Short-Term Liquid Nitrogen Storage of Pyrostegia venusta Embryos: Effects on Germination, Phenotypic and Biochemical Characteristics, and In Vitro Secondary Metabolite Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Obtaining Embryos, Cryostorage, and In Vitro Germination
2.4. Acclimatization
2.5. Biochemical Analysis
2.5.1. Preparation of Extracts
2.5.2. Proteins, Soluble and Reducing Sugars
Total Soluble Proteins
Total Soluble Sugars
Total Reducing Sugars
2.5.3. Oxidative Metabolism
Catalase Activity
Reduced Glutathione
Lipoperoxidation
H2O2 Production
2.5.4. Phenylalanine Ammonia-Lyase (PAL) Activity
2.6. Phytochemical Analysis
2.6.1. Preparation of Extracts
2.6.2. Total Phenolic Compounds
2.6.3. Total Flavonoids
2.6.4. Total Phytosterols
2.6.5. Total Alkaloids
2.6.6. High Performance Liquid Chromatography (HPLC-DAD)
2.7. Data Analyses
3. Results
3.1. Cryostorage and In Vitro Germination
3.2. Acclimatization
3.3. Biochemical Analyzes
3.4. Phytochemical Analyzes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mostafa, N.M.; El-dahshan, O.; Singab, A.N.B. Pyrostegia venusta (Ker Gawl.) Miers: A botanical, pharmacological and phytochemical review. Med. Aromat. Plants 2013, 2, 100123. [Google Scholar] [CrossRef]
- Ferreira, D.T.; Alvares, P.S.M.; Houghton, P.J.; Braz, R. Chemical constituents from roots of Pyrostegia venusta and considerations about its medicinal importance. Quím. Nova 2000, 23, 42–46. [Google Scholar] [CrossRef]
- Silva, R.M.; Rodrigues, D.T.M.; Augustos, F.S.; Valadares, F.; Neto, P.O.; Dos Santos, L.; Silva, L.P. Antitumor and cytotoxic activity of Kielmeyera coriacea Mart. Zucc. and Pyrostegia venusta (Ker Gawl.) Miers extracts. J. Med. Plants Res. 2012, 6, 4142–4148. [Google Scholar]
- Moreira, C.G.; Horinouchia, C.D.S.; Souza-Filho, C.S.; Campos, F.R.; Barison, A.; Cabrini, D.A.; Otuki, M.F. Hyperpigmentant activity of leaves and flowers extracts of Pyrostegia venusta on murine B16F10 melanoma. J. Ethnopharmacol. 2012, 141, 1005–1011. [Google Scholar] [CrossRef]
- Pereira, A.M.; Hernandes, C.; Pereira, S.I.V.; Bertoni, B.W.; França, S.C.; Pereira, P.S.; Taleb-Contini, S.H. Evaluation of anticandidal and antioxidant activities of phenolic compounds from Pyrostegia venusta (Ker Gawl.) Miers. Chem. Biol. Interact. 2014, 224, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Amdekar, S.; Kumar, A.; Singh, V. Preliminary study of the antioxidant properties of flowers and roots of Pyrostegia venusta (Ker Gawl.) Miers. BMC Complement. Altern. Med. 2011, 11, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Amdekar, S.; Kumar, A.; Singh, R.; Sharma, P.; Singh, V. In vivo anti-oxidative property, antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl.) Miers. J. Ethnopharmacol. 2012, 140, 186–192. [Google Scholar] [CrossRef]
- Silva, P.B.; Medeiros, A.C.M.; Duarte, M.C.T.; Ruiz, A.L.T.G.; Kolb, R.M.; Frei, F.; Santos, C. Evaluation of allelopathic potential, antimicrobial and antioxidant activities of Pyrostegia venusta (Ker Gawl.) Miers (Bignoniaceae) leaf organic extracts. Rev. Bras. Plantas Med. 2011, 13, 447–455. [Google Scholar] [CrossRef]
- Nisha, P.V.; Shruti, N.; Swamy, K.S.; Kumari, M.; Vedamurthy, A.B.; Krishna, V.; Hoskeri, J.H. Anthelmintic activity of Pyrostegia venusta using Pheretima posthuma. Int. J. Pharm. Sci. Drug Res. 2012, 4, 205–208. [Google Scholar]
- Veloso, C.C.; Bitencourt, A.D.; Cabral, L.D.M.; Franqui, L.S.; Dias, D.F.; Santos, M.H.; Soncini, R.; Giusti-Paiva, A. Pyrostegia venusta attenuate the sickness behavior induced by lipopolysaccharide in mice. J. Ethnopharmacol. 2010, 132, 355–358. [Google Scholar] [CrossRef]
- Veloso, C.C.; Cabral, L.D.M.; Bitencourt, A.D.; Franqui, L.S.; Santa-Cecília, F.V.; Dias, D.F.; Soncini, R.; Vilela, F.C.; Giusti-Paiva, A. Anti-inflammatory and anti-nociceptive effects of the hydroethanolic extract of the flowers of Pyrostegia venusta in mice. Braz. J. Pharmacogn. 2012, 22, 162–168. [Google Scholar] [CrossRef]
- Veloso, C.C.; Oliveira, M.C.; Oliveira, C.C.; Rodrigues, V.G.; Giusti-Paiva, A.; Teixeira, M.M.; Duarte, I.D.; Ferreira, A.V.M.; Perez, A.C. Hydroethanolic extract of Pyrostegia venusta (Ker Gawl.) Miers flowers improves inflammatory and metabolic dysfunction induced by high-refined carbohydrate diet. J. Ethnopharmacol. 2014, 151, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Moreira, C.G.; Carrenho, L.Z.B.; Pawloski, P.L.; Soley, B.S.; Cabrini, D.A.; Otuki, M.F. Pre-clinical evidences of Pyrostegia venusta in the treatment of vitiligo. J. Ethnopharmacol. 2015, 168, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Martínez, A.; Valle-Aguilera, J.R.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.; Gonzalez, C.; Santos-Díaz, M.S. Callus from Pyrostegia venusta (Ker Gawl.) Miers: A source of phenylethanoid glycosides with vasorelaxant activities. Plant Cell Tissue Organ Cult. 2019, 139, 119–129. [Google Scholar] [CrossRef]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.S.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.C.; Paiva, R.; Swennen, R.; Andrè, E.; Panis, B. Cryopreservation of Byrsonima intermedia embryos followed by room temperature thawing. Acta Sci. Agron. 2014, 36, 309–315. [Google Scholar] [CrossRef]
- Kikowska, M.; Sliwinska, E.; Thiem, B. Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L. Plants 2020, 9, 498. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Pritchard, H.W. Cryopreservation of Desiccation-Tolerant Seeds. In Cryopreservation and Freeze-Drying Protocols, Methods in Molecular Biology, 2nd ed.; Day, J.G., Stacey, G.N., Eds.; Humana Press: New York, NY, USA, 2007; Volume 368, pp. 185–201. [Google Scholar]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Devel. Biol. Plant 2010, 47, 5–16. [Google Scholar] [CrossRef]
- Pegg, D.E. Principles of Cryopreservation. In Cryopreservation and Freeze-Drying Protocols, Methods in Molecular Biology; Wolkers, W.F., Oldenhof, H., Eds.; Springer: New York, NY, USA, 2015; Volume 1257, pp. 3–19. [Google Scholar]
- Kubota, C.; Seiyama, S.; Kozai, T. Manipulation of photoperiod and light intensity in low temperature storage of eggplant plug seedlings. Sci. Hortic. 2002, 94, 13–20. [Google Scholar] [CrossRef]
- Justus, I.; Kubota, C. Effects of low temperature storage on growth and transplant quality of non-grafted and grafted cantaloupe-type muskmelon seedlings. Sci. Hortic. 2010, 125, 47–54. [Google Scholar] [CrossRef]
- Wang, M.R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell Tissue Organ Cult. 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Mosa, K.A.; Ahmed, A.E.; Hazem, Y.; Kanawati, I.S.; Abdullah, A.; Hernandez-Sori, L.; Ali, M.A.; Vendrame, W. Insights into cryopreservation, recovery and genetic stability of medicinal plant tissues. Fitoterapia 2023, 169, 105555. [Google Scholar] [CrossRef] [PubMed]
- Zevallos, B.; Cejas, I.; Rodríguez, R.C.; Yabor, L.; Aragón, C.; González, J.; Engelmann, F.; Martínez, M.E.; Lorenzo, J.C. Biochemical characterization of ecuadorian wild Solanum lycopersicum MILL. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters 2013, 34, 413–421. [Google Scholar] [PubMed]
- Kubota, C.; Meng, C.; Son, Y.J.; Lewis, M.; Spalholz, H.; Tronstad, R. Horticultural, systems-engineering and economic evaluations of short-term plant storage techniques as a labor management tool for vegetable grafting nurseries. PLoS ONE 2017, 12, e0170614. [Google Scholar] [CrossRef] [PubMed]
- Teixeira da Silva, J.A.; Engelmann, F. Cryopreservation of oil palm (Elaeis guineensis Jacq.). Cryobiology 2017, 77, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Arguedas, M.; Pérez, A.; Abdelnour, A.; Hernández, M.; Engelmann, F.; Martínez, M.E.; Yabor, L.; Lorenzo, J.C. Short-term liquid nitrogen storage of maize, common bean and soybean seeds modifies their biochemical composition. Agric. Sci. 2016, 4, 6–12. [Google Scholar] [CrossRef]
- Nausch, H.; Buyel, J.F. Cryopreservation of plant cell cultures—Diverse practices and protocols. New Biotechnol. 2021, 62, 86–95. [Google Scholar] [CrossRef]
- Vujović, T.; Anđelić, T.; Vasilijević, B.; Jevremović, D.; Engelmann, F. Cryopreservation of Indigenous Plums and Monitoring of Multiplication and Rooting Capacity of Shoots Obtained from Cryopreserved Specimens. Plants 2023, 12, 3108. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tissue Organ Cult. 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Loredo-Carrillo, S.E.; Santos-Diáz, M.L.; Leyva, E.; Santos-Diáz, M.S. Establishment of callus from Pyrostegia venusta (Ker Gawl.) Miers and effect of abiotic stress on flavonoids and sterols accumulation. J. Plant Biochem. Biotechnol. 2012, 22, 312–318. [Google Scholar] [CrossRef]
- Braga, K.Q.; Coimbra, M.C.; Castro, A.H.F. In vitro germination, callus induction and phenolic compounds contents from Pyrostegia venusta (Ker Gawl.) Miers. Acta Sci. Biol. Sci. 2015, 37, 151–158. [Google Scholar] [CrossRef]
- Coimbra, M.C.; Chagas, R.C.R.; Duarte-Almeida, J.M.; Castro, A.H.F. Influence of plant growth regulators and light on callus induction and bioactive phenolic compounds production in Pyrostegia venusta (Bignoniaceae). Indian J. Exp. Biol. 2017, 55, 584–590. [Google Scholar]
- Ferreira, N.S.O.; Rosset, M.; Lima, G.; Campelo, P.M.S.; Macedo, R.E.F. Effect of adding Brosimum gaudichaudii and Pyrostegia venusta hydroalcoholic extracts on the oxidative stability of beef burgers. LWT 2019, 108, 145–152. [Google Scholar] [CrossRef]
- Coimbra, M.C.; Chagas, R.C.R.; Vilela, M.S.P.; Castro, A.H.F. Growth, morphology and bioactive phenolic compounds production in Pyrostegia venusta calli. Biocatal. Agric. Biotechnol. 2019, 18, 101036. [Google Scholar] [CrossRef]
- Milani, M.; Heintze, W.; Schafer, G.; Souza, P.V.D. Influence of leaf number and nodes on the rooting of semiwoody cuttings of flame vine. Ornam. Hortic. 2015, 21, 339–344. [Google Scholar] [CrossRef]
- Coimbra, M.C.; Castro, A.H.F. Distribution and structural aspects of extrafloral nectaries in leaves of Pyrostegia venusta (Bignoniaceae). Acta Sci. Biol. Sci. 2014, 36, 321–326. [Google Scholar] [CrossRef]
- Rossato, D.R.; Kolb, R.M. Germination of Pyrostegia venusta (Bignoniaceae), seed viability and post-seminal development. Braz. J. Bot. 2010, 33, 51–60. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- BRASIL. Regras para Análise de Sementes, 1st ed.; MAPA/ACS: Brasília, Brazil, 2009; 399p.
- Figueiredo, M.A.; Coelho, S.V.B.; Rosa, S.D.V.F.; Vilela, A.L.; Silva, L.C. Exploratory studies for cryopreservation of Coffea arabica L. seeds. J. Seed Sci. 2017, 39, 150–158. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Nicioli, P.M.; Paiva, R.; Nogueira, R.C.; Santana, J.R.F.; Silva, L.C.; Silva, D.P.C.; Porto, J.M.P. Adjustment of the process of micropropagation of Stryphnodendron adstringens (Mart.) Coville. Ciênc. Rural 2008, 38, 685–689. [Google Scholar] [CrossRef]
- Schuck, M.R.; Lipski, B.; Da Silva, A.L.L.; De Carvalho, D.C.; Biasi, L.A. Acclimatization of micropropagated plants of fox grape cv. Bordô (Vitis labrusca L.) in different substrates. J. Biotechnol. Biodivers. 2012, 3, 206–212. [Google Scholar] [CrossRef]
- Mollavali, M.; Bolandnazar, S.A.; Schwarz, D.; Rohn, S.; Riehle, P.; Nahandi, F.Z. Flavonol glucoside and antioxidant enzyme biosynthesis affected by mycorrhizal fungi in various cultivars of onion (Allium cepa L.). J. Agric. Food Chem. 2016, 64, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Maehly, A.C.; Chance, B. The assay of catalases and peroxidases. Methods Biochem. Anal. 1954, 1, 357–424. [Google Scholar] [PubMed]
- Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974, 11, 151–169. [Google Scholar] [CrossRef]
- Kramer, G.F.; Norman, H.A.; Krizek, D.T.; Mirecki, R.M. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 1991, 30, 2101–2108. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Mori, T.; Sakurai, M.; Sakuta, M. Changes in PAL, CHS, DAHP synthase (DS-Co and Ds-Mn) activity during anthocyanin synthesis in suspension culture of Fragaria ananassa. Plant Cell Tissue Organ Cult. 2000, 62, 135–139. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- ANVISA. Farmacopeia Brasileira: Plantas Medicinais, 6th ed.; ANVISA: Brasília, Brazil, 2010.
- Araújo, L.B.D.C.; Silva, S.L.; Galvão, M.A.M.; Ferreira, M.R.A.; Araújo, E.L.; Randau, K.P.; Soares, L.A.L. Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Rev. Bras. Farmacogn. 2013, 23, 736–742. [Google Scholar] [CrossRef]
- Sreevidya, N.; Mehrotra, S. Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff’s reagent in plant materials. J. AOAC Int. 2003, 86, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Shan, Y.; Wu, Y.; Liu, G.; Chen, B.; Yao, S. Simultaneous determination of flavanones, hydroxycinnamic acids and alkaloids in citrus fruits by HPLC-DAD–ESI/MS. Food Chem. 2011, 127, 880–885. [Google Scholar] [CrossRef]
- Ruiz, A.; Mardones, C.; Vergara, C.; Hermosín-gutiérrez, I.; Von Baer, D.; Hinrichsen, P.; Rodriguez, R.; Arribillaga, D.; Dominguez, E. Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. J. Chromatog. A 2013, 1281, 38–45. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A Guide for its bootstrap procedures in multiple comparisons. Ciênc. Agrotecnol. 2014, 38, 109–112. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Brinckmann, J.A.; Yang, X.; He, J. Introduction to the special issue: Saving plants, saving lives: Trade, sustainable harvest and conservation of traditional medicinals in Asia. J. Ethnopharmacol. 2019, 229, 288–292. [Google Scholar] [CrossRef]
- Asgher, M.; Verma, S.; Khan, N.A.; Vyas, D.; Kumari, P.; Rashid, S.; Khan, S.; Qadir, S.; Ajmal Ali, M.; Ahmad, P. Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. Plants 2020, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Ben Haj Jilani, I.; Karous, O.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; Greveniotis, V.; et al. Medicinal-Cosmetic Potential of the Local Endemic Plants of Crete (Greece), Northern Morocco and Tunisia: Priorities for Conservation and Sustainable Exploitation of Neglected and Underutilized Phytogenetic Resources. Biology 2021, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Ssenku, J.E.; Okurut, S.A.; Namuli, A.; Kudamba, A.; Tugume, P.; Matovu, P.; Wasige, G.; Kafeero, H.M.; Walusansa, A. Medicinal plant use, conservation, and the associated traditional knowledge in rural communities in Eastern Uganda. Trop. Med. Health 2022, 50, 39. [Google Scholar] [CrossRef] [PubMed]
- Asigbaase, M.; Adusu, D.; Anaba, L.; Abugre, S.; Kang-Milung, S.; Acheamfour, S.A.; Adamu, I.; Ackah, D.K. Conservation and economic benefits of medicinal plants: Insights from forest-fringe communities of Southwestern Ghana. Trees For. People 2023, 14, 100462. [Google Scholar] [CrossRef]
- Engelmann, F.; Rao, R. Major Research Challenges and Directions for Future Research. In Conservation of Tropical Plant Species; Normah, M., Chin, H., Reed, B., Eds.; Springer: New York, NY, USA, 2013; pp. 511–526. [Google Scholar]
- Havens, K.; Vitt, P.; Maunder, M.; Guerrant, E.O.; Dixon, K. Ex situ plant conservation and beyond. BioScience 2006, 56, 525–531. [Google Scholar] [CrossRef]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Walters, C.; Pence, V.C. The unique role of seed banking and cryobiotechnologies in plant conservation. Plants People Planet 2021, 3, 83–91. [Google Scholar] [CrossRef]
- Kholina, A.B.; Voronkova, N.M. Seed cryopreservation of some medicinal legumes. J. Bot. 2012, 2012, 186891. [Google Scholar] [CrossRef]
- Prudente, D.O.; Paiva, R.; Domiciano, D.; Souza, L.B.; Carpentier, S.; Swennen, R.; Silva, L.C.; Nery, F.C.; Máximo, W.P.F.; Panis, B. The cryoprotectant PVS2 plays a crucial role in germinating Passiflora ligularis embryos after cryopreservation by influencing the mobilization of lipids and the antioxidant metabolism. J. Plant Physiol. 2019, 239, 71–82. [Google Scholar] [CrossRef]
- Varghese, B.; Naithani, S.C. Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds. J. Plant Physiol. 2008, 165, 755–765. [Google Scholar] [CrossRef]
- Cejas, I.; Méndez, R.; Villalobos, A.; Palau, F.; Aragón, C.; Engelmann, F.; Carputo, D.; Aversano, R.; Martínez, M.E.; Lorenzo, J.C. Phenotypic and molecular characterization of Phaseolus vulgaris plants from non-cryopreserved and cryopreserved seeds. Am. J. Plant Sci. 2013, 4, 844–849. [Google Scholar] [CrossRef]
- Zevallos, B.; Cejas, I.; Valle, B.; Yabor, L.; Aragón, C.; Engelmann, F.; Martínez, M.E.; Lorenzo, J.C. Short-term liquid nitrogen storage of wild tomato (Solanum lycopersicum Mill.) seeds modifies the levels of phenolics in 7 day-old seedlings. Sci. Hortic. 2013, 160, 264–267. [Google Scholar] [CrossRef]
- Adu-Gyamfi, R.; Wetten, A.; López, C.M.R. Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). PLoS ONE 2016, 11, e0158857. [Google Scholar] [CrossRef] [PubMed]
- Keunen, E.; Peshev, D.; Vangronsveld, J.; Van Den Ende, W.; Cuypers, A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef] [PubMed]
- Benson, E.E. Cryopreservation of Phytodiversity: A Critical Appraisal of Theory & Practice. CRC Crit. Rev. Plant Sci. 2008, 27, 141–219. [Google Scholar]
- Walters, C. Temperature dependency of molecular mobility in preserved seeds. Biophys. J. 2004, 86, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Gutteridge, J.M.C.; Halliwell, B. Free radicals and antioxidants in the year 2000: A historical look to the future. Ann. N. Y. Acad. Sci. 2006, 899, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Sarwat, M.; Sharma, S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 2008, 51, 167–173. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Sakihama, Y.; Yamasaki, H. Lipid Peroxidation induced by phenolics in conjunction with aluminum ions. Biol. Plant. 2002, 45, 249–254. [Google Scholar] [CrossRef]
- Griffith, M.; Yaish, M.W.F. Antifreeze proteins in overwintering plants: A tale of two activities. Trends Plant Sci. 2004, 9, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Chiomento, J.L.T.; De Nardi, F.S.; Filippi, D.; Trentin, T.d.S.; Anzolin, A.P.; Bertol, C.D.; Nienow, A.A.; Calvete, E.O. Mycorrhization of strawberry plantlets potentiates the synthesis of phytochemicals during ex vitro acclimatization. Acta Sci. Agron. 2022, 44, e55682. [Google Scholar] [CrossRef]
- Ljubej, V.; Karalija, E.; Salopek-Sondi, B.; Šamec, D. Effects of Short-Term Exposure to Low Temperatures on Proline, Pigments, and Phytochemicals Level in Kale (Brassica oleracea var. acephala). Horticulturae 2021, 7, 341. [Google Scholar] [CrossRef]
- Terletskaya, N.V.; Korbozova, N.K.; Kudrina, N.O.; Kobylina, T.N.; Kurmanbayeva, M.S.; Meduntseva, N.D.; Tolstikova, T.G. The Influence of Abiotic Stress Factors on the Morphophysiological and Phytochemical Aspects of the Acclimation of the Plant Rhodiola semenowii Boriss. Plants 2021, 10, 1196. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Van Hung, P. Phenolic Compounds of Cereals and Their Antioxidant Capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Chapter 9—Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 157–168. [Google Scholar]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Schulz, E.; Tohge, T.; Zuther, E.; Fernie, A.R.; Hincha, D.K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 2016, 6, 34027. [Google Scholar] [CrossRef]
- MacDonald, M.J.; D’cunha, G.B. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 2007, 85, 273–282. [Google Scholar] [CrossRef]
- Huang, J.; Min, G.; Lai, Z.; Fan, B.; Shi, K.; Zhou, Y.H.; Yu, J.Q.; Chen, Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010, 153, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.D.; Qiu, J.Q.; Fan, X.W.; Jia, S.R.; Tan, Z.L. Biotechnological production and applications of microbial henylalanine ammonia lyase: A recent review. Crit. Rev. Biotechnol. 2014, 34, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Khakdan, F.; Alizadeh, H.; Ranjbar, M. Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiol. Biochem. 2018, 130, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Rahmatabadi, S.S.; Sadeghian, I.; Ghasemi, Y.; Sakhteman, A.; Hemmati, S. Identification and characterization of a sterically robust phenylalanine ammonia-lyase among 481 natural isoforms through association of in silico and in vitro studies. Enzyme Microb. Technol. 2019, 122, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Tobimatsu, Y.; Schuetz, M. Lignin polymerization: How do plants manage the chemistry so well? Curr. Opin. Biotechnol. 2019, 56, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Weisshaar, B.; Jenkins, G.I. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1998, 1, 251–257. [Google Scholar] [CrossRef]
- Janas, K.M.; Zielińska-Tomaszewska, J.; Rybaczek, D.; Maszewski, J.; Posmyk, M.M.; Aramowicz, R.; Kosińska, A. The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J. Plant Physiol. 2010, 167, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.M.; Li, L.; Dong, C.J. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 2012, 236, 1093–1105. [Google Scholar]
- Zhang, X.; Liu, C.J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol. Plant 2015, 8, 17–27. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, M.T.; Zacarias, L.; Granell, A.; Lafuente, M.T. Accumulation of Pal Transcript and Pal Activity as Affected by Heat-Conditioning and Low-Temperature Storage and Its Relation to Chilling Sensitivity in Mandarin Fruits. J. Agric. Food Chem. 2000, 48, 2726–2731. [Google Scholar] [CrossRef]
- Kováčik, J.; Klejdus, B. Tissue and method specificities of Phenylalanine Ammonia-Lyase assay. J. Plant Physiol. 2012, 169, 1317–1320. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Moreau, R.A.; Whitaker, B.D.; Hicks, K.B. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 2002, 41, 457–500. [Google Scholar] [CrossRef]
- Rudell, D.R.; Buchanan, D.A.; Leisso, R.S.; Whitaker, B.D.; Mattheis, J.P.; Zhu, Y.; Varanasi, V. Ripening, storage temperature, ethylene action, and oxidative stress alter apple peel phytosterol metabolismo. Phytochemistry 2011, 72, 1328–1340. [Google Scholar] [CrossRef]
- Valitova, J.N.; Sulkarnayeva, A.G.; Minibayeva, F.V. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry 2016, 81, 819–834. [Google Scholar] [CrossRef]
- Grunwald, C. Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability. Plant Physiol. 1971, 48, 653–655. [Google Scholar] [CrossRef]
- Guye, M.G. Phospholipid, sterol composition and ethylene production in relation to choline-induced chill-tolerance in mung bean (Vigna radiata L. Wilcz.) during a chill-warm cycle. J. Exp. Bot. 1989, 40, 369–374. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Geuns, J.; Dussert, S.; Swennen, R.; Panis, B. Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation. Physiol. Plant. 2006, 128, 80–94. [Google Scholar] [CrossRef]
- Anulika, N.P.; Ignatius, E.O.; Raymond, E.S.; Osasere, O.I.; Abiola, A.H. The Chemistry of Natural Product: Plant Secondary Metabolites. IJTEEE 2016, 4, 1–9. [Google Scholar]
- Hartmann, M.A. Sterol metabolism and functions in higher plants. In Lipid Metabolism and Membrane Biogenesis, Topics in Current Genetics; Daum, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 6, pp. 183–211. [Google Scholar]
Exposure to Liquid Nitrogen | G (%) | GSI | Nodes | Buds | Leaflets | SL (cm) | RL (cm) | SDW (mg) | RDW (mg) |
---|---|---|---|---|---|---|---|---|---|
Control | 80.00 b | 17.91 b | 1.10 ± 0.74 a | 3.60 ± 1.26 b | 11.00 ± 3.77 a | 6.00 ± 1.31 b | 10.15 ± 2.88 a | 19.02 ± 5.14 a | 9.67 ± 4.90 a |
1 day (24 h) | 90.00 a | 20.14 a | 1.40 ± 0.70 a | 4.40 ± 1.17 a | 13.00 ± 4.27 a | 6.95 ± 1.48 a | 8.45 ± 2.77 b | 23.22 ± 7.09 a | 7.80 ± 2.58 a |
7 days (168 h) | 90.00 a | 19.64 a | 1.50 ± 0.53 a | 5.00 ± 1.05 a | 14.30 ± 3.27 a | 7.80 ± 1.65 a | 7.60 ± 2.20 b | 25.50 ± 3.18 a | 8.32 ± 2.15 a |
14 days (336 h) | 83.33 b | 16.67 b | 1.20 ± 0.42 a | 3.80 ± 0.63 b | 12.00 ± 2.83 a | 5.80 ± 1.69 b | 7.30 ± 2.63 b | 17.74 ± 6.59 a | 6.90 ± 2.82 a |
21 days (504 h) | 76.67 c | 17.45 b | 1.90 ± 0.57 a | 4.20 ± 1.14 a | 12.00 ± 4.00 a | 5.90 ± 1.20 b | 10.00 ± 3.39 a | 22.17 ± 9.95 a | 9.79 ± 4.20 a |
Treatment | Survival (%) | Nodes | Buds | Leaflets | SL (cm) | RL (cm) | SDW (mg) | RDW (mg) |
---|---|---|---|---|---|---|---|---|
Control | 95 a | 2.00 ± 0.58 a | 3.71 ± 0.76 a | 10.29 ± 3.93 a | 5.86 ± 1.35 a | 8.57 ± 5.01 a | 18.11 ± 2.65 b | 6.10 ± 2.77 a |
+LN | 100 a | 2.14 ± 0.38 a | 4.29 ± 0.76 a | 12.86 ± 2.27 a | 4.96 ± 0.84 a | 8.79 ± 2.32 a | 26.24 ± 4.08 a | 6.51 ± 2.13 a |
Treatment | Organ | PTN (mg PTN g FB−1) | SS (mg SS g FB−1) | RS (mg RS g FB−1) | CAT (U CAT mg PTN−1) | GSH (mg RG g FB−1) | LP (mg MDA g FB−1) | HPP (mg H2O2 g FB−1) | PAL (U PAL mg PTN−1) |
---|---|---|---|---|---|---|---|---|---|
Control | Aerial Part | 254.44 ± 6.26 b | 88.29 ± 3.49 c | 9.63 ± 0.56 c | 1.17 ± 0.06 b | 32.00 ± 3.83 a | 0.61 ± 0.09 a | 0.08 ± 0.01 a | 0.51 ± 0.06 a |
Root | 94.33 ± 1.34 c | 148.90 ± 5.95 a | 19.50 ± 0.68 b | 0.13 ± 0.05 d | 16.46 ± 1.32 b | 0.15 ± 0.01 c | 0.04 b | 0.18 ± 0.03 c | |
7 days (168 h) | Aerial Part | 288.41 ± 3.85 a | 22.72 ± 4.03 d | 6.55 ± 0.50 d | 1.03 ± 0.04 c | 31.42 ± 2.63 a | 0.45 ± 0.08 b | 0.09 a | 0.27 ± 0.04 b |
Root | 90.27 ± 1.22 d | 129.36 ± 4.63 b | 33.12 ± 1.92 a | 4.25 ± 0.22 a | 12.30 ± 1.34 c | 0.13 ± 0.03 c | 0.03 b | 0.31 ± 0.06 b |
Treatment | Organ | PTN (mg PTN g FB−1) | SS (mg SS g FB−1) | RS (mg RS g FB−1) | CAT (U CAT mg PTN−1) | GSH (mg RG g FB−1) | LP (mg MDA g FB−1) | HPP (mg H2O2 g FB−1) | PAL (U PAL mg PTN−1) |
---|---|---|---|---|---|---|---|---|---|
Control (+LN) | Aerial Part | 691.14 ± 22.59 b | 247.26 ± 36.24 b | 16.50 ± 0.18 c | 0.98 ± 0.04 c | 37.36 ± 2.50 c | 1.70 ± 0.09 b | 0.11 ± 0.01 b | 0.25 ± 0.03 c |
Root | 918.02 ± 10.67 a | 379.61 ± 45.38 a | 61.77 ± 3.30 a | 1.25 ± 0.05 b | 74.00 ± 7.32 a | 1.93 ± 0.02 a | 0.18 ± 0.01 a | 0.42 ± 0.03 b | |
Acclimatization (+LN) | Aerial Part | 170.94 ± 2.30 d | 129.53 ± 7.07 c | 11.58 ± 2.19 d | 0.67 ± 0.05 d | 25.29 ± 2.57 d | 0.52 ± 0.02 d | 0.07 ± 0.01 c | 0.89 ± 0.09 a |
Root | 462.02 ± 4.02 c | 116.53 ± 1.00 d | 28.29 ± 0.38 b | 1.45 ± 0.05 a | 46.57 ± 9.53 b | 0.84 ± 0.04 c | 0.08 ± 0.01 c | 0.42 ± 0.03 b |
Treatment | Organ | Phenolics (µg GAEq mg CE−1) | Flavonoids (µg RutEq mg CE−1) | Phytosterols (µg β-sisEq mg CE−1) | Alkaloids (µg AllanEq mg CE−1) |
---|---|---|---|---|---|
Control | Aerial Part | 6.50 ± 0.24 c | 3.12 ± 0.19 b | 16.74 ± 1.96 a | 0.09 ± 0.01 a |
Root | 5.35 ± 0.39 c | 3.35 ± 0.16 b | 8.61 ± 0.78 b | 0.08 b | |
7 days (168 h) | Aerial Part | 10.64 ± 0.96 b | 2.49 ± 0.11 c | 0.62 ± 0.10 c | 0.12 ± 0.03 a |
Root | 13.02 ± 1.43 a | 4.51 ± 0.15 a | 1.04 ± 0.32 c | 0.10 ± 0.01 a |
Treatment | Organ | Phenolics (µg GAEq mg CE−1) | Flavonoids (µg RutEq mg CE−1) | Phytosterols (µg β-sisEq mg CE−1) | Alkaloids (µg AllanEq mg CE−1) |
---|---|---|---|---|---|
Control (+LN) | Aerial Part | 12.79 ± 0.18 c | 4.19 ± 0.06 a | 6.98 ± 0.64 c | 0.02 b |
Root | 18.02 ± 0.62 b | 2.15 ± 0.13 c | 10.96 ± 0.68 b | 0.02 b | |
Acclimatization (+LN) | Aerial Part | 8.99 ± 0.07 d | 4.25 ± 0.02 a | 12.05 ± 0.72 b | 0.02 b |
Root | 28.97 ± 0.07 a | 3.19 ± 0.44 b | 18.02 ± 2.58 a | 0.04 a |
In Vitro Cultures | |||||||||
Aerial Part | Root | ||||||||
Peak | Tentative Identification | Rt (min) | λ Max (nm) | Molecular Formula | Peak | Tentative Identification | Rt (min) | λ Max (nm) | Molecular Formula |
1 | benzoic acid derivative | 1.591 | 221 | C7H6O2 | 1 | benzoic acid derivative | 1.611 | 218 | C7H6O2 |
2 | benzoic acid derivative | 1.962 | 252 | C7H6O2 | 2 | benzoic acid derivative | 1.957 | 266 | C7H6O2 |
Acclimatization | |||||||||
Aerial Part | Root | ||||||||
Peak | Tentative Identification | Rt (min) | λ Max (nm) | Molecular Formula | Peak | Tentative Identification | Rt (min) | λ Max (nm) | Molecular Formula |
1 | benzoic acid derivative | 1.452 | 225 | C7H6O2 | 1 | cinnamic acid derivative | 1.391 | 215/310 | C9H8O2 |
2 | cinnamic acid derivative | 1.831 | 313 | C9H8O2 | 2 | cinnamic acid derivative | 1.822 | 213/324 | C9H8O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coimbra, M.C.; Garcia, I.J.P.; Santos, H.d.L.; Castro, A.H.F. Short-Term Liquid Nitrogen Storage of Pyrostegia venusta Embryos: Effects on Germination, Phenotypic and Biochemical Characteristics, and In Vitro Secondary Metabolite Production. Horticulturae 2024, 10, 695. https://doi.org/10.3390/horticulturae10070695
Coimbra MC, Garcia IJP, Santos HdL, Castro AHF. Short-Term Liquid Nitrogen Storage of Pyrostegia venusta Embryos: Effects on Germination, Phenotypic and Biochemical Characteristics, and In Vitro Secondary Metabolite Production. Horticulturae. 2024; 10(7):695. https://doi.org/10.3390/horticulturae10070695
Chicago/Turabian StyleCoimbra, Mairon César, Israel José Pereira Garcia, Hérica de Lima Santos, and Ana Hortência Fonsêca Castro. 2024. "Short-Term Liquid Nitrogen Storage of Pyrostegia venusta Embryos: Effects on Germination, Phenotypic and Biochemical Characteristics, and In Vitro Secondary Metabolite Production" Horticulturae 10, no. 7: 695. https://doi.org/10.3390/horticulturae10070695
APA StyleCoimbra, M. C., Garcia, I. J. P., Santos, H. d. L., & Castro, A. H. F. (2024). Short-Term Liquid Nitrogen Storage of Pyrostegia venusta Embryos: Effects on Germination, Phenotypic and Biochemical Characteristics, and In Vitro Secondary Metabolite Production. Horticulturae, 10(7), 695. https://doi.org/10.3390/horticulturae10070695