Identification of Laccase Genes in Athelia bombacina and Their Interactions with the Host
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Pears
2.2. Bioinformatics Analysis
2.2.1. Acquisition and Analysis Tool of the Target-Gene-Sequence Information
2.2.2. Collinearity Analysis
2.2.3. Phylogenetic Analysis of the LAC Genes
2.2.4. The Amino Acid-Sequence Alignment of the LAC Proteins
2.2.5. Analysis of the LAC Gene Structure
2.2.6. Analysis of the Promoter-Based Cis-Element Composition
2.2.7. Signal Peptide and Subcellular Localization
2.3. Expression Analysis of LAC Genes during Fruit Infection of A. bombacina
2.4. Determination of MDA Content and Protective Enzyme Activity
2.5. Construction of AbLac4-Deficient Strain
2.6. Statistical Analysis
3. Results
3.1. Intraspecific Collinearity and Interspecies Collinearity
3.2. Phylogenetic Tree Analysis of the LAC Proteins
3.3. Amino Acid Sequence Alignment of LAC Proteins and Analysis of Their Characteristic Sequences
3.4. LAC Gene Structure and Conserved Motifs of Encoded Proteins
3.5. Composition of the Promoter Cis-Acting Element
3.6. Prediction of Signal Peptides and Subcellular Localization
3.7. The LAC Gene-Expression Patterns
3.8. Changes in MDA Content and Activities of Protective Enzymes in the Host
3.9. AbLac4 Function Verification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, X.H. The Etiology and Pathogenesis of Athelia bombacina Causing Postharvest Fruit Rot on Pear. Ph.D. Thesis, Shenyang Agriculture University, Shenyang, China, 2019. [Google Scholar]
- Hou, L.J.; Li, W.T.; Zou, J.Y.; Ma, R.; Li, Q.S.; Kebil, M. Isolation and identification of Athelia bombacina causing postharvest fruit rot of Honeycrisp apple in Xinjiang. J. Fruit Sci. 2022, 39, 1081–1088. [Google Scholar] [CrossRef]
- Jia, X.H.; Wang, W.H.; Fu, J.F.; Du, Y.M.; Wang, Y.; Zhou, R.J.; Liu, B.L. Biological characteristics and host range of Athelia bombacina causing postharvest fruit rot on pear. Acta Hortic. Sin. 2020, 47, 1253–1263. [Google Scholar] [CrossRef]
- Jia, X.H.; Zhang, X.N.; Du, Y.M.; Zhou, R.J.; Wang, W.H.; Fu, J.F. Preparation and pathogenicity evaluation of mononuclear hyphae of Athelia bombacina. J. Fruit Sci. 2021, 38, 1340–1348. [Google Scholar] [CrossRef]
- Thurston, C.F. The structure and function of fungal laccases. Microbiology 1994, 140, 19–26. [Google Scholar] [CrossRef]
- Xiao, C.L.; Zhong, C.K.; Zhang, M.T.; Yu, Z.R.; Dong, L.L.; Tan, Q.; Zhang, H.; Pu, J.J.; Liu, X.M. Effects of deletion of lac-case gene Cglac10 on the asexual reproduction and infection ability of Colletotrichum gloeosporioides. J. Fruit Sci. 2021, 38, 1066–1076. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Nakade, K.; Sato, S.; Yoshimi, A.; Sasaki, K.; Konno, N.; Abe, K. Cell wall structure of secreted lac-case-silenced strain in Lentinula edodes. Fungal Biol. 2018, 122, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, H.; Chen, M.; Ren, A.; Huang, J.; Wang, H.; Zhao, M.; Feng, Z. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiol. Res. 2015, 179, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Surendran, A.; Siddiqui, Y.; Saud, H.M.; Ali, N.S.; Manickam, S. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds. J. Appl. Microbiol. 2018, 125, 876–887. [Google Scholar] [CrossRef]
- Veloz, V.E.; Mali, T.; Mattila, H.K.; Lundell, T. Enzyme activity profiles produced on wood and straw by four fungi of different decay strategies. Microorganisms 2020, 8, 73. [Google Scholar] [CrossRef]
- Lv, Z.Y. Functional Analysis of Laccase Gene ShLAC1 in Scleromitrula shiraiana and Chitin Recognition Receptor in Mulberry. Ph.D. Thesis, Xinan University, Chongqing, China, 2019. [Google Scholar]
- Almeida, F.; Wolf, J.M.; Casadevall, A. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot. Cell 2015, 14, 1173–1185. [Google Scholar] [CrossRef]
- Lǚ, Z.; Kang, X.; Xiang, Z.; He, N. Laccase gene Sh-lac is involved in the growth and melanin biosynthesis of Scleromitrula shiraiana. Phytopathology 2017, 107, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Dullah, S.; Hazarika, D.J.; Goswami, G.; Borgohain, T.; Ghosh, A.; Barooah, M.; Bhattacharyya, A.; Boro, R.C. Melanin production and laccase mediated oxidative stress alleviation during fungal-fungal interaction among basidiomycete fungi. IMA Fungus 2021, 12, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Cao, K.; Liu, N.; Meng, C.; Cao, Z.; Dai, D.; Jia, H.; Zang, J.; Li, Z.; Hao, Z.; et al. The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biol. 2017, 121, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Guetsky, R.; Kobiler, I.; Wang, X.; Perlman, N.; Gollop, N.; Avila-Quezada, G.; Hadar, I.; Prusky, D. Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Phytopathology 2005, 95, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Courty, P.E.; Hoegger, P.J.; Kilaru, S.; Kohler, A.; Buée, M.; Garbaye, J.; Martin, F.; Kües, U. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Lac-caria bicolor. New Phytol. 2009, 182, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Pawlik, A.; Swiderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkolazka, A.; Paszczynski, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, Y.; Li, B.; Tian, S. Histone H3K4 Methyltransferase PeSet1 regulates colonization, patulin biosynthe-sis, and stress responses of Penicillium expansum. Microbiol. Spectr. 2023, 11, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.X.; Zhang, H.Y. Recent research advances on the lignin biodegradation and applications. J. Cent. South For. Univ. 2003, 23, 79–85. [Google Scholar] [CrossRef]
- Lin, Y.Q.; Zhou, S.Q. Advances of investigation on the degradation of the lignin and cellulose by white rot fungi. Environ. Technol. 2003, 4, 32–36. [Google Scholar]
- Wei, Y.; Pu, J.; Zhang, H.; Liu, Y.; Zhou, F.; Zhang, K.; Liu, X. The laccase gene (LAC1) is essential for Colleto-trichum gloeosporioides development and virulence on mango leaves and fruits. Physiol. Mol. Plant Pathol. 2017, 99, 55–64. [Google Scholar] [CrossRef]
- Buddhika, U.; Savocchia, S.; Steel, C.C. Copper induces transcription of BcLCC2 laccase gene in phytopathogenic fungus, Botrytis cinerea. Mycology 2020, 12, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.R.; Wu, J.X.; Zhang, R.Q.; Chi, Y.C.; Xu, M.L.; Xia, S.C.; Yan, H.H. Analysis of cell wall degrading enzymes secret-ed by Rhizoctonia solani and its pathogenicity. Plant Physiol. J. 2016, 52, 269–276. [Google Scholar] [CrossRef]
- Yang, C.H. Expression and Function Analysis of a laccase-1 Gene from Bemisia tabaci Cryptic Species Middle East-Asia Minor 1 (Hemiptera: Aleyrodidae) and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Ph.D. Thesis, Xinan University, Chongqing, China, 2014. [Google Scholar]
- Liu, N.; Qu, Q.; Li, L.N.; Pang, Q.; Liu, J.H.; Zhang, Y.; Cao, Z.Y.; Dong, J.G. Identification of laccase-like multicopp Eroxi-dases in Fusarium graminearum and expression profiling during maize stalk infection. Acta Phytopathol. Sin. 2019, 49, 763–772. [Google Scholar] [CrossRef]
- Wen, H.; Cai, C.C.; Li, L.P.; Liu, S.F.; Liang, X.; Wang, Q.; Wang, X.Y. The impact of signal peptide deletion on the localization and protein-protein interaction of potato StSN2 protein. Genom. Appl. Biol. 2024, 11, 2096–4188. [Google Scholar] [CrossRef]
- Soni, N.; Hegde, N.; Dhariwal, A.; Kushalappa, A.C. Role of laccase gene in wheat NILs differing at QTL-Fhb1 for resistance against Fusarium head blight. Plant Sci. 2020, 298, 110–574. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Cao, Z.; Cao, K.; Ma, S.; Gong, X.; Jia, H.; Dai, D.; Dong, J. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. Eur. J. Plant Pathol. 2019, 153, 1149–1163. [Google Scholar] [CrossRef]
- Sjaarda, C.P.; Abubaker, K.S.; Castle, A.J. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microb. Biotechnol. 2015, 8, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Sapmak, A.; Kaewmalakul, J.; Nosanchuk, J.D.; Vanittanakom, N.; Andrianopoulos, A.; Pruksaphon, K.; Youngchim, S. Talaromyces marneffei laccase modifies THP-1 macrophage responses. Virulence 2016, 7, 702–717. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Function Analysis of Two Laccase Genes in Magnaporthe. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2008. [Google Scholar]
- Fang, D.L.; Yang, W.J.; Kimatu, B.M.; An, X.X.; Hu, Q.H. Effect of nanocomposite packaging on postharvest quality and reactive oxygen species metabolism of mushrooms (Flammulina velutipes). Postharvest Biol. Technol. 2016, 119, 49–57. [Google Scholar] [CrossRef]
- Guo, Z.G.; Wang, M.X.; Cui, L.; Han, B.Y. Research progress on the underlying mechanisms of plant defense enzymes in response to pest stress. Chin. J. Appl. Ecol. 2018, 29, 4248–4258. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hung, Y.C.; Chen, M.Y.; Lin, M.S.; Lin, H.T. Enhanced storability of blueberries by acidic electrolyzed oxidizing water application may be mediated by regulating ROS metabolism. Food Chem. 2019, 270, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C.; Robatzek, S.; Navarro, L.; Oakeley, E.J.; Jones, J.D.; Felix, G.; Boller, T. Bacterial disease resistance in Arabidopsis thorugh flgaelin perception. Nature 2004, 428, 764–767. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
AbLac1 | TCCGTTTCAATCCATCAA | GTGGGTTCAACTCCTTCTG |
AbLac2 | CGGAGATATGTTGGAGGAT | AGAACGAGTCACCAGGGA |
AbLac3 | TCTCCAGGTCCTCTAATC | CCTCTATGTCGGTGTTTT |
AbLac4 | GCTGCTATTGGTCCTATT | AAGTTATCTCCTTTGTTT |
AbLac5 | TTGAGGTGGATGGTGTTA | AAGGAGCGGTAGGCGTAT |
AbLac6 | TCCATTGTCACATCTCTC | GACCTGAATACTCCTCCG |
Actin3 | TTCTCACTCCCCCACGCC | TCACGGACAATTTCACGC |
Gene | Primers |
---|---|
KLLac4-up-F | ATGATTACGAATTCGAGCTCGGTACCAGCCCGTTCAGTCTTACA |
KLLac4-up-R | TCGACTCTAGAGGATCCCCGGGTACCGCAATAGGACCAATAGCAG |
KLLac4-dn-F | TTGCCTAACTCGGCGCGCCGAAGCTTCAGCACGGAATGTATCAG |
KLLac4-dn-R | GTAAAACGACGGCCAGTGCCAAGCTTTATCCAAAGTTGCCAGAA |
KLLac4-F | ATGTTGCCCTCTGCGTCTCG |
KLLac4-R | ATGTATCAGACTTGATCTAG |
DLLac4-F | ATGATCCCAACGACCCTC |
DLLac4-R | TACCGAATAAGCCACGAC |
Actin3-F | TTCTCACTCCCCCACGCC |
Actin3-F | TCACGGACAATTTCACGC |
Identity | AbLac1 | AbLac2 | AbLac3 | AbLac4 | AbLac5 | AbLac6 |
---|---|---|---|---|---|---|
AbLac1 | 100.00 | |||||
AbLac2 | 43.32 | 100.00 | ||||
AbLac3 | 10.45 | 10.59 | 100.00 | |||
AbLac4 | 39.01 | 40.00 | 12.09 | 100.00 | ||
AbLac5 | 58.61 | 43.90 | 10.58 | 48.38 | 100.00 | |
AbLac6 | 10.84 | 10.56 | 7.78 | 10.58 | 10.08 | 100.00 |
Protein | Predicted Location |
---|---|
AbLac1 | Extracellular |
AbLac2 | Extracellular |
AbLac3 | Extracellular |
AbLac4 | Extracellular |
AbLac5 | Extracellular |
AbLac6 | Extracellular |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Yan, W.; Zhang, X.; Wang, W.; Jia, X. Identification of Laccase Genes in Athelia bombacina and Their Interactions with the Host. Horticulturae 2024, 10, 842. https://doi.org/10.3390/horticulturae10080842
Sun X, Yan W, Zhang X, Wang W, Jia X. Identification of Laccase Genes in Athelia bombacina and Their Interactions with the Host. Horticulturae. 2024; 10(8):842. https://doi.org/10.3390/horticulturae10080842
Chicago/Turabian StyleSun, Xiaonan, Weiwei Yan, Xinnan Zhang, Wenhui Wang, and Xiaohui Jia. 2024. "Identification of Laccase Genes in Athelia bombacina and Their Interactions with the Host" Horticulturae 10, no. 8: 842. https://doi.org/10.3390/horticulturae10080842
APA StyleSun, X., Yan, W., Zhang, X., Wang, W., & Jia, X. (2024). Identification of Laccase Genes in Athelia bombacina and Their Interactions with the Host. Horticulturae, 10(8), 842. https://doi.org/10.3390/horticulturae10080842