A Bibliometric Analysis of the Supercritical CO2 Extraction of Essential Oils from Aromatic and Medicinal Plants: Trends and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection Process
2.3. Bibliometric Analysis Methods
2.4. General Extraction Parameters
2.5. Background Behind Choosing the Keywords
3. Results
3.1. Bibliometric Analysis Overview
3.2. Chronological Scope and Interdisciplinary Research Trends
- ○
- Emerging Interest (1995–2000): The field begins modestly with two publications in 1995, and an average citation count of 2.50, indicating growing interest. By 1998, with eight publications, citation impact peaks at 4.09, signaling seminal research that garnered widespread attention within the academic community.
- ○
- Expansion and Diversification (2001–2010): The number of publications rises steadily, reaching 26 by 2010, while the citation average sees variation, underscoring the field’s diversification. This could reflect the foundational nature of early work, with some studies continuing to accrue citations and others, perhaps due to their more incremental nature, accruing fewer.
- ○
- High Activity with Varied Impact (2011–2016): A significant uptick in publications occurs, peaking at 43 documents in 2016. This is contrasted by a variable citation average, peaking at 3.71 in 2010 but dropping to lower figures like 1.36 in 2012, suggesting not all publications are influential. The high citation counts in 2016, with a 3.48 average, may indicate a culmination of impactful work or the recognition of previous studies.
- ○
- Recent Trends and Decline in Citations (2017–2024): The publication count continues its ascent, reaching 45 in 2023, yet citation averages trend downward, particularly dropping to 0.26 at the start of this year, 2024. This could hint at a field approaching saturation, where the large volume of publications may not equate to high-impact contributions. It might also signal shifting research priorities or the emergence of new methodologies. The marked decrease in both publications and citations in 2024, while not necessarily shocking due to it being early in the year and there being a likelihood that more studies are underway, invites scrutiny and may presage significant shifts in research direction.
3.3. Pioneering Research: Key Articles and Leading Journals in Supercritical CO2 Extraction of Essential Oils
3.4. Global Dynamics and Impactful Contributions in CO2 Supercritical Extraction Research
3.5. Bibliometric Mapping Keywords
3.6. Most-Relevant Affiliations
3.7. Geographical Distribution
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gull, A. Supercritical Fluid Extraction: A Review. J. Biol. Chem. Chron 2019, 5, 114–122. [Google Scholar]
- Difonzo, G.; Aresta, A.; Cotugno, P.; Ragni, R.; Squeo, G.; Summo, C.; Massari, F.; Pasqualone, A.; Faccia, M.; Zambonin, C. Supercritical CO2 Extraction of Phytocompounds from Olive Pomace Subjected to Different Drying Methods. Molecules 2021, 26, 598. [Google Scholar] [CrossRef]
- Haboubi, K.; Abdouni, A.E.; Hammoudani, Y.E.; Dimane, F.; Haboubi, C. Estimating biogas production in the controlled landfill of fez (Morocco) using the land-gem model. Environ. Eng. Manag. J. 2023, 22, 1813–1820. [Google Scholar] [CrossRef]
- Araus, K.; Uquiche, E.; del Valle, J.M. Matrix Effects in Supercritical CO2 Extraction of Essential Oils from Plant Material. J. Food Eng. 2009, 92, 438–447. [Google Scholar] [CrossRef]
- Anklam, E.; Berg, H.; Mathiasson, L.; Sharman, M.; Ulberth, F. Supercritical Fluid Extraction (SFE) in Food Analysis: A Review. Food Addit. Contam. 1998, 15, 729–750. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Sánchez, A.D.; Del Río, M.D.L.C.; García, J.Á. Bibliometric Analysis of Publications on Wine Tourism in the Databases Scopus and WoS. Eur. Res. Manag. Bus. Econ. 2017, 23, 8–15. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. JoVE (J. Vis. Exp.) 2019, 152, e58494. [Google Scholar]
- Ullah, R.; Asghar, I.; Griffiths, M.G. An Integrated Methodology for Bibliometric Analysis: A Case Study of Internet of Things in Healthcare Applications. Sensors 2022, 23, 67. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Cheng, S.; Yang, F.-Q.; Chen, C. Analysis and Visualization of Research on Resilient Cities and Communities Based on VOSviewer. Int. J. Environ. Res. Public Health 2022, 19, 7068. [Google Scholar] [CrossRef] [PubMed]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping A Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Sales, M.B.; Borges, P.T.; Ribeiro Filho, M.N.; Miranda da Silva, L.R.; Castro, A.P.; Sanders Lopes, A.A.; Chaves de Lima, R.K.; de Sousa Rios, M.A.; dos Santos, J.C. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 2022, 9, 539. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- El Bastrioui, M.; El Abdouni, A.; Ziane, A.; Haboubi, K. Antioxidant and Anticorrosive Activities of the Plant Inula Viscosa L. from the Rif Region of Morocco. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 109. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef]
- Canton, M.; Thierry, M.; Antoniotti, S. A comprehensive review on cultivation, productivity and essential oil quality of rose-scented geranium (Pelargonium graveolens L Herit. Ex. Aiton). J. Essent. Oil Plant Compos. 2013, 1, 152–175. [Google Scholar]
- Zorić, M.; Banožić, M.; Aladić, K.; Vladimir-Knežević, S.; Jokić, S. Supercritical CO2 Extracts in Cosmetic Industry: Current Status and Future Perspectives. Sustain. Chem. Pharm. 2022, 27, 100688. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Liao, X.; Zhou, Y.; Chen, S.; Chen, J.; Xiong, W. Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef]
- El Allaoui, H.; Haboubi, K.; Elabdouni, A.; Bouhout, S.; El Ahmadi, K.; Dira, I.; El Bastrioui, M. Natural Riches of Al Hoceima: Inventory of Plants with Medicinal and Aromatic Properties. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 527. [Google Scholar] [CrossRef]
- Öztekin, Y.S.S. Extraction. In Medicinal and Aromatic Crops; CRC Press: Boca Raton, FL, USA, 2014; pp. 231–272. [Google Scholar]
- Nobre, B.P.; Palavra, A.M.F.; Coelho, J.P. Supercritical Fluid Extraction of Compounds from Microalgae and Aromatic Plants. In Synthesis and Applications in Chemistry and Materials: Volume 14: Biomass and Waste Valorisation, Functional Materials, Energy Conversion and Supercritical Systems; World Scientific: London, UK, 2024; pp. 675–707. [Google Scholar] [CrossRef]
- Haboubi, C.; El Hammoudani, Y.; Jaradat, N.; Jodeh, S.; Haboubi, K.; Dimane, F. A Bibliometric Analysis of Cannabis-Related Research from 2010 To 2022. Palest. Med. Pharm. J. 2024, 9, 125–136. [Google Scholar] [CrossRef]
- Liu, L.; Mei, S. Visualizing the GVC Research: A Co-Occurrence Network Based Bibliometric Analysis. Scientometrics 2016, 109, 953–977. [Google Scholar] [CrossRef]
- Muñoz-Leiva, F.; Viedma-del-Jesús, M.I.; Sánchez-Fernández, J.; López-Herrera, A.G. An Application of Co-Word Analysis and Bibliometric Maps for Detecting the Most Highlighting Themes in the Consumer Behaviour Research from a Longitudinal Perspective. Qual Quant 2012, 46, 1077–1095. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Erbis, S.; Isaacs, J.A.; Kamarthi, S. Novel Keyword Co-Occurrence Network-Based Methods to Foster Systematic Reviews of Scientific Literature. PLoS ONE 2017, 12, e0172778. [Google Scholar]
- Melo, M.; Sanz, J.L.; Forner, L.; Rodríguez-Lozano, F.J.; Guerrero-Gironés, J. Current Status and Trends in Research on Caries Diagnosis: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5011. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Yi, S.; Lee, K.C. Analysis of Keyword Networks in MIS Research and Implications for Predicting Knowledge Evolution. Inf. Manag. 2011, 48, 371–381. [Google Scholar] [CrossRef]
- Rose, S.; Engel, D.; Cramer, N.; Cowley, W. Automatic Keyword Extraction from Individual Documents. In Text Mining; Berry, M.W., Kogan, J., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 1–20. [Google Scholar] [CrossRef]
- Patel, A.K.; Singh, M.; Singh, K.; Patel, A.K.; Varma, A.K.; Kuri, R. Visualizing Publication Trends in Webology Journal: A Bibliometric Review Based on the Scopus Database (2006–2020). Libr. Philos. Pract. (e-J.) 2021, 5995, 1–24. [Google Scholar]
- Uddin, S.; Hossain, L.; Rasmussen, K. Network Effects on Scientific Collaborations. PLoS ONE 2013, 8, e57546. [Google Scholar] [CrossRef]
- Cui, W.; Xu, R.; Li, X.; Yang, J.; Xu, P.; Zhang, Z.; Yu, Z.; Adiges, S. Research on the Supercritical CO2 Extraction Process of Hetian Rose Essential Oil. Processes 2024, 12, 1396. [Google Scholar] [CrossRef]
- Huo, Y.; Deng, W.; Sun, X.; Zhou, L.; Zhang, Q.; Hu, J. Extract Toolkit for Essential Oils: State of the Art, Trends, and Challenges. Food Chem. 2024, 461, 140854. [Google Scholar] [CrossRef]
- El Ahmadi, K.; Haboubi, K.; El Abdouni, A.; El Alaoui, H.; Dira, I.; El Bastrioui, M.; Dimane, F.; El Hammoudani, Y. Evaluation of a New Process for Extracting Essential Oil from Aromatic, Medicinal, and Pharmaceutical Plants. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 527. [Google Scholar] [CrossRef]
Description | Results | |
---|---|---|
Main Information About the Data | Timespan | 1995–2024 |
Sources | 270 | |
Documents | 689 | |
Annual Growth Rate % | 8.79% | |
Document Average Age | 11 | |
Average Citations per Doc | 27.45 | |
Document Contents | Keywords Plus (id) | 4144 |
Author’s Keywords (de) | 1657 | |
Authors | Authors | 2409 |
Authors of Single-Authored Docs | 11 | |
Authors Collaboration | Single-Authored Docs | 14 |
Co-Authors per Doc | 4.83 | |
Document Types | International Co-Authorships % | 21.34% |
Article | 606 | |
Book Chapter | 25 | |
Conference Paper | 31 | |
Retracted | 1 | |
Review | 26 | |
Language | English | 602 |
Chinese | 81 | |
Portuguese | 4 | |
Russian | 3 |
Sources Journals | Articles | Total Publication/Document | Total Citation | Quartile | H-Index | Sjr 2023 |
---|---|---|---|---|---|---|
Journal of Supercritical Fluids | 91 | 939 | 7818 | Q2 | 133 | 0.66 |
Journal of Essential Oil Research | 29 | 217 | 1117 | Q2 | 59 | 0.52 |
Journals of Industrial Crops and Products | 27 | 4494 | 43,674 | Q1 | 173 | 0.91 |
Journal of Chinese Medicinal Materials | 22 | N/A | N/A | Q4 | 25 | 00 |
Journal of Flavour and Fragrance Journal | 21 | 205 | 1059 | Q2 | 84 | 0.45 |
Journal of Molecules | 19 | 27,362 | 184,529 | Q1 | 227 | 0.74 |
Journal of Food Chemistry | 12 | 74 | 139 | Q1 | 324 | 1.75 |
Journal of Food Engineering | 10 | 1247 | 14,682 | Q1 | 217 | 1.16 |
Journal of Natural Product Research | 10 | 3067 | 13,899 | Q1 | 71 | 0.41 |
Journal of Essential Oil-Bearing Plants | 9 | 493 | 1938 | Q3 | 39 | 0.43 |
Article Title | Total Citations | Year of Publication | Journal | Authors |
---|---|---|---|---|
Supercritical fluid extraction and fractionation of essential oils and related products. | 692 | 1997 | Journal of Supercritical Fluids | Reverchon, E., et al. |
Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. | 507 | 1998 | Journal of the Science of Food and Agriculture | Dapkevicius, A., et al. |
Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. | 484 | 2007 | Food Chemistry | Guan, W., et al. |
Chemical Composition and Antimicrobial Activity of Rosmarinus officinalis L. Essential Oil Obtained via Supercritical Fluid Extraction. | 332 | 2005 | Journal of Food Protection | Santoyo, S., et al. |
Generation, Capture, and Utilization of Industrial Carbon Dioxide. | 308 | 2010 | ChemSusChem | Hunt, A.J., et al. |
Reverse osmosis applications: Prospect and challenges. | 273 | 2016 | Desalination | Wenten, I.G., et al. |
Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. | 227 | 2009 | Food Chemistry | Da Porto, C., et al. |
Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. | 225 | 2004 | Food Chemistry | Khajeh, M., et al. |
Towards more rational techniques for the isolation of valuable essential oils from plants. | 214 | 1999 | TRAC Trends in Analytical Chemistry | Luque de Castro, M.D., et al. |
Supercritical Fluid Extraction of Plant Flavors and Fragrances | 213 | 2013 | Molecules | Capuzzo, A., et al. |
Author | Documents on CO2 Supercritical Extraction Oil Extraction | Total Documents | H-Index | Citations | Country | % International Collaboration |
---|---|---|---|---|---|---|
Alessandra Piras | 29 | 164 | 34 | 4417 | Italy | 67.90% |
Silvia Porcedda | 29 | 150 | 32 | 3085 | Italy | 75.00% |
Bruno Marongiu | 26 | 154 | 36 | 3950 | Italy | 93.30% |
Ernesto Reverchon | 19 | 386 | 66 | 17,438 | Italy | 20.50% |
José M. del Valle | 11 | 87 | 30 | 2830 | Chile | 42.50% |
Rimantas Venskutonis | 11 | 245 | 50 | 10,714 | Lithuania | 36.40% |
Eduardo Cassel | 10 | 85 | 23 | 1684 | Brazil | 30.90% |
D. Falconieri | 10 | 81 | 24 | 1743 | Italy | 83.00% |
M. Angela A. Meireles | 10 | 334 | 63 | 13,138 | Brazil | 30.50% |
Ying Wang | 10 | 66 | 15 | 917 | China | 35.40% |
Keywords | Cluster Number | Links | Total Link Strength | Occurrences |
---|---|---|---|---|
carbon dioxide | 1 | 441 | 6768 | 437 |
essential oil | 4 | 433 | 5536 | 342 |
supercritical fluid extraction | 1 | 438 | 5465 | 375 |
essential oils | 1 | 400 | 4093 | 307 |
article | 3 | 398 | 4050 | 184 |
extraction | 1 | 405 | 3008 | 206 |
gas chromatography | 5 | 396 | 2686 | 131 |
nonhuman | 2 | 360 | 2420 | 94 |
distillation | 5 | 388 | 2417 | 120 |
unclassified drug | 2 | 344 | 2235 | 84 |
Country | Cluster | Links | Total Link Strength | Documents | Citation | Average Article Citations |
---|---|---|---|---|---|---|
CHINA | 3 | 5 | 7 | 155 | 1683 | 14.9 |
ITALY | 6 | 11 | 25 | 81 | 3785 | 49.10 |
BRAZIL | 2 | 9 | 14 | 72 | 1981 | 27.70 |
PORTUGAL | 2 | 10 | 27 | 40 | 1569 | 45.40 |
IRAN | 2 | 14 | 18 | 38 | 1291 | 33.60 |
SERBIA | 4 | 7 | 15 | 37 | 886 | 24.60 |
SPAIN | 2 | 8 | 17 | 30 | 1445 | 62.20 |
UNITED STATES | 3 | 13 | 17 | 29 | 791 | 19.50 |
INDIA | 5 | 8 | 9 | 27 | 421 | 18.8 |
FRANCE | 6 | 6 | 15 | 19 | 544 | 41.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ahmadi, K.; El Allaoui, H.; El Abdouni, A.; Bouhrim, M.; Eto, B.; Dira, I.; Shahat, A.A.; Herqash, R.N.; Haboubi, K.; El Bastrioui, M.; et al. A Bibliometric Analysis of the Supercritical CO2 Extraction of Essential Oils from Aromatic and Medicinal Plants: Trends and Perspectives. Horticulturae 2024, 10, 1185. https://doi.org/10.3390/horticulturae10111185
El Ahmadi K, El Allaoui H, El Abdouni A, Bouhrim M, Eto B, Dira I, Shahat AA, Herqash RN, Haboubi K, El Bastrioui M, et al. A Bibliometric Analysis of the Supercritical CO2 Extraction of Essential Oils from Aromatic and Medicinal Plants: Trends and Perspectives. Horticulturae. 2024; 10(11):1185. https://doi.org/10.3390/horticulturae10111185
Chicago/Turabian StyleEl Ahmadi, Kawthar, Hasnae El Allaoui, Aouatif El Abdouni, Mohamed Bouhrim, Bruno Eto, Imane Dira, Abdelaaty A. Shahat, Rashed N. Herqash, Khadija Haboubi, Mohamed El Bastrioui, and et al. 2024. "A Bibliometric Analysis of the Supercritical CO2 Extraction of Essential Oils from Aromatic and Medicinal Plants: Trends and Perspectives" Horticulturae 10, no. 11: 1185. https://doi.org/10.3390/horticulturae10111185
APA StyleEl Ahmadi, K., El Allaoui, H., El Abdouni, A., Bouhrim, M., Eto, B., Dira, I., Shahat, A. A., Herqash, R. N., Haboubi, K., El Bastrioui, M., & El Hammoudani, Y. (2024). A Bibliometric Analysis of the Supercritical CO2 Extraction of Essential Oils from Aromatic and Medicinal Plants: Trends and Perspectives. Horticulturae, 10(11), 1185. https://doi.org/10.3390/horticulturae10111185