Identification of Key Soil Mineral Elements Affecting Sugars and Organic Acids of Jujube Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Sugar and Organic Acid Components
2.3. Calculation of Sugar–Acid Ratio, Sweetness Value and Sweet–Acid Ratio
2.4. Determination of Soil Mineral Elements
3. Data Analysis
4. Results and Discussion
4.1. Evaluation of Sugar and Acid Components of Fruit from Different Producing Areas
4.2. Determination of Soil Mineral Elements in Different Producing Areas
4.3. Principal Component Analysis of Sugar and Organic Acid Components
4.4. Correlation Analysis between Soil Elements and Sugar, Organic Acid Components
4.5. Regression Equation Analysis of Key Soil Elements and Main Sugar and Organic Acid Indexes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Wang, M. Chinese Jujube Germplasm Resources; China Forestry Publishing House: Beijing, China, 2009. [Google Scholar]
- Qu, Z.; Wang, Y. Chinese Fruit Trees Record-Chinese Jujube; China Forestry Publishing House: Beijing, China, 1991. [Google Scholar]
- Choi, S.H.; Ahn, J.B.; Kim, H.J.; Im, N.K.; Kozukue, N.; Levin, C.E.; Friedman, M. Changes in free amino acid, protein, and flavonoid content in jujube (Ziziphus jujube) fruit during eight stages of growth and antioxidative and cancer cell inhibitory effects by extracts. J. Agric. Food Chem. 2012, 60, 10245–10255. [Google Scholar] [CrossRef]
- Liao, G.; Xu, Q.; Allan, A.C.; Xu, X. L-Ascorbic acid metabolism and regulation in fruit crops. Plant Physiol. 2023, 192, 1684–1695. [Google Scholar] [CrossRef]
- Chen, K.; Fan, D.; Fu, B.; Zhou, J.; Li, H. Comparison of physical and chemical composition of three chinese jujube (Ziziphus jujuba Mill.) cultivars cultivated in four districts of Xinjiang region in China. Food Sci. Technol. 2019, 39, 912–921. [Google Scholar] [CrossRef]
- Kader, A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Yan, M.; Zhou, X.; Yuan, Z.; Zhang, Q.; Yan, H.; Wu, C. Effects of saline-alkali stress on sugar metabolism of jujube fruit: A metabolomic analysis. Agronomy 2023, 13, 2239. [Google Scholar] [CrossRef]
- Dede, G.; Özdemir, S.; Dede, Ö.H.; Altundağ, H.; Dündar, M.Ş.; Kızıloğlu, F.T. Effects of biosolid application on soil properties and kiwi fruit nutrient composition on high-pH soil. Int. J. Environ. Sci. Technol. 2017, 14, 1451–1458. [Google Scholar] [CrossRef]
- Yan, M.; Zeng, X.; Zhang, B.; Zhang, H.; Tan, D.; Cai, B.; Qu, S.; Wang, S.G. Prediction of apple fruit 1uality by soil nutrient content and artificial neural network. Phyton 2023, 92, 193–208. [Google Scholar] [CrossRef]
- Khan, A.S.; Nasir, M.; Malik, A.U.; Basra, S.M.A.; Jaskani, M.J. Combined Application of Boron and Zinc Influence the Leaf Mineral Status, Growth, Productivity and Fruit Quality of ‘Kinnow’ Mandarin (Citrus nobilis Lour × Citrus deliciosa Tenora). J. Plant Nutr. 2015, 38, 821–838. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, Y.; Liang, Z.; Wu, Y.; Du, R. Soil, leaf and fruit nutrient data for pear orchards located in the Circum-Bohai Bay and Loess Plateau regions. Sci. Data 2023, 10, 88. [Google Scholar] [CrossRef]
- Sun, H.; Huang, X.; Chen, T.; Zhou, P.; Huang, X. Fruit quality prediction based on soil mineral element content in peach orchard. Food Sci. Nutr. 2022, 10, 1756–1767. [Google Scholar] [CrossRef]
- Chen, H. Study on the Correlation between Junzao Tree Nutrition Level and Soil Mineral Element Content. Master’s Thesis, Tarim University, Alar, China, 2020. [Google Scholar]
- Yan, L.; Yue, K.; Song, L. Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’. J. Zhejiang A F Univ. 2020, 37, 631–638. [Google Scholar]
- Wang, Y.; Zhang, S.; Li, J. Analysis of the effect of soil nutrients on the quality of grey jujube. Jiangsu Agric. Sci. 2019, 47, 157–160. [Google Scholar]
- Cheng, L.; Zhao, T.; Huang, H.; Zhang, L.; Zhu, Y.; Jia, X.; Guo, A.Y.; Wang, Y. Effect of different tillage methods on soil temperature, nutrient, and fruit quality in jujube orchard. Agric. Res. Arid. Areas 2019, 3, 200–207. [Google Scholar]
- Campos, M.M.; Campos, C.R. Applications of quartering method in soils and foods. Int. J. Eng. Res. Appl. 2017, 7, 35–39. [Google Scholar] [CrossRef]
- Tong, P.; Liao, G.; Lu, D.; Zhou, X.; Zhang, W.; Xu, Q.; Wu, C.; Wang, J. ZjHXK5 and ZjHXK6 negatively regulate the sugar metabolism of Ziziphus jujuba Mill. Food Sci. Nutr. 2024, 15, 1335120. [Google Scholar] [CrossRef]
- Sheng, L.; Shen, D.; Luo, Y.; Sun, X.; Wang, J. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem. 2017, 216, 138–145. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, S.; Zhang, H.; Zhang, H.; Wu, C.; Tang, Z.; Wang, J.; Xu, J. Sensory quality evaluation of korla pear from different orchards and analysis of their primary and volatile metabolites. Molecules 2020, 25, 5567. [Google Scholar] [CrossRef]
- Hernández, F.; Noguera, A.L.; Burló, F.; Wojdyło, A.; Carbonell, B.A.; Legua, P. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J. Sci. Food Agric. 2016, 96, 2682–2691. [Google Scholar] [CrossRef]
- Rashwan, A.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J. Funct. Foods 2020, 75, 104205. [Google Scholar] [CrossRef]
- Li, J.; Fan, L.; Ding, S.; Ding, X. Nutritional composition of five cultivars of chinese jujube. Food Chem. 2007, 103, 454–460. [Google Scholar] [CrossRef]
- Gao, J.; Ha, L.N.; Han, G. Main sugars and their content characteristics in fruits of different jujube varieties. North. Hortic. 2017, 16, 31–36. [Google Scholar]
- Lee, S.E.; Park, J.M.; Chung, B.N.; Yi, P.H.; Selvakumar, G. Influence of soil organic matter content on leaf minerals, fruit quality, and soil chemical properties in ‘Gamhong’/M.9 apple orchard. Acta Hortic. 2018, 1217, 145–150. [Google Scholar] [CrossRef]
- Mitteer, D.R.; Greer, B.D. Using graphpad prism’s heat maps for efficient, fine-grained analyses of single-case data. Behav. Anal. Pract. 2022, 15, 505–514. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Allen, P.; Bennett, K.; Heritage, B. SPSS Statistics Version 22: A Practical Guide; Cengage Learning Australia: South Melbourne, VIC, Australia, 2014. [Google Scholar]
- Harker, F.R.; Marsh, K.B.; Young, H.; Murray, S.H.; Gunson, F.A.; Walker, S.B. Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biol. Technol. 2002, 24, 241–250. [Google Scholar] [CrossRef]
- Wang, L.; Fu, H.; Wang, W.; Wang, Y.; Zheng, F.; Ni, H.; Chen, F. Analysis of reducing sugars, organic acids and minerals in 15 cultivars of jujube (Ziziphus jujuba mill.) fruits in China. J. Food Compos. Anal. 2018, 73, 10–16. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wu, J.; Wang, Q.; Hu, X. Chemical compositional characterization of eight pear cultivars grown in China. Food Chem. 2007, 104, 268–275. [Google Scholar] [CrossRef]
- Xie, Z.; Li, B.; Forney, C.; Xu, W.; Wang, S. Changes in sugar content and relative enzyme activity in grape berry in response to root restriction. Sci. Hortic. 2009, 123, 39–45. [Google Scholar] [CrossRef]
- Versari, A.; Castellari, M.; Parpinello, G.; Riponi, C.; Galassi, S. Characterisation of peach juices obtained from cultivars Redhaven, Suncrest and Maria Marta grown in Italy. Food Chem. 2002, 76, 181–185. [Google Scholar] [CrossRef]
- Baldi, E. Soil–plant interaction: Effects on plant growth and soil biodiversity. Agronomy 2021, 11, 2378. [Google Scholar] [CrossRef]
- Pandey, N. Role of Plant Nutrients in Plant Growth and Physiology. In Plant Nutr. Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Liu, X.; Hu, C.; Liu, X.; Riaz, M.; Liu, Y.; Dong, Z.; Tan, Q.; Sun, X. Effect of magnesium application on the fruit coloration and sugar accumulation of navel orange (Citrus sinensis Osb.). Sci. Hortic. 2022, 304, 111282. [Google Scholar] [CrossRef]
- Tian, G.; Qin, H.; Liu, C.; Xing, Y.; Feng, Z.; Xu, X. Magnesium improved fruit quality by regulating photosynthetic nitrogen use efficiency, carbon–nitrogen metabolism, and anthocyanin biosynthesis in ‘Red Fuji’ apple. Food Sci. Nutr. 2023, 14, 1136179. [Google Scholar] [CrossRef]
- Chen, J.; Wei, F.; Zheng, C.; Wu, Y.; Adriano, D. Background concentrations of elements in soils of China. Water Air Soil. Pollut. 1991, 57, 699–712. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2023, 100, 219–236. [Google Scholar] [CrossRef]
- Moussa, M.; Sun, X.; Ismael, M.; Elyamine, A. Molybdenum-Induced Effects on Grain Yield, Macro–micro-nutrient Uptake, and Allocation in Mo-Inefficient Winter Wheat. J. Plant Growth Regul. 2022, 41, 1516–1531. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, C.; Bian, W.; Zhang, W.; Wang, Y. Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Sci. Rep. 2024, 14, 6480. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T.; Del Río, V. Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: Physiological implications. Plant Soil 2008, 311, 161–172. [Google Scholar] [CrossRef]
- Aloo, B.N.; Tripathi, V.; Makumba, B.A.; Mbega, E.R. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Front. Plant Sci. 2022, 13, 1002448. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Li, G.J.; Wu, J.; Kronzucker, H.J.; Li, B.; Shi, W. Physiological and molecular mechanisms of plant-root responses to iron toxicity. J. Plant Physiol. 2024, 297, 154257. [Google Scholar] [CrossRef]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef]
Quality Indexes | Feature 1 | Feature 2 | Feature 3 |
---|---|---|---|
Total sugar | 0.279 | 0.258 | 0.022 |
Sucrose | 0.153 | 0.367 | −0.162 |
Glucose | 0.275 | 0.076 | 0.175 |
Fructose | 0.274 | 0.093 | 0.193 |
Galactose | 0.278 | 0.072 | 0.186 |
Rhamnose | 0.248 | −0.296 | 0.008 |
Mannose | 0.234 | −0.238 | 0.141 |
Xylose | 0.261 | −0.167 | 0.024 |
Sweetness value | 0.277 | 0.271 | 0.038 |
Total acid | 0.292 | −0.015 | −0.239 |
Malic acid | 0.097 | 0.270 | −0.396 |
Citric acid | 0.265 | −0.281 | −0.067 |
Quinic acid | 0.244 | −0.266 | 0.041 |
Tartrate | 0.212 | −0.127 | 0.384 |
Succinic acid | 0.192 | 0.262 | −0.297 |
Fumaric acid | 0.251 | 0.268 | 0.062 |
Sugar-acid ratio | −0.153 | 0.272 | 0.408 |
Sweet-acid ratio | −0.103 | 0.282 | 0.471 |
Eigenvalue | 9.683 | 3.172 | 2.723 |
Contribution rate/% | 53.792 | 17.621 | 15.126 |
Total contribution rate/% | 53.792 | 71.413 | 86.539 |
Producing Areas | F1 | F2 | F3 | Ftotal | Rank |
---|---|---|---|---|---|
50R | 5.709 | −1.950 | 2.529 | 3.593 | 1 |
MF | 2.617 | 1.152 | 2.165 | 2.240 | 2 |
33R | 3.095 | 1.939 | −1.664 | 2.028 | 3 |
PS | 3.489 | −2.466 | 0.611 | 1.774 | 4 |
QM | 0.989 | 3.332 | 1.621 | 1.576 | 5 |
46R | 1.507 | 1.784 | −1.169 | 1.095 | 6 |
SY | 0.523 | 1.474 | 0.610 | 0.732 | 7 |
48R | 1.865 | −2.506 | −1.088 | 0.459 | 8 |
12R | 0.456 | −1.058 | −1.496 | −0.194 | 9 |
ZP | 0.587 | −0.574 | −2.764 | −0.235 | 10 |
RQ | −1.008 | 0.887 | 0.550 | −0.350 | 11 |
YT | −1.082 | 0.502 | 0.689 | −0.450 | 12 |
3R | 0.040 | −2.458 | −0.254 | −0.520 | 13 |
47R | −0.771 | 1.994 | −2.783 | −0.559 | 14 |
29R | −1.553 | 0.143 | −0.386 | −1.004 | 15 |
41R | −5.392 | 0.129 | 2.216 | −2.938 | 16 |
LP | −5.120 | −0.467 | 1.483 | −3.018 | 17 |
42R | −5.950 | −1.857 | −0.870 | −4.229 | 18 |
Indexes | Soil Nutrient Factors | Regression Equation | F-Value |
---|---|---|---|
Total sugar: y1 | Fe: x1, Mg: x2 | y1 = 0.168x1 + 30.601x2 + 183.001 | 3.320 * |
Sucrose: y2 | Fe: x1, Cu: x3 | y2 = −0.700x1 − 0.392x3 + 192.898 | 4.168 * |
Glucose: y3 | Mg: x2, Ca: x4, Mn: x5 | y3 = 0.101x2 + 0.001x4 + 1.078x5 + 5.101 | 3.512 * |
Fructose: y4 | Mg: x2, Ca: x4, Mn: x5 | y4 = 0.040x2 + 0.001x4 + 0.440x5 + 6.351 | 3.202 * |
Galactose: y5 | Mg: x2, Ca: x4, Mn: x5, Cl: x6 | y5 = 0.007x2 + 0.001x4 + 0.111x5 + 0.007x6 − 0.511 | 4.347 ** |
Rhamnose: y6 | Ca: x4 | y6 = 0.001x4 + 0.303 | 3.758 * |
Mannose: y7 | Mn: x5 | y7 = 0.009x5 + 0.006 | 4.590 * |
Xylose: y8 | P: x6 | y8 = −0.031x6 + 5.431 | 3.766 * |
Sweetness value: y9 | Fe: x1 | y9 = −1.023x1 + 318.272 | 4.170 ** |
Malic: y11 | Mo: x7 | y11 = 11.266x7 + 1.651 | 3.962 * |
Citric: y12 | Ca: x4, Mn: x5 | y12 = 0.001x4 + 0.029x5 + 0.174 | 3.200 * |
Tartrate: y14 | Mn: x5 | y14 = 0.002x5 − 0.012 | 4.977 * |
Succinic: y15 | Fe: x1 | y15 = −0.018x1 + 3.864 | 7.911 ** |
Sugar-acid ratio: y17 | B: x8 | y17 = 4.089x8 + 24.530 | 4.067 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, P.; Liao, G.; Liang, F.; Lu, D.; Wu, C.; Wang, J. Identification of Key Soil Mineral Elements Affecting Sugars and Organic Acids of Jujube Fruit. Horticulturae 2024, 10, 652. https://doi.org/10.3390/horticulturae10060652
Tong P, Liao G, Liang F, Lu D, Wu C, Wang J. Identification of Key Soil Mineral Elements Affecting Sugars and Organic Acids of Jujube Fruit. Horticulturae. 2024; 10(6):652. https://doi.org/10.3390/horticulturae10060652
Chicago/Turabian StyleTong, Panpan, Guanglian Liao, Fengzhi Liang, Dengyang Lu, Cuiyun Wu, and Jiangbo Wang. 2024. "Identification of Key Soil Mineral Elements Affecting Sugars and Organic Acids of Jujube Fruit" Horticulturae 10, no. 6: 652. https://doi.org/10.3390/horticulturae10060652
APA StyleTong, P., Liao, G., Liang, F., Lu, D., Wu, C., & Wang, J. (2024). Identification of Key Soil Mineral Elements Affecting Sugars and Organic Acids of Jujube Fruit. Horticulturae, 10(6), 652. https://doi.org/10.3390/horticulturae10060652