Characterization of Volatile Organic Compounds and Aroma of Eight Bamboo Species Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Experiment Design
2.2. Sample Extraction and Analysis
2.2.1. SPME Extraction and GC-MS Analysis
2.2.2. OAV Analysis
2.3. Statistical Analysis
3. Results
3.1. Volatile Organic Compounds in Leaves of Different Bamboo Species
3.2. Differences in Volatile Organic Compounds among Leaves of Different Bamboo Species
3.3. Odor-Active Compounds in Leaves of Different Bamboo Species
4. Discussion
4.1. Characterization of Volatile Organic Compounds in Leaves of Different Bamboo Species
4.2. Characterization of Odor-Active Compounds in Leaves of Different Bamboo Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paudyal, K.; Yanxia, L.; Long, T.T.; Adhikari, S.; Lama, S.; Bhatta, K.P. Ecosystem services from bamboo forests: Key findings, lessons learnt and call for actions from global synthesis. Int. Cent. Bamboo Ratt. 2022, 2, 07526. [Google Scholar]
- Li, Y.; Feng, P. Bamboo resources in China based on the ninth national forest inventory data. World Bamboo Ratt. 2020, 17, 45–48. [Google Scholar]
- Sawarkar, A.D.; Shrimankar, D.D.; Kumar, M.; Kumar, P.; Singh, L. Bamboos as a cultivated medicinal grass for industries: A systematic review. Ind. Crops Prod. 2023, 203, 117210. [Google Scholar] [CrossRef]
- Rathour, R.; Kumar, H.; Prasad, K.; Anerao, P.; Kumar, M.; Kapley, A.; Pandey, A.; Kumar Awasthi, M.; Singh, L. Multifunctional applications of bamboo crop beyond environmental management: An Indian prospective. Bioengineered 2022, 13, 8893–8914. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, J.; Liu, K.; Fu, J. Nature-based solutions: The realization path of bamboo assisting carbon neutrality. Nat. Prot. Areas 2022, 2, 32–39. [Google Scholar]
- Bhanse, P.; Kumar, M.; Singh, L.; Awasthi, M.K.; Qureshi, A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere 2022, 303, 134954. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Q.; Li, S.; Ge, J.; Liang, C.; Qin, H.; Xu, Q.; Fuhrmann, J.J. Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest. Geoderma 2019, 354, 113894. [Google Scholar] [CrossRef]
- Benjamin, M.A.Z.; Saikim, F.H.; Ng, S.Y.; Rusdi, N.A. A comprehensive review of the ethnobotanical, phytochemical, and pharmacological properties of the genus Bambusa. J. Appl. Pharm. Sci. 2023, 13, 001–022. [Google Scholar]
- Lin, W.; Zeng, C.; Lam, N.S.N.; Liu, Z.; Tao, J.; Zhang, X.; Lyu, B.; Li, N.; Li, D.; Chen, Q. Study of the relationship between the spatial structure and thermal comfort of a pure forest with four distinct seasons at the microscale level. Urban For. Urban Green. 2021, 62, 127168. [Google Scholar] [CrossRef]
- Nan, L.; Shao, S.; Chen, J.; Feng, Y.; Chen, W.; Xuan, W.; Gang, Y. Influence of bamboo forest aesthetic perception on landscape satisfaction: A case study of the southern Sichuan bamboo sea. Nat. Prot. Areas 2023, 3, 123–132. [Google Scholar]
- Choi, Y.; Kim, G.; Park, S.; Kim, E.; Kim, S. Prediction of natural volatile organic compounds emitted by bamboo groves in urban forests. Forests 2021, 12, 543. [Google Scholar] [CrossRef]
- Lyu, B.; Zeng, C.; Deng, S.; Liu, S.; Jiang, M.; Li, N.; Wei, L.; Yu, Y.; Chen, Q. Bamboo forest therapy contributes to the regulation of psychological responses. J. For. Res. 2019, 24, 61–70. [Google Scholar] [CrossRef]
- Saducos, A.G. Antimycotic potential of Kawayang tinik against pathogenic fungal species. Plant Sci. Today 2021, 8, 403–409. [Google Scholar] [CrossRef]
- Zihad, S.N.K.; Saha, S.; Rony, M.S.; Banu, H.; Uddin, S.J.; Shilpi, J.A.; Grice, I.D. Assessment of the laxative activity of an ethanolic extract of Bambusa arundinacea (Retz.) Willd. shoot. J. Ethnopharmacol. 2018, 214, 8–12. [Google Scholar] [CrossRef]
- Jayarambabu, N.; Venkatappa Rao, T.; Rakesh Kumar, R.; Akshaykranth, A.; Shanker, K.; Suresh, V. Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated Zinc Oxide nanoparticles. Mater. Today Commun. 2021, 26, 101688. [Google Scholar] [CrossRef]
- Kong, C.K.; Tan, Y.N.; Chye, F.Y.; Sit, N.W. Nutritional composition and biological activities of the edible shoots of Bambusa vulgaris and Gigantochloa ligulata. Food Biosci. 2020, 36, 100650. [Google Scholar] [CrossRef]
- Lodhi, S.; Jain, A.P.; Rai, G.; Yadav, A.K. Preliminary investigation for wound healing and anti-inflammatory effects of Bambusa vulgaris leaves in rats. J. Ayurveda Integr. Med. 2016, 7, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Anselmo-Moreira, F.; Gagliano, J.; Sala-Carvalho, W.R.; Grombone-Guaratini, M.T.; Furlan, C.M. Antibacterial potential of extracts from different Brazilian bamboo species. Braz. J. Bot. 2021, 44, 309–315. [Google Scholar] [CrossRef]
- Owen, S.M.; Harley, P.; Guenther, A.; Hewitt, C.N. Light dependency of VOC emissions from selected Mediterranean plant species. Atmos. Environ. 2002, 36, 3147–3159. [Google Scholar] [CrossRef]
- Li, S.N.; Tao, X.Y.; Li, X.H.; Zhao, N.; Xu, X.T.; Lu, S.W. Research progress of beneficial biogenic volatile organic compounds released from plants. Ecol. Environ. 2022, 31, 187–195. [Google Scholar]
- Canavan, S.; Richardson, D.M.; Visser, V.; Le Roux, J.J.; Vorontsova, M.S.; Wilson, J.R.U. The global distribution of bamboos: Assessing correlates of introduction and invasion. AoB PLANTS 2016, 9, plw078. [Google Scholar] [CrossRef]
- Avinash, K.J.; Nandan, S. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar]
- Carazzone, C.; Rodríguez, J.P.G.; Gonzalez, M.; López, G.D. Volatilomics of natural products: Whispers from nature. In Metabolomics-Methodology and Applications in Medical Sciences and Life Sciences; Intech Open: London, UK, 2021. [Google Scholar]
- Shen, D.Y.; Song, H.L.; Zou, T.T.; Wan, S.Y.; Li, M.K. Characterization of odor-active compounds in moso bamboo (Phyllostachys pubescens Mazel) leaf via gas chromatography-ion mobility spectrometry, one- and two-dimensional gas chromatography-olfactory-mass spectrometry, and electronic nose. Food Res. Int. 2022, 152, 110916. [Google Scholar] [CrossRef] [PubMed]
- Porteous, J.D. Smellscape. Prog. Phys. Geogr. Earth Environ. 1985, 9, 356–378. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Guo, F.; Jia, Y.; Ding, Z. Evaluation of negative odor landscape in forest park based on AHP method. J. Chin. Urban For. 2020, 18, 66–70. [Google Scholar]
- Li, K.; Li, J.; Tong, S.; Weigang, W.; Ru, J.H.; Maofa, G. Characteristics of wintertime VOCs in suburban and urban Beijing: Concentrations, emission ratios, and festival effects. Atmos. Chem. Phys. 2019, 19, 8021–8036. [Google Scholar] [CrossRef]
- Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC–MS coupled with E-nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Fortini, M.; Migliorini, M.; Cherubini, C.; Cecchi, L.; Calamai, L. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile. Talanta 2017, 165, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Huang, G.; Tu, Q.; Zhou, H.; Li, Y.; Shi, H.; Wu, X.; Ren, H.; Huang, K.; He, X.; et al. Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea. Food Chem. 2021, 357, 129783. [Google Scholar] [CrossRef]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Lun, X.; Lin, Y.; Chai, F.; Fan, C.; Li, H.; Liu, J. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. J. Environ. Sci. 2020, 95, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Urate, A.; Uematsu, M.; Tazawa, E.; Akakabe, Y. Characterization of aroma compounds in Moso Bamboo (Phyllostachys edulis Mazel ex Houz. De ehaie) stem powders using solid phase microextraction. J. Oleo Sci. 2023, 72, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Chitiva, L.C.; Lozano, H.S.; Londoño, X.; Leão, T.F.; Cala, M.P.; Ruiz, E.; Díaz, L.A.; Prieto, J.A.; Castro, I.; Costa, G.M. Untargeted metabolomics approach and molecular networking analysis reveal changes in chemical composition under the influence of altitudinal variation in bamboo species. Front. Mol. Biosci. 2023, 10, 1192088. [Google Scholar] [CrossRef] [PubMed]
- Fons, F.; Froissard, D.; Bessière, J.-M.; Buatois, B.; Rapior, S. Biodiversity of volatile organic compounds from five French ferns. Nat. Prod. Commun. 2010, 5, 1655–1658. [Google Scholar] [CrossRef] [PubMed]
- Menezes, I.O.; Scherf, J.R.; Martins, A.O.B.P.B.; Ramos, A.G.B.; Quintans, J.S.S.; Coutinho, H.D.M.; Ribeiro-Filho, J.; de Menezes, I.R.A. Biological properties of terpinolene evidenced by in silico, in vitro and in vivo studies: A systematic review. Phytomedicine 2021, 93, 153768. [Google Scholar] [CrossRef]
- Woo, J.; Yang, H.; Yoon, M.; Gadhe, C.G.; Pae, A.N.; Cho, S.; Lee, C.J. 3-Carene, a phytoncide from Pine tree has a sleep-enhancing effect by targeting the GABAA-benzodiazepine receptors. Exp. Neurobiol. 2019, 28, 593. [Google Scholar] [CrossRef]
- Zhou, J.; He, C.; Qin, M.; Luo, Q.; Jiang, X.; Zhu, J.; Qiu, L.; Yu, Z.; Zhang, D.; Chen, Y.; et al. Characterizing and decoding the effects of different fermentation levels on key aroma substances of congou black tea by sensomics. J. Agric. Food Chem. 2023, 71, 14706–14719. [Google Scholar] [CrossRef] [PubMed]
- Dein, M.; Munafo, J.P. Characterization of odorants in white leaf mountain mint, Pycnanthemum albescens. J. Agric. Food Chem. 2022, 70, 12156–12163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Tait, M.; Kang, J. Understanding smellscapes: Sense-making of smell-triggered emotions in place. Emot. Space Soc. 2020, 37, 100710. [Google Scholar] [CrossRef]
- Ranasinghe, N.; James, M.N.; Gecawicz, M.; Bland, J.; Smith, D. Influence of electric taste, smell, color, and thermal sensory modalities on the liking and mediated emotions of virtual flavor perception. In Proceedings of the 2020 International Conference on Multimodal Interaction, Association for Computing Machinery, Virtual Event, The Netherlands, 25–29 October 2020. [Google Scholar]
- Matsubara, E.; Ohira, T. Inhalation of Japanese cedar (Cryptomeria japonica) wood odor causes psychological relaxation after monotonous work among female participants. Biomed. Res. 2018, 39, 241–249. [Google Scholar] [CrossRef]
- Kimura, I.; Kagawa, S.; Tsuneki, H.; Tanaka, K.; Nagashima, F. Multitasking bamboo leaf-derived compounds in prevention of infectious, inflammatory, atherosclerotic, metabolic, and neuropsychiatric diseases. Pharmacol. Ther. 2022, 235, 108159. [Google Scholar] [CrossRef] [PubMed]
- Al-Oqla, F.M. Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose 2017, 24, 2523–2530. [Google Scholar] [CrossRef]
- Seifi Nahavandi, B.; Yaghmaei, P.; Ahmadian, S.; Ebrahim-Habibi, A.; Ghobeh, M. Effects of terpinolene and physical activity on memory and learning in a model of Alzheimer’s disease among rats. Qom Univ. Med. Sci. J. 2020, 14, 25–33. [Google Scholar] [CrossRef]
- Rita, R.D.; Zanda, K.; Daina, K.; Dalija, S. Composition of aroma compounds in fermented apple juice: Effect of apple variety, fermentation temperature and inoculated yeast concentration. Procedia Food Sci. 2011, 1, 1709–1716. [Google Scholar] [CrossRef]
Category | Compound | CAS# | Content/(μg·g−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PA | PM | PJ | AC | PAK | PR | PH | PAP | |||
Alcohols | (Z)-3-Hexen-1-ol | 928-96-1 | 150.91 ± 6.40 bc | 117.06 ± 12.00 c | 156.35 ± 29.92 bc | 223.22 ± 37.32 b | 322.35 ± 48.73 a | 143.16 ± 18.07 bc | 71.74 ± 12.00 c | - |
(E)-2-Hexen-1-ol | 928-95-0 | 131.76 ± 13.45 a | 45.46 ± 4.25 cd | 95.90 ± 13.24 b | 87.02 ± 11.49 b | 23.50 ± 4.90 d | 45.92 ± 3.43 cd | 53.51 ± 7.16 c | 51.81 ± 2.80 c | |
1-Hexanol | 111-27-3 | 35.97 ± 3.73 e | 45.92 ± 6.07 de | 90.48 ± 25.10 bc | 54.73 ± 3.73 cde | 79.40 ± 14.77 bd | 177.09 ± 11.83 a | 169.95 ± 15.84 a | 107.47 ± 8.00 b | |
2-Furanmethanol, tetrahydro- | 97-99-4 | 1.77 ± 0.19 a | 1.02 ± 0.07 b | 0.99 ± 0.10 b | - | - | 0.58 ± 0.05 c | 0.90 ± 0.11 bc | - | |
1-Octen-3-ol | 3391-86-4 | - | 4.52 ± 0.48 a | 1.97 ± 0.32 b | 4.32 ± 0.29 a | 0.91 ± 0.06 c | 0.71 ± 0.05 c | 0.61 ± 0.03 c | - | |
3-Methyl-3-Heptanol | 5582-82-1 | 4.94 ± 0.60 ab | 6.08 ± 0.46 a | 4.15 ± 0.44 ab | 3.27 ± 1.85 bc | 2.72 ± 0.53 bc | 1.01 ± 0.08 c | 0.88 ± 0.09 c | - | |
2-Ethyl-1-Hexanol | 104-76-7 | 2.96 ± 0.24 c | 8.31 ± 0.84 ab | 7.59 ± 0.89 ab | 3.63 ± 0.72 c | 9.76 ± 1.98 a | 7.54 ± 1.12 ab | 5.78 ± 1.01 bc | 10.19 ± 0.65 a | |
Aldehydes | (Z)-3-Hexenal | 6789-80-6 | 4.59 ± 0.74 d | 21.06 ± 3.43 b | 6.22 ± 0.94 cd | 31.84 ± 4.57 a | 12.49 ± 2.17 c | 8.71 ± 1.28 cd | 5.89 ± 0.73 cd | 5.25 ± 0.49 d |
4-Oxohex-2-enal | 20697-55-6 | 2.63 ± 0.54 b | 19.79 ± 1.38 a | 5.41 ± 1.17 b | 4.42 ± 1.07 b | 5.07 ± 0.74 b | 3.41 ± 0.54 b | 2.90 ± 0.33 b | - | |
Hexanal | 66-25-1 | 17.29 ± 1.26 de | 63.91 ± 7.58 b | 25.03 ± 6.23 d | 5.46 ± 0.76 e | 42.26 ± 2.24 c | 25.75 ± 4.43 d | 42.18 ± 2.74 c | 92.53 ± 7.63 a | |
(E)-2-Hexenal | 6728-26-3 | 3.04 ± 0.51 b | 6.00 ± 0.16 a | 2.85 ± 0.45 bc | 1.53 ± 0.18 de | 2.46 ± 0.17 bd | 1.96 ± 0.33 cde | 1.22 ± 0.05 e | 2.36 ± 0.35 bd | |
2-Hexenal | 505-57-7 | 162.16 ± 11.01 b | 217.74 ± 12.80 a | 140.43 ± 13.46 b | 90.39 ± 9.23 c | 129.34 ± 17.88 b | 63.84 ± 6.22 c | 82.23 ± 2.73 c | 132.23 ± 11.40 b | |
(E, E)-2,4-Hexadienal | 142-83-6 | 32.09 ± 4.46 b | 48.16 ± 2.22 a | 8.73 ± 1.67 d | 5.65 ± 1.21 d | 19.35 ± 0.67 c | 19.14 ± 1.61 c | 23.51 ± 3.41 c | 33.72 ± 2.30 b | |
Benzaldehyde | 100-52-7 | 3.58 ± 0.19 a | 1.79 ± 0.11 b | 2.02 ± 0.12 b | 1.05 ± 0.17 b | 1.94 ± 0.21 b | 4.07 ± 0.47 a | 4.67 ± 0.84 a | 1.52 ± 0.31 b | |
(E, E)-2,4-Heptadienal | 4313-3-35 | 2.03 ± 0.19 bc | 3.93 ± 0.22 a | - | 1.30 ± 0.18 d | 1.88 ± 0.10 bd | 1.61 ± 0.11 cd | 1.84 ± 0.32 cd | 2.52 ± 0.26 b | |
2-Phenylethanal | 122-78-1 | 9.91 ± 1.00 a | 1.86 ± 0.15 bc | 1.22 ± 0.13 c | 1.25 ± 0.10 c | 2.77 ± 0.18 b | 1.20 ± 0.09 c | 1.38 ± 0.12 c | 2.80 ± 0.24 b | |
Nonanal | 124-19-6 | 0.40 ± 0.05 bc | 0.34 ± 0.03 cd | - | 0.18 ± 0.01 d | 0.61 ± 0.08 a | 0.28 ± 0.01 cd | 0.31 ± 0.02 cd | 0.53 ± 0.10 ab | |
beta-Cyclocitral | 432-25-7 | 0.25 ± 0.01 ab | 0.29 ± 0.02 ab | - | - | 0.29 ± 0.03 ab | 0.24 ± 0.04 b | 0.24 ± 0.03 b | 0.35 ± 0.05 a | |
Esters | Ethyl hexanoic | 123-66-0 | 0.46 ± 0.09 c | 0.40 ± 0.05 c | 2.35 ± 0.31 a | 0.90 ± 0.19 bc | 1.49 ± 0.30 b | 1.15 ± 0.21 b | 1.29 ± 0.14 b | 0.46 ± 0.07 c |
(Z)-3-Hexen acetate | 3681-71-8 | 12.06 ± 1.84 a | 2.82 ± 0.36 bc | 2.03 ± 0.25 c | 5.78 ± 0.53 b | 10.80 ± 2.14 a | 1.23 ± 0.26 c | 4.44 ± 0.86 bc | 2.65 ± 0.44 bc | |
Acetic acid, hexyl ester | 142-92-7 | 2.44 ± 0.36 ab | 0.86 ± 0.19 b | 1.44 ± 0.19 b | 1.04 ± 0.04 b | 4.04 ± 1.07 a | 1.05 ± 0.13 b | 1.35 ± 0.15 b | 2.27 ± 0.85 b | |
2-Octyl acetate | 2051-50-5 | 4.22 ± 0.61 a | - | 1.43 ± 0.32 c | 1.62 ± 0.33 bc | 2.65 ± 0.39 b | - | 0.56 ± 0.04 c | - | |
Terpenes | alpha-Pinene | 80-56-8 | 0.86 ± 0.22 b | 0.67 ± 0.18 b | 2.33 ± 0.40 a | 0.88 ± 0.17 b | 1.88 ± 0.28 a | 2.08 ± 0.40 a | 0.74 ± 0.14 b | 2.31 ± 0.54 a |
beta-Pinene | 127-91-3 | - | - | 1.60 ± 0.19 a | 0.85 ± 0.14 cd | 1.11 ± 0.09 bc | 1.55 ± 0.20 ab | 0.54 ± 0.10 d | - | |
3-Carene | 13466-78-9 | 1.02 ± 0.18 b | 0.55 ± 0.07 b | 1.83 ± 0.27 a | 0.85 ± 0.16 b | 1.13 ± 0.22 ab | 1.86 ± 0.21 a | 0.58 ± 0.11 b | 1.88 ± 0.49 a | |
Limonene | 138-86-3 | 16.56 ± 1.67 c | 5.47 ± 0.99 d | 19.85 ± 2.87 bc | 9.92 ± 1.13 d | 18.62 ± 2.65 c | 26.31 ± 1.82 ab | 7.95 ± 1.28 d | 28.86 ± 3.08 a | |
Terpinolene | 586-62-9 | 0.65 ± 0.07 ab | 0.29 ± 0.05 b | 0.64 ± 0.09 ab | 0.37 ± 0.05 b | 0.60 ± 0.09 b | 1.13 ± 0.17 a | 0.52 ± 0.10 b | 0.80 ± 0.14 ab | |
Caryophyllene | 87-44-5 | 0.35 ± 0.04 | - | - | 0.40 ± 0.09 | 0.32 ± 0.04 | 0.35 ± 0.05 | - | - | |
beta-copaene | 18252-44-3 | 0.46 ± 0.06 | - | - | 0.45 ± 0.09 | 0.39 ± 0.02 | 0.39 ± 0.07 | - | - | |
gamma-Muurolene | 30021-74-0 | 0.46 ± 0.09 | - | - | 0.45 ± 0.08 | 0.41 ± 0.03 | 0.37 ± 0.07 | - | - | |
Germacrene D | 23986-74-5 | 0.85 ± 0.24 a | 0.19 ± 0.04 c | - | 0.70 ± 0.15 ab | 0.76 ± 0.07 ab | 0.46 ± 0.08 bc | 0.22 ± 0.03 c | 0.24 ± 0.02 c | |
Bicyclosesquiphellandrene | 54324-03-7 | 0.65 ± 0.05 a | - | - | 0.57 ± 0.10 a | 0.60 ± 0.05 a | 0.47 ± 0.11 a | - | 0.20 ± 0.02 b | |
beta-Cyclogermacrane | 24703-35-3 | 0.44 ± 0.09 | - | - | 0.28 ± 0.04 | 0.30 ± 0.03 | 0.27 ± 0.07 | - | - | |
alpha-Muurolene | 10208-80-7 | 1.00 ± 0.21 a | 0.24 ± 0.05 b | - | 0.79 ± 0.10 a | 0.98 ± 0.11 a | 0.83 ± 0.18 a | 0.29 ± 0.06 b | 0.33 ± 0.03 b | |
beta-Cadinene | 523-47-7 | 3.77 ± 0.58 a | 0.57 ± 0.03 c | 0.69 ± 0.17 c | 2.39 ± 0.24 b | 3.19 ± 0.36 ab | 2.83 ± 0.60 ab | 0.73 ± 0.17 c | 0.82 ± 0.14 c | |
trans-Calamenene | 73209-42-4 | 2.08 ± 0.38 a | 0.65 ± 0.04 b | - | 1.90 ± 0.24 a | 1.91 ± 0.19 a | 1.69 ± 0.29 a | 0.90 ± 0.07 b | - | |
Alkanes | 4-Decyne | 2384-86-3 | 5.20 ± 0.27 a | 1.49 ± 0.26 bc | 1.10 ± 0.22 c | 1.40 ± 0.18 c | 1.22 ± 0.30 c | 0.99 ± 0.12 c | 1.04 ± 0.14 c | 2.15 ± 0.24 b |
Dodecane, 2,6,11-trimethyl- | 31295-56-4 | 0.47 ± 0.06 a | 0.34 ± 0.06 b | - | 0.28 ± 0.02 b | 0.28 ± 0.03 b | 0.30 ± 0.03 b | 0.34 ± 0.03 ab | 0.39 ± 0.05 ab | |
Pentadecane | 629-62-9 | 0.92 ± 0.07 a | - | - | 0.31 ± 0.03 b | 0.52 ± 0.11 b | 0.84 ± 0.12 a | 0.83 ± 0.06 a | 0.46 ± 0.13 b | |
Ketones | 3-Octanone, 2-methyl- | 923-28-4 | - | 1.40 ± 0.09 b | - | 0.86 ± 0.07 c | 1.30 ± 0.14 b | 2.44 ± 0.13 a | 2.45 ± 0.08 a | - |
Category | Compound | Odor | Odor Threshold a (μg·g−1) | OAV b | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PA | PM | PJ | AC | PAK | PR | PH | PAP | ||||
Alcohols | (Z)-3-Hexen-1-ol | Grassy | 0.07 | 2155.83 ± 245.20 bc | 1672.27 ± 459.84 c | 2233.64 ± 1146.80 bc | 3188.90 ± 1430.67 b | 4605.07 ± 1868.03 a | 2045.13 ± 692.70 bc | 1024.87 ± 460.10 c | - |
(E)-2-Hexen-1-ol | Green leafy | 6.7 | 19.67 ± 5.34 a | 6.79 ± 1.70 cd | 14.31 ± 5.30 b | 12.99 ± 4.60 b | 3.51 ± 1.96 d | 6.85 ± 1.37 cd | 7.99 ± 2.87 c | 7.73 ± 1.12 c | |
1-Hexanol | Fruity | 0.5 | 71.95 ± 20.02 d | 91.85 ± 32.56 cd | 180.96 ± 134.71 cd | 109.46 ± 20.00 cd | 158.80 ± 79.27 cd | 354.18 ± 63.50 a | 339.90 ± 85.01 ab | 214.94 ± 42.92 bc | |
1-Octen-3-ol | Mushroom | 0.01 | - | 451.65 ± 129.67 a | 197.27 ± 85.68 b | 432.11 ± 79.11 a | 90.57 ± 16.86 c | 70.76 ± 12.44 c | 61.30 ± 7.89 c | - | |
3-methyl-3-Heptanol | Fruity | 0.0078 | 633.66 ± 206.70 ab | 779.70 ± 158.99 a | 532.36 ± 151.68 ab | 419.87 ± 634.84 bc | 349.14 ± 183.53 bc | 129.67 ± 26.90 c | 112.54 ± 30.99 c | - | |
2-ethyl-1-Hexanol | Fruity | 1.28 | 2.31 ± 0.51 c | 6.49 ± 1.77 ab | 5.93 ± 1.87 ab | 2.83 ± 1.50 c | 7.62 ± 4.16 a | 5.89 ± 2.34 ab | 4.52 ± 2.12 bc | 7.96 ± 1.36 a | |
Aldehydes | (Z)-3-Hexenal | Leafy | 0.00025 | 18,357.07 ± 7952.21 d | 84,226.81 ± 36,812.96 b | 24,895.54 ± 10,041.07 cd | 127,377.68 ± 49,034.13 a | 49,957.97 ± 23,302.60 c | 34,823.21 ± 13,718.08 cd | 23,560.04 ± 7879.90 cd | 20,994.50 ± 5265.83 d |
Hexanal | Green | 0.0045 | 3842.65 ± 752.21 d | 14,203.32 ± 4521.09 b | 5562.55 ± 3712.06 cd | 1212.71 ± 451.16 d | 9391.24 ± 1334.29 bc | 5722.75 ± 2642.87 cd | 9372.77 ± 1635.10 bc | 20,562.26 ± 4551.17 a | |
(E)-2-Hexenal | Leafy | 0.017 | 178.78 ± 80.24 b | 352.86 ± 25.46 a | 167.36 ± 70.92 b | 89.88 ± 28.23 bc | 144.94 ± 26.25 bc | 115.39 ± 51.81 bc | 71.80 ± 8.16 c | 138.73 ± 54.81 bc | |
2-Hexenal | Grassy | 0.03 | 5405.40 ± 985.01 b | 7257.87 ± 1144.90 a | 4681.08 ± 1204.33 b | 3012.93 ± 825.62 c | 4311.26 ± 1599.38 b | 2128.03 ± 555.91 c | 2740.95 ± 244.59 c | 4407.82 ± 1019.72 b | |
Benzaldehyde | Fruity | 0.35 | 10.24 ± 1.49 a | 5.10 ± 0.88 b | 5.76 ± 0.95 b | 2.99 ± 1.30 b | 5.55 ± 1.61 b | 11.64 ± 3.62 a | 13.36 ± 6.47 a | 4.35 ± 2.41 b | |
(E, E)-2,4-Heptadienal | Fruity, fatty | 0.056 | 36.33 ± 9.27 b c | 70.10 ± 10.37 a | - | 23.24 ± 8.42 c | 33.60 ± 4.92 bc | 28.74 ± 5.39 bc | 32.87 ± 15.31 bc | 45.03 ± 12.59 b | |
2-Phenylethanal | Floral | 0.004 | 2478.43 ± 670.91 a | 465.32 ± 98.66 bc | 305.34 ± 88.06 c | 312.03 ± 63.84 c | 692.62 ± 121.53 b | 301.01 ± 57.88 c | 344.23 ± 82.06 c | 699.77 ± 163.07 b | |
Nonanal | Orange peel | 0.001 | 402.13 ± 131.24 bc | 339.38 ± 85.80 cd | - | 180.37 ± 29.68 d | 613.04 ± 214.53 a | 281.11 ± 27.18 cd | 310.32 ± 51.37 cd | 529.31 ± 265.20 ab | |
beta-Cyclocitral | Fatty | 0.005 | 49.02 ± 7.60 ab | 58.15 ± 12.77 ab | - | - | 57.97 ± 18.53 ab | 47.53 ± 19.48 b | 47.03 ± 17.57 b | 69.20 ± 26.15 a | |
Esters | Ethyl hexanoic | Fruity | 0.001 | 455.91 ± 230.80 c | 403.52 ± 140.51 c | 2350.61 ± 835.01 a | 900.52 ± 497.92 bc | 1491.27 ± 801.31 b | 1148.75 ± 563.56 b | 1289.84 ± 381.10 b | 462.41 ± 190.99 c |
(Z)-3-Hexen acetate | Fruity | 0.056 | 215.43 ± 88.04 a | 50.35 ± 17.49 bc | 36.18 ± 11.95 c | 103.29 ± 25.56 b | 192.80 ± 102.44 a | 21.98 ± 12.60 c | 79.24 ± 41.37 bc | 47.30 ± 21.30 bc | |
Acetic acid, hexyl ester | Fruity | 0.002 | 1220.19 ± 480.37 ab | 429.47 ± 254.60 b | 721.21 ± 257.54 b | 519.48 ± 56.61 b | 2019.75 ± 1435.77 a | 526.82 ± 178.53 b | 673.22 ± 196.23 b | 1699.64 ± 932.48 ab | |
Terpenes | alpha-Pinene | Cedar | 0.006 | 142.83 ± 99.78 b | 111.74 ± 78.92 b | 389.11 ± 178.20 a | 146.30 ± 73.97 b | 313.57 ± 125.88 a | 347.03 ± 178.21 a | 123.46 ± 64.23 b | 384.39 ± 241.29 a |
beta-Pinene | Cedar, woody | 0.14 | - | - | 11.44 ± 3.70 a | 6.07 ± 2.59 b | 7.92 ± 1.81 ab | 11.09 ± 3.75 a | 3.86 ± 1.95 b | - | |
3-Carene | Cedar, orange | 0.77 | 1.33 ± 0.62 b | <1 | 2.37 ± 0.93 a | 1.10 ± 0.56 b | 1.46 ± 0.77 ab | 2.42 ± 0.73 a | <1 | 2.44 ± 1.70 a | |
Limonene | Orange | 0.01 | 1655.93 ± 446.82 c | 546.50 ± 264.46 d | 1985.03 ± 769.69 bc | 991.58 ± 303.45 d | 1862.48 ± 712.15 c | 2631.19 ± 487.22 ab | 795.17 ± 343.21 d | 2886.35 ± 825.88 a | |
Terpinolene | Cedar, woody | 0.2 | 3.27 ± 0.97 ab | 1.46 ± 0.63 b | 3.22 ± 1.16 ab | 1.87 ± 0.69 b | 2.98 ± 1.27 b | 5.63 ± 2.34 a | 2.61 ± 1.28 b | 3.98 ± 1.84 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Su, Z.; Deng, P.; Chen, L.; Yang, M.; Xu, X. Characterization of Volatile Organic Compounds and Aroma of Eight Bamboo Species Leaves. Horticulturae 2024, 10, 394. https://doi.org/10.3390/horticulturae10040394
Wang H, Su Z, Deng P, Chen L, Yang M, Xu X. Characterization of Volatile Organic Compounds and Aroma of Eight Bamboo Species Leaves. Horticulturae. 2024; 10(4):394. https://doi.org/10.3390/horticulturae10040394
Chicago/Turabian StyleWang, Huiling, Zhe Su, Pengfei Deng, Leiru Chen, Mengqing Yang, and Xiaoniu Xu. 2024. "Characterization of Volatile Organic Compounds and Aroma of Eight Bamboo Species Leaves" Horticulturae 10, no. 4: 394. https://doi.org/10.3390/horticulturae10040394
APA StyleWang, H., Su, Z., Deng, P., Chen, L., Yang, M., & Xu, X. (2024). Characterization of Volatile Organic Compounds and Aroma of Eight Bamboo Species Leaves. Horticulturae, 10(4), 394. https://doi.org/10.3390/horticulturae10040394