban Plan. 2017, 164, 81–90. [Google Scholar] [CrossRef]
- Hancock, S.; Anderson, K.; Disney, M.; Gaston, K.J. Measurement of fine–spatial–resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sens. Environ. 2017, 188, 37–50. [Google Scholar] [CrossRef]
- Hancock, S.; Essery, R.; Reid, T.; Carle, J.; Baxter, R.; Rutter, N.; Huntley, B. Characterising forest gap fraction with terrestrial lidar and photography: An examination of relative limitations. Agric. For. Meteorol. 2014, 189, 105–114. [Google Scholar] [CrossRef]
- Li, L.; Guo, Q.H.; Tao, S.L.; Kelly, M.; Xu, G.C. Lidar with multi–temporal MODIS provide a means to upscale predictions of forest biomass. ISPRS J. Photogramm. Remote. Sens. 2015, 102, 198–208. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3–PGS. Remote Sens. Environ. 2001, 75, 324–334. [Google Scholar] [CrossRef]
- Chen, D.; Li, W.Z.; Kong, W.L.; Shen, S.G. On the method of three–dimensional three–dimension green volume calculation based on low–altitude high–definition images–case study of the Nanjing Forestry University campus. Chin. Landsc. Archit. 2015, 9, 5. [Google Scholar] [CrossRef]
- Hosoi, F.; Nakai, Y.; Omasa, K. 3–D voxel–based solid modeling of a broad–leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J. Photogramm. Remote. Sens. 2013, 82, 41–48. [Google Scholar] [CrossRef]
- Yu, D.H.; Feng, Z.K. Tree crown volume measurement method based on oblique aerial images of UAV. Trans. Chin. Soc. Agric. Eng. 2019, 35, 90–97. [Google Scholar]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, B.; Zhou, J.; Hu, C.; Tan, W.; Hu, Z.; Wu, J. Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution Remote Sensing images. Front. Earth Sci. 2013, 7, 43–54. [Google Scholar] [CrossRef]
- Moeser, D.; Roubinek, J.; Schleppi, P.; Morsdorf, F.; Jonas, T. Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images. Agric. For. Meteorol. 2014, 197, 158–168. [Google Scholar] [CrossRef]
- Quan, Y.; Li, M.Z.; Zhen, Z.; Hao, Y.S. Modeling crown characteristic attributes and profile of Larix olgensis using UAV–borne LiDAR. J. Northeast. For. Univ. 2019, 47, 52–58. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Wang, B.; Yao, Y.; Yang, L.; Gao, Y.; Zhang, Z.M.; Lin, L.X. Quantification of vertical community structure of subtropical evergreen broad–leaved forest community using UAV–Lidar data. Acta Ecol. Sin. 2020, 40, 940–951. [Google Scholar] [CrossRef]
- Alonzo, M.; McFadden, J.P.; Nowak, D.J.; Roberts, D.A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 2016, 17, 135–147. [Google Scholar] [CrossRef]
- Guo, C.B.; Hu, Y.H.; Qin, J.; Xu, L.; Chu, M.H.; Wang, H.B. Image–based estimation of green volume of individual street trees by plane calculation of angle disparity. Urban For. Urban Green. 2023, 86, 128029. [Google Scholar] [CrossRef]
- Jutras, P.; Prasher, S.O.; Mehuys, G.R. Prediction of street tree morphological parameters using artificial neural networks. Comput. Electron. Agric. 2009, 67, 9–17. [Google Scholar] [CrossRef]
- Troxel, B.; Piana, M.; Ashton, M.S.; Murphy–Dunning, C. Relationships between bole and crown size for young urban trees in the northeastern USA. Urban For. Urban Green. 2013, 12, 144–153. [Google Scholar] [CrossRef]
- Pukkala, T. Effect of spatial distribution of trees on the volume increment of a young Scots pine stand. Silva Fenn. 1988, 22, 1–17. [Google Scholar] [CrossRef]
- Barbeito, I.; Dassot, M.; Bayer, D.; Collet, C.; Drössler, L.; Löf, M.; del Rio, M.; Ruiz-Peinado, R.; Forrester, D.I.; Bravo-Oviedo, A.; et al. Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests. For. Ecol. Manag. 2017, 405, 381–390. [Google Scholar] [CrossRef]
- Shenkin, A.; Bentley, L.P.; Oliveras, I.; Salinas, N.; Adu-Bredu, S.; Marimon-Junior, B.H.; Marimon, B.S.; Peprah, T.; Choque, E.L.; Rodriguez, L.T.; et al. The influence of ecosystem and phylogeny on tropical tree crown size and shape. Front. For. Glob. Change 2020, 3, 501757. [Google Scholar] [CrossRef]
- Sharmin, M.; Tjoelker, M.G.; Pfautsch, S.; Esperon-Rodriguez, M.; Rymer, P.D.; Power, S.A. Tree crown traits and planting context contribute to reducing urban heat. Urban For. Urban Green. 2023, 83, 127913. [Google Scholar] [CrossRef]
- Kramer, H. Relation between crown parameters and volume increment of Picea abies stands damaged by environmental pollution. Scand. J. For. Res. 2008, 1, 251–263. [Google Scholar] [CrossRef]
- Yrttimaa, T.; Luoma, V.; Saarinen, N.; Kankare, V.; Junttila, S.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Exploring tree growth allometry using two–date terrestrial laser scanning. For. Ecol. Manag. 2022, 518, 120303. [Google Scholar] [CrossRef]
- Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a fine–grained catalog of street trees. ISPRS J. Photogramm. Remote. Sens. 2018, 135, 13–30. [Google Scholar] [CrossRef]
- Wang, W.J.; Xiao, L.; Zhang, J.H.; Yang, Y.; Tian, P.L.; Wang, H.M.; He, X.Y. Potential of Internet street–view images for measuring tree sizes in roadside forests. Urban For. Urban Green. 2018, 35, 211–220. [Google Scholar] [CrossRef]
- Berland, A.; Lange, D.A. Google Street View shows promise for virtual street tree surveys. Urban For. Urban Green. 2017, 21, 11–15. [Google Scholar] [CrossRef]
- Zhou, J.H. Study on remote sensing model of three–dimensional green biomass and the estimation of environmental benefits of greenery. Natl. Remote Sens. Bull. 1995, 10, 162–174. [Google Scholar] [CrossRef]
- Zhou, Y.F. The Urban Eco–environ–mental Estimating System based on 3–dimension vegetation quantity. Chin. Landsc. Archit. 2001, 17, 77–79. [Google Scholar] [CrossRef]
- Lehmann, I.; Mathey, J.; Rößler, S.; Bräuer, A.; Goldberg, V. Urban vegetation structure types as a methodological approach for identifying ecosystem services–Application to the analysis of micro–climatic effects. Ecol. Indic. 2014, 42, 58–72. [Google Scholar] [CrossRef]
- Franceschi, E.; Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Crown shapes of urban trees–their dependences on tree species, tree age and local environment, and effects on ecosystem services. Forests 2022, 13, 748. [Google Scholar] [CrossRef]
- Richards, D.R.; Edwards, P.J. Quantifying street tree regulating ecosystem services using Google Street View. Ecol. Indic. 2017, 77, 31–40. [Google Scholar] [CrossRef]
- Mcpherson, E.G.; Doorn, N.V.; Goede, J.D. Structure, function and value of street trees in California USA. Urban For. Urban Green. 2016, 17, 104–115. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, X.R.; Huang, C.L. Key street tree species selection in urban areas. Afr. J. Agric. Res. 2011, 6, 3539–3550. [Google Scholar] [CrossRef]
- Wu, X.; Tang, Y.; Osman, E.E.A.; Wan, J.; Jiang, W.; Yang, G.; Xiong, J.; Zhu, Q.; Hu, J.-F. Bioassay–Guided Isolation of New Flavonoid Glycosides from Platanus × acerifolia Leaves and Their Staphylococcus aureus Inhibitory Effects. Molecules 2022, 27, 5357. [Google Scholar] [CrossRef]
- Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.L.; Rivière, L.M.; Vidal-Beaudet, L.; Bodson, M.; Randrup, T.B. Tree establishment practice in towns and cities–results from a European survey. Urban For. Urban Green. 2002, 1, 83–96. [Google Scholar] [CrossRef]
- Kovacs, K.F.; Haight, R.G.; Jung, S.; Locke, D.H.; O’Neil-Dunne, J. The marginal cost of carbon abatement from planting street trees in New York City. Ecol. Econ. 2013, 95, 1–10. [Google Scholar] [CrossRef]
- Yang, R.Q. Status and future of construction and management for street trees in Shanghai. J. Jiangsu For. Sci. Technol. 2013, 40, 34–37. [Google Scholar] [CrossRef]
- Ryder, C.M.; Moore, G.M. The Arboricultural and Economic Benefits of Formative Pruning Street Trees. Arboric. Urban For. 2013, 39, 17–24. [Google Scholar] [CrossRef]
- Sajdak, M.; Velázquez-Martí, B.; López-Cortés, I.; Fernández-Sarría, A.; Estornell, J. Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renew. Energy 2014, 66, 178–184. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, L.C. Problems and pruning advice of street trees Chinar in old city of Wuhan. Hubei For. Sci. Technol. 2019, 48, 58–61. [Google Scholar] [CrossRef]
- Sun, X.; Xu, S.; Hua, W.; Hua, W.; Tian, J.; Xu, Y. Feasibility study on the estimation of the living vegetation volume of individual street trees using terrestrial laser scanning. Urban For. Urban Green. 2022, 71, 127553. [Google Scholar] [CrossRef]
- Sheng, Q.Q.; Zhang, Y.L.; Zhu, Z.L.; Li, W.Z.; Xu, J.Y.; Tang, C. An experimental study to quantify road greenbelts and their association with PM2.5 concentration along city main roads in Nanjing, China. Sci. Total Environ. 2019, 667, 710–717. [Google Scholar] [CrossRef]
- Schnebele, E.; Tanyu, B.F.; Cervone, G.; Waters, N. Review of remote sensing methodologies for pavement management and assessment. Eur. Transp. Res. Rev. 2015, 7, 7. [Google Scholar] [CrossRef]
- Li, L.; Liu, C. A new approach for estimating living vegetation volume based on terrestrial point cloud data. PLoS ONE 2019, 14, 0221734. [Google Scholar] [CrossRef] [PubMed]
- Palace, M.W.; Sullivan, F.B.; Ducey, M.J.; Treuhaft, R.N.; Herrick, C.; Shimbo, J.Z.; Mota-E-Silva, J. Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return Lidar data. Remote Sens. Environ. 2015, 161, 1–11. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef]
- Xie, Q.; Li, D.; Yu, Z.; Zhou, J.; Wang, J. Detecting trees in street images via deep learning with attention module. IEEE Trans. Instrum. Meas. 2019, 69, 5395–5406. [Google Scholar] [CrossRef]
City | Data Source | Date of Data |
---|---|---|
Beijing, China | satellite images | 4 May 2010 |
27 September 2010 | ||
27 October 2010 | ||
8 November 2010 | ||
3 August 2020 | ||
28 August 2020 | ||
14 April 2021 | ||
14 November 2021 | ||
Shanghai, China | satellite images | 2 April 2019 |
13 February 2010 | ||
22 July 2010 | ||
13 August 2010 | ||
12 November 2010 | ||
9 November 2019 | ||
10 December 2019 | ||
20 August 2020 | ||
29 May 2021 | ||
26 September 2021 | ||
14 November 2021 | ||
London, UK | the London government website’s street tree map (https://apps.london.gov.uk/street-trees/, accessed on 11 August 2022.) | 2021 |
Paris, France | the Paris Open Data website (https://opendata.paris.fr/, accessed on 11 August 2022.) | 2021 |
Seattle, USA | the Seattle Department of Transportation (www.seattle.gov, accessed on 20 June 2022.) | 2015 |
the Seattle Open Data website (https://public.tableau.com/app/profile/city.of.seattle.transportation/viz/SDOTTreeSelector/Dashboard, accessed on 15 July 2022.) | 2022 | |
Los Angeles, USA | the statistics of TreePeople (https://www.treepeople.org/, accessed on 8 August 2022.) | 2021 |
Geometry of Crown Shape | CV Equation |
---|---|
Sphere | |
Columnar | |
Cone | |
Global fan style |
City | Species | Number | H (m) | Solid Geometry Shape of Tree Crown | W (m) | CH (m) | CV (m3) |
---|---|---|---|---|---|---|---|
Beijing, China | Sophora japonica | 1037 | 7.07 | sphere | 5.46 | 4.78 | 74.62 |
Populus tomentosa | 355 | 6.84 | sphere | 3.94 | 4.20 | 34.02 | |
Fraxinus chinensis | 192 | 9.60 | sphere | 3.49 | 7.18 | 45.85 | |
Salix babylonica | 78 | 5.07 | sphere | 4.26 | 3.17 | 30.06 | |
Platanus acerifolia | 76 | 8.01 | columnar | 3.77 | 5.78 | 64.41 | |
Shanghai, China | Cinnamomum camphora | 504 | 9.11 | sphere | 5.92 | 6.02 | 110.38 |
P. acerifolia | 179 | 6.23 | columnar | 5.61 | 3.41 | 84.08 | |
Metasequoia glyptostroboides | 12 | 8.11 | cone | 2.84 | 5.54 | 11.71 | |
Sapindus saponaria | 8 | 8.09 | sphere | 6.65 | 5.70 | 132.25 | |
Ginkgo biloba | 6 | 9.53 | cone | 3.16 | 7.02 | 18.39 | |
Acer buergerianum | 5 | 10.94 | sphere | 6.07 | 7.37 | 142.02 | |
London, UK | P. acerifolia * | 856 | 14.34 | columnar | 8.17 | 11.29 | 591.99 |
F. excelsior | 704 | 8.73 | sphere | 4.83 | 5.75 | 70.20 | |
A. campestre | 546 | 6.47 | sphere | 4.61 | 3.32 | 36.94 | |
A. platanoides | 416 | 9.22 | sphere | 5.99 | 6.07 | 113.83 | |
Prunus avium | 195 | 6.65 | sphere | 4.45 | 4.27 | 44.26 | |
Tilia platyphyllos | 21 | 11.55 | sphere | 5.83 | 8.97 | 159.80 | |
Paris, France | P. acerifolia * | 35,055 | 12.84 | columnar | 9.30 | 9.46 | 642.50 |
Aesculus hippocastanum | 18,476 | 12.60 | sphere | 6.10 | 9.73 | 189.45 | |
S. japonica | 10,609 | 9.99 | sphere | 6.28 | 6.45 | 133.30 | |
T. tomentosa | 7323 | 10.58 | sphere | 8.12 | 7.27 | 251.15 | |
A. platanoides | 5204 | 9.55 | sphere | 7.07 | 7.01 | 183.12 | |
A. pseudoplatanus | 4708 | 12.03 | sphere | 8.30 | 8.95 | 323.20 | |
T. europaea | 533 | 9.78 | sphere | 8.64 | 6.29 | 245.74 | |
Seattle, USA | A. nigrum ‘Green Column’ | – | 18.29 | columnar | 8.08 | 14.78 | 757.77 |
F. americana ‘Empire’ | – | 16.76 | columnar | 9.28 | 14.21 | 960.12 | |
G. biloba ‘Princeton Sentry’ | – | 15.24 | columnar | 5.78 | 13.13 | 344.31 | |
A. saccharum ‘Bonfire’ | – | 18.29 | sphere | 14.39 | 15.00 | 1625.31 | |
Ulmus parvifolia ‘Emer II’ | – | 15.24 | sphere | 11.45 | 12.15 | 834.11 | |
Los Angeles, USA | Pinus pinea | – | 18.29 | global fan style | 12.19 | 14.31 | 584.66 |
Podocarpus macrophyllus | – | 10.67 | sphere | 8.33 | 7.80 | 283.18 | |
G. biloba | – | 17.53 | cone | 12.19 | 13.66 | 531.43 | |
Jacaranda mimosifolia | – | 9.91 | sphere | 9.91 | 6.87 | 352.78 | |
Cercis canadensis | – | 9.14 | sphere | 9.14 | 6.79 | 297.44 | |
C. camphora | – | 15.24 | sphere | 18.29 | 11.60 | 2031.37 |
City | Species | Solid Geometry Shape of Tree Crown | aH (m) | aW (m) | aV (m3) |
---|---|---|---|---|---|
Beijing, China | S. japonica | sphere | 0.25 | 0.34 | 6.86 |
P. tomentosa | sphere | 0.20 | 0.20 | 2.85 | |
F. chinensis | sphere | 0.39 | 0.15 | 3.84 | |
S. babylonica | sphere | 0.28 | 0.25 | 2.85 | |
P. acerifolia | columnar | 0.33 | 0.17 | 5.42 | |
Shanghai, China | C. camphora | sphere | 0.45 | 0.09 | 7.48 |
P. acerifolia | columnar | 0.18 | 0.05 | 2.71 | |
M. glyptostroboides | cone | 0.39 | 0.01 | 0.68 | |
S. saponaria | sphere | 0.48 | 0.16 | 10.73 | |
G. biloba | cone | 0.64 | 0.07 | 1.68 | |
A. buergerianum | sphere | 0.28 | 0.34 | 12.07 | |
Seattle, USA | A. nigrum ‘Green Column’ | columnar | 0.51 | 0.84 | 110.70 |
F. americana ‘Empire’ | columnar | 0.25 | 0.28 | 60.98 | |
G. biloba ‘Princeton Sentry’ | columnar | 0.51 | 0.20 | 28.98 | |
A. saccharum ‘Bonfire’ | sphere | 0.51 | 0.37 | 105.63 | |
U. parvifolia ‘Emer II’ | sphere | 0.25 | 0.13 | 26.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Hu, Y.; Qin, J.; Wu, D.; Xu, L.; Wang, H. Comparison of Crown Volume Increment in Street Trees among Six Cities in Western Countries and China. Horticulturae 2024, 10, 300. https://doi.org/10.3390/horticulturae10030300
Guo C, Hu Y, Qin J, Wu D, Xu L, Wang H. Comparison of Crown Volume Increment in Street Trees among Six Cities in Western Countries and China. Horticulturae. 2024; 10(3):300. https://doi.org/10.3390/horticulturae10030300
Chicago/Turabian StyleGuo, Chenbing, Yonghong Hu, Jun Qin, Duorun Wu, Lin Xu, and Hongbing Wang. 2024. "Comparison of Crown Volume Increment in Street Trees among Six Cities in Western Countries and China" Horticulturae 10, no. 3: 300. https://doi.org/10.3390/horticulturae10030300
APA StyleGuo, C., Hu, Y., Qin, J., Wu, D., Xu, L., & Wang, H. (2024). Comparison of Crown Volume Increment in Street Trees among Six Cities in Western Countries and China. Horticulturae, 10(3), 300. https://doi.org/10.3390/horticulturae10030300