Identifying Bioactive Compounds in Common Bean (Phaseolus vulgaris L.) Plants under Water Deficit Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experiment Conditions
2.2. Water Status Indicators
2.3. Plant Yield and Nutritional Content
2.4. Untargeted Metabolomics Analysis by UPLC-QTOF
2.5. Statistical Analyses
3. Results
3.1. Leaf Water Potential and Gas Exchange
3.2. Plant Yield and Nutritional Content
3.3. Metabolite Identification
4. Discussion
4.1. Physiological Response
4.2. Yield and Quality
4.3. Metabolism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Using midday stem water potential for scheduling deficit irrigation in mid–late maturing peach trees under Mediterranean conditions. Irrig. Sci. 2016, 34, 161–173. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Guo, N.; Li, Y.; Jian, S.; Yu, K. Determining the canopy water stress for spring wheat using canopy hyperspectral reflectance data in loess plateau semiarid regions. Spectrosc. Lett. 2015, 48, 492–498. [Google Scholar] [CrossRef]
- Parkash, V.; Singh, S. A review on potential plant-based water stress indicators for vegetable crops. Sustainability 2020, 12, 3945. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, K.G.; Kumar, S. Effect of blending fresh-saline water and discharge rate of drip on plant yield, water use efficiency (WUE) and quality of tomato in semi-arid environment. Afr. J. Agric. Res. 2013, 8, 3639–3645. [Google Scholar]
- Roccuzzo, G.; Stagno, F.; Ferlito, F.; Intrigliolo, F.; Cirelli, G.L.; Consoli, S. Deficit irrigation for enhancing ‘Tarocco’ orange fruit quality. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 17–22 August 2014; Volume 1112, pp. 179–186. [Google Scholar]
- Alipour, S.; Amini, M.Z.; Haidari, M.D. Effects of regulated deficit irrigation on crop water productivity, yield components, and yield response factor of common bean (Phaseolus vulgaris L.). Cent. Asian J. Water Res. 2022, 8, 112–125. [Google Scholar] [CrossRef]
- Asemanrafat, M.; Honar, T. Effect of water stress and plant density on canopy temperature, yield components and protein concentration of red bean (Phaseolus vulgaris L. cv. Akhtar). Int. J. Plant Prod. 2007, 11, 241. [Google Scholar]
- Bitocchi, E.; Rau, D.; Bellucci, E.; Rodriguez, M.; Murgia, M.L.; Gioia, T.; Santo, D.; Nanni, L.; Attene, G.; Papa, R. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front. Plant Sci. 2017, 8, 251783. [Google Scholar] [CrossRef]
- Capistrán-Carabarin, A.; Aquino-Bolaños, E.N.; García-Díaz, Y.D.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Carrillo-Rodríguez, J.C. Complementarity in Phenolic Compounds and the Antioxidant Activities of Phaseolus coccineus L. and P. vulgaris L. Landraces. Foods 2019, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M. Extractable and non-extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, M.; Koutelidakis, A.E. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Gaytán-Martínez, M.; Morales-Sánchez, E.; Loarca-Piña, G. Functional properties and sensory value of snack bars added with common bean flour as a source of bioactive compounds. LWT 2018, 89, 674–680. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Pari, L.; Venkateswaran, S. Protective role of Phaseolus vulgaris on changes in the fatty acid composition in experimental diabetes. J. Med. Food 2004, 7, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Anwardeen, N.R.; Diboun, I.; Mokrab, Y. Statistical methods and resources for biomarker discovery using metabolomics. BMC Bioinformatics 2023, 24, 250. [Google Scholar] [CrossRef]
- Álvarez, S.; Sánchez-Blanco, M.J. Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Sci. Hortic. 2013, 156, 54–62. [Google Scholar] [CrossRef]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Turner, N.C. Measurement of plant water status by the pressure chamber technique. Irrig. Sci. 1988, 9, 289–308. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Garcia, C.J.; Parra, A.; Vallejo, F.; Ortuño, M.F. Influence of drought stress on increasing bioactive compounds of pomegranate (Punica granatum L.) juice. Exploratory study using LC-MS-based untargeted metabolomics approach. Eur. Food. Res. Technol. 2023, 249, 2947–2956. [Google Scholar] [CrossRef]
- Tomás-Navarro, M.; Vallejo, F.; Navarro, J.L.; Tomás-Barberán, F.A. Novel Urinary Biomarkers of Orange Juice Consumption, Interindividual Variability, and Differences with Processing Methods. J. Agric. Food Chem. 2021, 69, 4006–4017. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; Van Der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Barber, C.; Sabater, C.; Ávila-Gálvez, M.A.; Vallejo, F.; Bendezu, R.A.; Guérin-Deremaux, L.; Guarner, F.; Espín, J.C.; Margolles, A.; Azpiroz, F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients 2022, 13, 2638. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Dewedar, O.M.; Plauborg, F.; Marwa, M.A.; El-shafie, A.F.; Ragab, R. Improving water saving, yield, and water productivity of bean under deficit drip irrigation: Field and modelling study using the SALTMED model. Irrig. Drain. 2021, 70, 224–242. [Google Scholar] [CrossRef]
- Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 2007, 58, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Simbeye, D.S.; Mkiramweni, M.E.; Karaman, B.; Taskin, S. Plant water stress monitoring and control system. Smart Agric. Technol. 2023, 3, 100066. [Google Scholar] [CrossRef]
- Wakrim, R.; Wahbi, S.; Tahi, H.; Aganchich, B.; Serraj, R. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.). Agric. Ecosyst. Environ 2005, 106, 275–287. [Google Scholar]
- Huang, Z.; Zou, Z.; He, C.; He, Z.; Zhang, Z.; Li, J. Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 2011, 339, 391–399. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Physiological and biochemical expressions of a determinated growth common bean genotype (Phaseolus vulgaris L.) to water deficit stress periods. JAPS J. Anim. Plant Sci. 2018, 28, 119–127. [Google Scholar]
- DeLaat, D.M.; Colombo, C.A.; Chiorato, A.F.; Carbonell, S.A.M. Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.). Mol. Biol. Rep. 2014, 41, 1427–1435. [Google Scholar] [CrossRef]
- Broughton, W.J.; Hernández, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)–model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Smith, M.R.; Veneklaas, E.; Polania, J.; Rao, I.M.; Beebe, S.E.; Merchant, A. Field drought conditions impact yield but not nutritional quality of the seed in common bean (Phaseolus vulgaris L.). PLoS ONE 2019, 14, e0217099. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, A.A.; Mousavi, S.H.; Pessarakli, M. Accumulation of reserve compounds in common bean seeds under drought stress. J. Plant Nutr. 2015, 38, 609–623. [Google Scholar] [CrossRef]
- Pessarakli, M.; Haghighi, M.; Sheibanirad, A. Plant responses under environmental stress conditions. Adv. Plants Agric. Res. 2015, 2, 276–286. [Google Scholar] [CrossRef]
- El-Rawy, M.A.; Hassan, M.I. A diallel analysis of drought tolerance indices at seedling stage in bread wheat (Triticum aestivum L.). Plant Breed. Biotechnol. 2014, 2, 276–288. [Google Scholar] [CrossRef]
- Dianatmanesh, M.; Kazemeini, S.A.; Bahrani, M.J.; Shakeri, E.; Alinia, M.; Amjad, S.F.; Mansoora, N.; Pocazi, P.; Lalarukh, I.; Abbas, M.H.H.; et al. Yield and yield components of common bean as influenced by wheat residue and nitrogen rates under water deficit conditions. Environ. Technol. Innov. 2022, 28, 102549. [Google Scholar] [CrossRef]
- Soper, M.H.R. A study of the principal factors affecting the establishment and development of the field bean (Vicia faba). J. Agric. Sci. 1952, 42, 335–346. [Google Scholar] [CrossRef]
- Hodgson, G.L.; Blackman, G.E. An Analysis of the Influence of Plant Density on the Growth of Vicia faba: I. The influence of density on the pattern of development. J. Exp. Bot. 1956, 7, 147–165. [Google Scholar]
- Darkwa, K.; Ambachew, D.; Mohammed, H.; Asfaw, A.; Blair, M.W. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop J. 2016, 4, 367–376. [Google Scholar] [CrossRef]
- Assefa, T.; Rao, I.M.; Cannon, S.B.; Wu, J.; Gutema, Z.; Blair, M.; Otyama, P.I.; Alemayehu, F.; Dagne, B. Improving adaptation to drought stress in white pea bean (Phaseolus vulgaris L.): Genotypic effects on grain yield, yield components and pod harvest index. Plant Breed. 2017, 136, 548–561. [Google Scholar] [CrossRef]
- Balko, C.; Torres, A.M.; Gutierrez, N. Variability in drought stress response in a panel of 100 faba bean genotypes. Front. Plant Sci. 2023, 14, 1236147. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Gan, R.-Y.; Zhang, D.; Ge, Y.-Y.; Cheng, L.-Z.; Corke, H. Optimization of kidney bean antioxidants using RSM & ANN and characterization of antioxidant profile by UPLC-QTOF-MS. LWT 2019, 114, 108321. [Google Scholar]
- Damián-Medina, K.; Salinas-Moreno, Y.; Milenkovic, D.; Figueroa-Yáñez, L.; Marino-Marmolejo, E.; Higuera-Ciapara, I.; Vallejo-Cardona, A.; Lugo-Cervantes, E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon 2020, 6, e03632. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, Q.; Yao, N.; Liang, W.; Ma, X.; Li, J.; Li, X.; Wang, L.; Liang, W. The Enzyme Lysine Malonylation of Calvin Cycle and Gluconeogenesis Regulated Glycometabolism in Nostoc flagelliforme to Adapt to Drought Stress. Int. J. Mol. Sci. 2023, 24, 8446. [Google Scholar] [CrossRef]
- Navari-Izzo, F.; Quartacci, M.F.; Melfi, D.; Izzo, R. Lipid composition of plasma membranes isolated from sunflower seedlings grown under water-stress. Physiol. Plant 1993, 87, 508–514. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Feng, K.; Wang, N.; Zhang, S.; Ma, H.; Ge, C.; Shen, Q.; Liu, R.; Zhao, X.; et al. Widely targeted metabolomics reveals the different metabolic changes in leaves and roots of two cotton varieties under drought stress. J. Agron. Crop Sci. 2021, 207, 1041–1049. [Google Scholar] [CrossRef]
- Kim, H.; Gardner, H.W.; Hou, C.T. Production of isomeric 9,10,13 (9,12,13)-trihydroxy-11E (10E)-octadecenoic acid from linoleic acid by Pseudomonas aeruginosa PR3. J. Ind. Microb. Biotechnol. 2000, 25, 109–115. [Google Scholar] [CrossRef]
- Nogacka, A.M.; De los Reyes-Gavilán, C.G.; Martínez-Faedo, C.; Ruas-Madiedo, P.; Suarez, A.; Mancabelli, L.; Ventura, M.; Cifuentes, A.; León, C.; Gueimonde, M.; et al. Impact of Extreme Obesity and Diet-Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Mol. Nutr. Food Res. 2021, 65, 2000030. [Google Scholar] [CrossRef] [PubMed]
- Gesek, J.; Jakimiuk, K.; Atanasov, A.G.; Tomczyk, M. Sanguiins-Promising Molecules with Broad Biological Potential. Int. J. Mol. Sci. 2021, 22, 12972. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Moradi, P.; Mahdavi, A.; Khoshkam, M.; Iriti, M. Lipidomics Unravels the Role of Leaf Lipids in Thyme Plant Response to Drought Stress. Int. J. Mol. Sci. 2017, 28, 2067. [Google Scholar] [CrossRef] [PubMed]
- Volschenk, T. Water use and irrigation management of pomegranate trees—A review. Agric. Water Manag. 2020, 241, 106375. [Google Scholar] [CrossRef]
- Piazza, S.; Fumagalli, M.; Martinelli, G.; Pozzoli, C.; Maranta, N.; Angarano, M.; Sangiovanni, E.; Dell’Agli, M. Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022, 27, 7593. [Google Scholar] [CrossRef]
- Mellisho, C.D.; Egea, I.; Galindo, A.; Rodríguez, P.; Rodríguez, J.B.; Conejero, W. Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions. Agric. Water Manag. 2012, 114, 30–36. [Google Scholar]
- Laribi, A.I.; Palou, L.; Intrigliolo, D.S.; Nortes, P.A.; Rojas-Argudo, C.; Taberner, V.; Bartual, J.; Pérez-Gago, M.B. Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage. Agric. Water Manag. 2013, 125, 61–70. [Google Scholar] [CrossRef]
- Fàbregas, N.; Fernie, A.R. The metabolic response to drought. J. Exp. Bot. 2019, 70, 1077–1085. [Google Scholar] [CrossRef]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
Mineral Content | Treatments | ||||
---|---|---|---|---|---|
Control | DI | P | |||
Ca (g/100 g) | 2873.8 ± 452.6 | 2113.7 ± 333.1 | ns | ||
Cu (mg/Kg) | 2.59 ± 0.45 | 3.21 ± 0.27 | ns | ||
Fe (mg/Kg) | 65.83 ± 5.21 | 75.93 ± 4.12 | ns | ||
K (g/100 g) | 17,905.3 ± 1615.6 | 19,820.7 ± 480.1 | ns | ||
Mg (g/100 g) | 1847.4 ± 113.5 | 1994 ± 94.23 | ns | ||
Na (g/100 g) | 22.17 ± 3.19 | 25.54 ± 3.88 | ns | ||
P (g/100 g) | 3885.7 ± 231.0 | b | 4456.8 ± 59.9 | a | * |
Zn (mg/Kg) | 36.53 ± 2.61 | b | 42.75 ± 2.05 | a | * |
N (mg/kg) | 27,276.8 ± 793.7 | 27,303.6 ± 853.6 | ns | ||
C (mg/Kg) | 431,193.1 ± 2032.2 | 429,280.0 ± 850.0 | ns | ||
C/N | 15.88 ± 0.42 | 15.81 ± 0.47 | ns |
ID | Compound Name | Formula | RT (min) | Ionization | Mass | Error (ppm) | Fragments | Regulation | References |
---|---|---|---|---|---|---|---|---|---|
1 | Ascorbic acid | C6H8O6 | 1.3 | [M–H]− | 175.0240 | 1.2 | UP | HMDB0000044 | |
2 | 2,4-Dihydroxybenzoic acid | C7H6O4 | 2.3 | [M–H]− | 153.0188 | 1.7 | 109.0295 | UP | HMDB0029666 |
3 | Dihydromyricetin | C15H12O8 | 4.8 | [M–H]− | 319.0452 | −0.4 | 301.0354 | UP | HMDB0303822 |
4 | Cyanidin 3-(4-acetylglucoside) | C23H23O12 | 4.9 | [M–H]− | 490.1115 | −0.7 | 221.0061 | UP | HMDB0037971 |
5 | 7,3′,4′-Trihydroxyflavone | C15H10O5 | 6.5 | [M–H]− | 269.0449 | −1.3 | 213.0188 | UP | HMDB0034004 |
6 | Kaempferol 4′-rhamnoside | C21H20O10 | 6.5 | [M–H]− | 431.0978 | −1.6 | 285.0399 | UP | LMPK12111854 |
7 | 9,12,13,TriHODE | C18H32O5 | 8.1 | [M–H]− | 327.2165 | 1.1 | 211.1329 | DOWN | LMFA02000220 |
8 | PC(5:0/5:0) | C18H37NO8P | 8.3 | [M–H]+ | 426.2254 | −0.9 | 339.1214 | DOWN | LMGP01011225 |
9 | Sebacic acid | C10H18O4 | 8.4 | [M–H]− | 201.1130 | 1.2 | 139.1134 | DOWN | LMFA01170006 |
10 | 9,10-Dihydroxy-8-oxo-12-octadecenoic acid | C18H32O5 | 9.4 | [M–H]− | 327.2171 | 0.3 | 201.1179 | DOWN | HMDB0040611 |
11 | Kudzusaponin SA1 | C42H68O15 | 9.7 | [M–H]− | 811.4478 | 1.3 | 473.3636 | DOWN | HMDB0041240 |
12 | Dodecanedioic acid | C12H22O4 | 10.4 | [M–H]− | 229.1440 | 0.5 | 211.1650 | DOWN | LMFA01170009 |
13 | Jasmonic acid | C12H18O3 | 10.7 | [M–H]− | 209.1178 | 2.1 | 165.1279 | DOWN | HMDB0032797 |
14 | 5,8,12-Trihydroxy-9-octadecenoic acid | C18H34O5 | 10.9 | [M–H]− | 329.2336 | 0.2 | 311.2211 | DOWN | LMFA01050543 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Bellot, M.J.; Guerrero, L.; Yuste, J.E.; Vallejo, F.; Sánchez-Blanco, M.J. Identifying Bioactive Compounds in Common Bean (Phaseolus vulgaris L.) Plants under Water Deficit Conditions. Horticulturae 2024, 10, 663. https://doi.org/10.3390/horticulturae10070663
Gómez-Bellot MJ, Guerrero L, Yuste JE, Vallejo F, Sánchez-Blanco MJ. Identifying Bioactive Compounds in Common Bean (Phaseolus vulgaris L.) Plants under Water Deficit Conditions. Horticulturae. 2024; 10(7):663. https://doi.org/10.3390/horticulturae10070663
Chicago/Turabian StyleGómez-Bellot, María José, Lilisbet Guerrero, José Enrique Yuste, Fernando Vallejo, and María Jesús Sánchez-Blanco. 2024. "Identifying Bioactive Compounds in Common Bean (Phaseolus vulgaris L.) Plants under Water Deficit Conditions" Horticulturae 10, no. 7: 663. https://doi.org/10.3390/horticulturae10070663
APA StyleGómez-Bellot, M. J., Guerrero, L., Yuste, J. E., Vallejo, F., & Sánchez-Blanco, M. J. (2024). Identifying Bioactive Compounds in Common Bean (Phaseolus vulgaris L.) Plants under Water Deficit Conditions. Horticulturae, 10(7), 663. https://doi.org/10.3390/horticulturae10070663