Adaptive Mechanisms and Regulatory Strategies of Plants Under Saline Stress and Prospects for the Development and Utilization of Chinese Herbal Medicines in Saline Land
Abstract
1. Introduction
2. Adaptive Mechanisms of Plants to Saline Stress
2.1. The Construction of Plant Phenotypic Characteristics
2.2. Osmotic Regulation
2.3. Ion Homeostasis
2.4. Hormone Regulation
2.4.1. ABA
2.4.2. IAA
2.4.3. GA
2.4.4. BRs
2.4.5. Other Hormones
2.4.6. Hormone Synergistic Regulation
3. Strategies for Regulating Saline Land
3.1. Physical Improvement
3.2. Chemical Modification
3.3. Biological Improvement
3.4. Comprehensive Improvement
4. Prospects for the Development and Utilization of Chinese Herbal Medicines in Saline Land
4.1. Salt-Tolerant Medicinal Plants Resources
4.2. The Effect of Saline Stress on the Quality of Chinese Herbal Medicines
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, K.W.; Kuai, J.; Jing, F.L.; Liu, X.; Wang, J.L.; Lin, J.; Zhang, Y.J.; You, Y.; Zhu, W.L. Effects of understory intercropping with salt-tolerant legumes on soil organic carbon pool in coastal saline-alkali land. J. Environ. Manag. 2024, 370, 122677. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guo, L.; Wang, S.B.; Wang, X.Y.; Ren, M.; Zhao, P.J.; Huang, Z.Y.; Jia, H.J.; Wang, J.H.; Lin, A.J. Effective strategies for reclamation of saline-alkali soil and response mechanisms of the soil-plant system. Sci. Total Environ. 2023, 905, 167179. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hao, X.H.; Xu, Y.M.; Yang, J.J.; Su, D.R. Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon. Life 2022, 12, 1870. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.A.; Liang, B.J.; Zhao, H.L.; Zhao, Y. Impacts of various amendments on the microbial communities and soil organic carbon of coastal saline-alkali soil in the Yellow River Delta. Front. Microbiol. 2023, 14, 1239855. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ. Exp. Bot. 2020, 178, 104124. [Google Scholar] [CrossRef]
- Liu, Z.H.; Sun, Z.Q.; Liu, S.L.; Ma, C.J.; Liu, L.N. Protection and Utilization of Saline-Alkali Land Resources in the Yellow River Basin. Shandong Agric. Sci. 2024, 56, 1–8. [Google Scholar] [CrossRef]
- Lu, J.H. Salt Tolerant Mechanisms of Three Glycyrrhiza Species. Ph.D Thesis, Shihezi University, Shihezi, China, 2015. [Google Scholar]
- Zhu, Y.; Gu, W.; Tian, R.; Li, C.; Ji, Y.Y.; Li, T.; Wei, C.B.; Chen, Z.Y. Morphological, physiological, and secondary metabolic responses of Taraxacum officinale to salt stress. Plant Physiol. Biochem. 2022, 189, 71–82. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mostofa, M.G.; Rahman, M.A.; Miah, M.G.; Saha, S.R.; Karim, M.A.; Keya, S.S.; Akter, M.; Islam, M.; Tran, L.S.P. Insight into salt tolerance mechanisms of the halophyte Achras sapota: An important fruit tree for agriculture in coastal areas. Protoplasma 2019, 256, 181–191. [Google Scholar] [CrossRef]
- Guo, F.D.; Guan, R.W.; Zhao, Q.C.; Sun, X.R.; Wang, X.J.; Lin, H.B. Research Progress on Salt Stress Response Mechanism of Medicinal Plants. Shandong Agric. Sci. 2022, 54, 148–157. [Google Scholar] [CrossRef]
- Basu, S.; Kumari, S.; Kumar, A.; Shahid, R.; Kumar, S.; Kumar, G. Nitro-oxidative stress induces the formation of roots’ cortical aerenchyma in rice under osmotic stress. Physiol. Plant. 2021, 172, 963–975. [Google Scholar] [CrossRef]
- Wang, D.H.; Song, F.S.; Zhou, Y.T.; Zhong, T.T.; Zhang, Y.Y.; Deng, Q.; Wang, X.Q.; Wang, S.Q.; Wang, D.C.; Zhu, X.Q.; et al. Effects of alkaline salt stress on growth, physiological properties and medicinal components of clonal Glechoma longituba (Nakai) Kupr. BMC Plant Biol. 2024, 24, 965. [Google Scholar] [CrossRef]
- Bai, Q.X.; Niu, Z.M.; Chen, Q.Y.; Gao, C.Y.; Zhu, M.J.; Bai, J.X.; Liu, M.J.; He, L.; Liu, J.Q.; Jiang, Y.Z.; et al. The C2H2-type zinc finger transcription factor OSIC1 positively regulates stomatal closure under osmotic stress in poplar. Plant Biotechnol. J. 2023, 21, 943–960. [Google Scholar] [CrossRef]
- Niu, L.H. Preliminary Study on Biological Characteristics of Salvia miltiorrhiza. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2019. [Google Scholar]
- Calone, R.; Mircea, D.M.; González-Orenga, S.; Boscaiu, M.; Zuzunaga-Rosas, J.; Barbanti, L.; Vicente, O. Effect of Recurrent Salt and Drought Stress Treatments on the Endangered Halophyte Limonium angustebracteatum Erben. Plants 2023, 12, 191. [Google Scholar] [CrossRef]
- Bian, W.J.; Bao, G.Z.; Qian, H.M.; Song, Z.W.; Qi, Z.M.; Zhang, M.Y.; Chen, W.W.; Dong, W.Y. Physiological Response Characteristics in Medicago sativa Under Freeze-Thaw and Deicing Salt Stress. Water Air Soil Poll. 2018, 229, 196. [Google Scholar] [CrossRef]
- Feng, Y.H.; Wang, G.; Ji, J.; Guan, C.F.; Jin, C. Cloning and Expression Analysis of LmP5CS Gene from Lycium chinense Miller. China Biotechnol. 2013, 33, 33–40. [Google Scholar] [CrossRef]
- Fang, H.; Gao, X.; Wu, Y.H.; Zhang, K.; Wu, Y.; Li, J.Y.; Qian, D.M.; Li, R.C.; Gu, H.J.; Mehari, T.G.; et al. Unveiling the Role of GhP5CS1 in Cotton Salt Stress Tolerance: A Comprehensive Genomic and Functional Analysis of P5CS Genes. Plants 2025, 14, 231. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.F.; Yu, D.; Yang, J.H.; Zhao, W.D.; Zhang, L.S.; Bai, Y.; Guo, C.H. Bioinformatics and expression analysis of proline metabolism-related gene families in alfalfa under saline-alkali stress. Plant Physiol. Biochem. 2023, 205, 108182. [Google Scholar] [CrossRef]
- Ni, L.J.; Xu, Y.; Wang, Z.Q.; Yu, C.G.; Hua, J.F.; Yin, Y.L.; Li, H.G.; Gu, C.S. Integrated metabolomics and transcriptomics reveal that HhERF9 positively regulates salt tolerance in Hibiscus hamabo Siebold & Zuccarini. Plant Physiol. Biochem. 2024, 213, 108843. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.J.; Li, J.R.; Qi, S.L.; Lin, Q.F.; Jin, J.B.; Hua, X.J. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, E8335–E8343. [Google Scholar] [CrossRef]
- Roșca, M.; Mihalache, G.; Stoleru, V. Tomato responses to salinity stress: From morphological traits to genetic changes. Front. Plant Sci. 2023, 14, 1118383. [Google Scholar] [CrossRef]
- Singh, P.; Choudhary, K.K.; Chaudhary, N.; Gupta, S.; Sahu, M.; Tejaswini, B.; Sarkar, S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front. Plant Sci. 2022, 13, 1006617. [Google Scholar] [CrossRef]
- Takahashi, F.; Suzuki, T.; Osakabe, Y.; Betsuyaku, S.; Kondo, Y.; Dohmae, N.; Fukuda, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 2018, 556, 235–238. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Janah, I.; Elhasnaoui, A.; Makbal, R.; Ahmali, A.; Tastift, M.A.; Lamnai, K.; Aissam, S. Effect of salicylic acid treatment on agro-morphological performances, mineral nutrition, antioxidant capacity, and steviol glycosides content of stevia subjected to salt stress. Russ. J. Plant Physiol. 2024, 71, 68. [Google Scholar] [CrossRef]
- Cai, S.W.; Cao, X.; Yao, S.F.; Yan, F.F.; Tao, J. Advances in Salt Tolerance and Molecular Mechanism of Nitraria sibirica Pall. North. Hortic. 2022, 3, 125–131. [Google Scholar]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Liang, H.; Shi, Q.L.; Li, X.; Gao, P.P.; Feng, D.L.; Zhang, X.M.; Lu, Y.; Yan, J.S.; Shen, S.X.; Zhao, J.J.; et al. Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress. Hortic. Plant J. 2024, 10, 461–472. [Google Scholar] [CrossRef]
- Ullah, A.; Tariq, A.; Sardans, J.; Peñuelas, J.; Zeng, F.J.; Graciano, C.; Asghar, M.A.; Raza, A.; Xiong, Y.C.; Chai, X.T.; et al. Alhagi sparsifolia acclimatizes to saline stress by regulating its osmotic, antioxidant, and nitrogen assimilation potential. BMC Plant Biol. 2022, 22, 453. [Google Scholar] [CrossRef]
- Fan, G.Q.; Wang, L.M.; Deng, M.J.; Zhao, Z.L.; Dong, Y.P.; Zhang, X.S.; Li, Y.S. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress. Front. Plant Sci. 2016, 7, 384. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, D.M.; Yang, K.Z.; Guo, X.Y.; Bian, C.; Nishimura, T.; Le, J.; Morita, M.T.; Bergmann, D.C.; Dong, J. Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat. Commun. 2022, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.H.; Schroeder, J.I. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mostofa, M.G.; Keya, S.S.; Siddiqui, M.N.; Ansary, M.M.U.; Das, A.K.; Rahman, M.A.; Tran, L.S.P. Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 10733. [Google Scholar] [CrossRef]
- Guo, M.; Wang, X.S.; Guo, H.D.; Bai, S.Y.; Khan, A.; Wang, X.M.; Gao, Y.M.; Li, J.S. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front. Plant Sci. 2022, 13, 949541. [Google Scholar] [CrossRef]
- Van, Z.E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Yang, L.; Bian, X.G.; Yang, R.P.; Zhou, C.L.; Tang, B.P. Assessment of organic amendments for improving coastal saline soil. Land. Degrad. Dev. 2018, 29, 3204–3211. [Google Scholar] [CrossRef]
- Baghour, M.; Gálvez, F.J.; Sánchez, M.E.; Aranda, M.N.; Venema, K.; Rodríguez-Rosales, M.P. Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiol. Biochem. 2019, 135, 77–86. [Google Scholar] [CrossRef]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.J.; Wang, C.; Li, K.L.; Luan, S. The CBL-CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries. Trends Plant Sci. 2020, 25, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, K.Y.; Liao, M.J.; Li, X.F.; Zhang, M.Q. Characterization of CBL-CIPK signaling networks and their response to abiotic stress in sugarcane. Int. J. Biol. Macromol. 2024, 278, 134836. [Google Scholar] [CrossRef]
- Gao, G.; Yan, L.; Tong, K.Q.; Yu, H.L.; Lu, M.; Wang, L.; Niu, Y.S. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. Sci. Total Environ. 2024, 912, 169618. [Google Scholar] [CrossRef]
- Yu, Z.P.; Duan, X.B.; Luo, L.; Dai, S.J.; Ding, Z.J.; Xia, G.M. How Plant Hormones Mediate Salt Stress Responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.L.; Xie, J.J.; Chen, C.; Cao, H.S.; Sun, J.Y.; Kong, Q.S.; Shabala, S.; Shabala, L.; Huang, Y.; Bie, Z.L. An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. J. Exp. Bot. 2018, 69, 4945–4960. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Q.H.; Liu, Z.B.; Yang, H.; Wang, J.M.; Li, X.F.; Yang, Y. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. J. Exp. Bot. 2016, 58, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Umezawa, T.; Sugiyama, N.; Mizoguchi, M.; Hayashi, S.; Myouga, F.; Yamaguchi-Shinozaki, K.; Ishihama, Y.; Hirayama, T.; Shinozaki, K. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 17588–17593. [Google Scholar] [CrossRef] [PubMed]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef]
- Cai, S.G.; Chen, G.; Wang, Y.Y.; Huang, Y.Q.; Marchant, D.B.; Wang, Y.Z.; Yang, Q.; Dai, F.; Hills, A.; Franks, P.J.; et al. Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiol. 2017, 174, 732–747. [Google Scholar] [CrossRef]
- Thalmann, M.; Pazmino, D.; Seung, D.; Horrer, D.; Nigro, A.; Meier, T.; Kölling, K.; Pfeifhofer, H.W.; Zeeman, S.C.; Santelia, D. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants. Plant Cell 2016, 28, 1860–1878. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B.R. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Edel, K.H.; Kudla, J. Integration of calcium and ABA signaling. Curr. Opin. Plant Biol. 2016, 33, 83–91. [Google Scholar] [CrossRef]
- Lv, B.S.; Yan, Z.W.; Tian, H.Y.; Zhang, X.S.; Ding, Z.J. Local Auxin Biosynthesis Mediates Plant Growth and Development. Front. Plant Sci. 2019, 24, 6–9. [Google Scholar] [CrossRef]
- Jiang, K.N.; Moe-Lange, J.; Hennet, L.; Feldman, L.J. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. Front. Plant Sci. 2016, 7, 81. [Google Scholar] [CrossRef]
- Gao, Z.H.; Yang, Q.L.; Shen, H.; Guo, P.Y.; Xie, Q.L.; Chen, G.P.; Hu, Z.L. The knockout of SlMTC impacts tomato seed size and reduces resistance to salt stress in tomato. Plant Sci. 2024, 349, 112228. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Zhu, G.L.; Zhou, G.S.; Song, X.D.; Ibrahim, M.E.H.; Salih, E.G.I.; Hussain, S.; Younas, M.U. Pivotal Role of Phytohormones and Their Responsive Genes in Plant Growth and Their Signaling and Transduction Pathway under mSalt Stress in Cotton. Int. J. Mol. Sci. 2022, 23, 7339. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Ullah, H.; Chowdhury, M.R.; Bony, Z.F.; Attia, A.; Himanshu, S.K.; Cha-um, S.; Datta, A. Chapter Five—Natural adaptations, tolerance mechanisms, and management concepts of crop plants against salt stress: A critical review. Adv. Agron. 2024, 187, 213–309. [Google Scholar] [CrossRef]
- Kou, J.T.; Shi, S.L. Effect of 2,4-epibrassinolide on seed germination and seedling growth of Medicago sativa under salt stress. Grassl. Turf 2015, 35, 19. [Google Scholar] [CrossRef]
- Wang, J.P.; Zhang, J.C.; Yue, J.M.; You, Y.H.; Zhang, L. BRs, photosynthetic pigments, and chlorophyll fluorescence parameters in Cinnamomum camphora seedlings with NaCl stress. J. Zhejiang A&F Univ. 2017, 34, 20–27. [Google Scholar]
- Wei, L.J.; Deng, X.G.; Zhu, T.; Zheng, T.; Li, P.X.; Wu, J.Q.; Zhang, D.W.; Lin, H.H. Ethylene is Involved in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings Response to Abiotic Stress. Front. Plant Sci. 2015, 6, 982. [Google Scholar] [CrossRef]
- Yan, J.W.; Guan, L.; Sun, Y.; Zhu, Y.; Liu, L.; Lu, R.; Jiang, M.Y.; Tan, M.P.; Zhang, A.Y. Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant Cell Physiol. 2015, 56, 883–896. [Google Scholar] [CrossRef]
- Zhu, T.; Deng, X.G.; Tan, W.R.; Zhou, X.; Luo, S.S.; Han, X.Y.; Zhang, D.W.; Lin, H.H. Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings’ response to salt stress. Physiol. Plant. 2016, 156, 150–163. [Google Scholar] [CrossRef]
- Ma, N.; Hu, C.; Wan, L.; Hu, Q.; Xiong, J.L.; Zhang, C.L. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L.) by Regulating Gene Expression. Front. Plant Sci. 2017, 8, 1671. [Google Scholar] [CrossRef] [PubMed]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf. 2018, 147, 1010–1016. [Google Scholar] [CrossRef]
- Li, X.; Li, C.J.; Shi, L.; Lv, G.F.; Liu, Y.X.; Li, X.; Jia, X.J.; Liu, J.Y.; Chen, Y.Q.; Zhu, L.; et al. Jasmonate signaling pathway confers salt tolerance through a NUCLEAR FACTOR-Y trimeric transcription factor complex in Arabidopsis. Cell Rep. 2024, 43, 113825. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yu, H.Q.; Qu, J.T.; Cao, Y.; Ding, L.; Feng, W.Q.; Bin Khalid, M.H.; Li, W.C.; Fu, F.L. Maize ZmBES1/BZR1-5 Decreases ABA Sensitivity and Confers Tolerance to Osmotic Stress in Transgenic Arabidopsis. Int. J. Mol. Sci. 2020, 21, 996. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Wang, J.; Song, L.; Gong, X.; Xu, J.F.; Li, M.H. Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, A.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- Palma, F.; López-Gómez, M.; Tejera, N.A.; Lluch, C. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci. 2013, 208, 75–82. [Google Scholar] [CrossRef]
- Li, A.X.; Sun, X.; Liu, L.J. Action of salicylic acid on plant growth. Front. Plant Sci. 2022, 13, 878076. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.Y.; Yuan, F.; Chen, M. Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signal Behav. 2019, 14, 1644595. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Debnath, P.; Sane, A.P.; Sane, V.A. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. Plant Physiol. Biochem. 2023, 195, 330–340. [Google Scholar] [CrossRef]
- Xu, L. Different Exogenous Organic Matter Can Improve the Soil Fertility of Coastal Saline-Alkali Land Impact Study. Master’s Thesis, Yangzhou University, Yangzhou, China, 2024. [Google Scholar]
- Cong, S. Effects of Different Amelioration Techniques on Soil Saline-Alkali Characteristics in Songnen Plain. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2023. [Google Scholar] [CrossRef]
- Yin, Z.R.; Ke, Y.; Gui, L.G.; Zhang, Y.H.; Wang, P. Effects of Sand-Covered on Soil Water and Salt Movement of Saline-Alkali Land and Lycium barbarum Growth and Yield. Acta Agric. Boreali-Occident. Sin. 2021, 30, 1382–1393. [Google Scholar]
- Wei, B.H.; Shen, Z.Y.; Zhou, J.; Zhou, L.Z.; Hu, P.; Zhang, X. Study on Effect and Mechanism of Improving Saline-alkali Soil by Fenlong Tillage. Soils 2020, 52, 699–703. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, L.; Liu, B.; Fu, T.G.; Liu, J.T. Study on shallow mild saline groundwater use safety in winter wheat irrigation based on the subsurface drainage system in the coastal area of Hebei Province in China. Chin. J. Eco-Agric. 2023, 31, 1102–1109. [Google Scholar] [CrossRef]
- Li, J.J.; Qu, Z.Y.; Yang, W.; Wang, L.P.; Zhang, R.X. Analysis of Dynamic Migration Characteristics of Soil Water, Heat, and Salt in Saline-alkali Soils Under Saline Water Freezing Irrigation. J. Soil Water Conserv. 2023, 37, 377–384. [Google Scholar] [CrossRef]
- Li, M.Z.; Tian, R.R.; Li, R.; Zhang, J.; Wang, S.J.; Liu, J.; Xu, L.Z.; Li, Y.; Zhao, Y.G. Advances in invention patents related to flue gas desulfurization gypsum amendments for ameliorating saline-alkali soils. J. Tsinghua Univ. Sci. Technol. 2024, 64, 1759–1770. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Wang, H.; Wu, H.X.; Xiao, Y.N.; Yan, Y.Q. Effects of exogenous CaCl2 on reactive oxygen species metabolism in Nitraria sibirica under NaCl stress. Plant Physiol. J. 2021, 57, 1105–1112. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.Q.; Yang, X.K. Effects of Different Soil Amendments on the Soil Improving and the Forage Grass Yield Increasing on the Severe Saline-alkali Soil in the Western Jilin Province. For. Eng. 2020, 36, 25–34. [Google Scholar] [CrossRef]
- Elmeknassi, M.; Elghali, A.; de Carvalho, H.W.P.; Laamrani, A.; Benzaazoua, M. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Sci. Total Environ. 2024, 921, 171087. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.Z.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, Z.J.; Fan, M.Y.; Liu, M.H.; Lv, Y.D.; Liu, L.H. Effects of continuous straw returning on nutrients of soda saline-alkaline paddy soil and fungal community. Agric. Res. Arid. Areas 2021, 39, 15–23. [Google Scholar]
- Xiao, Y.Y.; Pu, Z.T.; Zhang, R.F.; Wang, C.; Hou, Z.J.; Wang, X.X. Research progress on the improvement effects of different organic materials on saline soils. Soil Fert. Sci. China 2024, 3, 229–239. [Google Scholar]
- Kabari, S.F.M.; Asadi-Gharneh, H.A.; Tavallali, V.; Rowshan, V. Differential response of biochar in mitigating salinity stress in periwinkle (Catharanthus roseus L.) as an ornamental-medicinal plant species. Int. J. Phytorem. 2024, 26, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Ju, T.H.; Liang, K.Y.; Li, Y.F. Biochar-influenced solubilization and mineralization mechanisms of phosphorus in saline-sodic soils. Soil Biol. Biochem. 2025, 209, 109890. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.H.; Tang, Y.M.; Cui, X.D.; Hou, D.B.; Jia, H.J.; Wang, S.B.; Guo, L.; Wang, J.H.; Lin, A.J. Mitigating soil salinity stress with titanium gypsum and biochar composite materials: Improvement effects and mechanism. Chemosphere 2023, 321, 138127. [Google Scholar] [CrossRef]
- Qian, G.T.; Wang, M.Y.; Zhou, J.W.; Wang, X.T.; Zhang, Y.M.; Liu, Y.Q.; Zhu, P.; Han, L.; Li, X.Y.; Liu, C.L.; et al. Analysis of widely targeted metabolites of quinoa sprouts (Chenopodium quinoa Willd) under saline-alkali stress provides new insights into nutritional value. Food Chem. 2024, 448, 138575. [Google Scholar] [CrossRef]
- Zhang, X.K.; Zhang, G.S.; Yan, Q.; Ahmad, B.; Pei, J.; Huang, L.F. Quality variation and salt-alkali-tolerance mechanism of Cynomorium songaricum: Interacting from microbiome-transcriptome-metabolome. Sci. Total Environ. 2024, 919, 170801. [Google Scholar] [CrossRef]
- Lu, K.H.; Jin, J.R.; Xiao, M. Prospect of microbial fertilizer in saline soil. Microbiol. China 2019, 46, 1695–1705. [Google Scholar] [CrossRef]
- Allah, E.F.A.; Hashem, A.; Alqarawi, A.A.; Bahkali, A.H.; Alwhibi, M.S. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J. Biol. Sci. 2015, 22, 274–283. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, L.X.; Ren, Q.G.; Meng, L.; Zhang, Y.S.; Zhang, X. Effects of compound microbial agent on soil improvement and safflower yield in mild saline-alkali land. Eco-Ind. Sci. Phosphorus Fluor. Eng. 2023, 38, 48–52. [Google Scholar]
- Huang, P.J.; Fang, Z.; Yu, H.L.; Zhang, F.J.; Huang, J.Y. Effects of combinations of modifiers on physical and chemical properties of alkaline soil and growth of Lycium chinense in Hetao irrigation area. Agric. Res. Arid. Areas 2023, 41, 121–129. [Google Scholar]
- Li, C.F.; Xu, J.L.; Ming, Y.F.; Gao, S.; Lu, X.; Yang, Y.X.; Li, Y.Q.; Jiao, S.Y. Effects of Mushroom Residue Organic Fertilizer Combined with Desulfurized Gypsum on Active Organic Carbon and Its Sensitivity in Saline-Alkali Soil of the Yellow River Delta. J. Soil Water Conserv. 2024, 38, 387–397. [Google Scholar] [CrossRef]
- Tian, R.R.; Wang, S.J.; Liu, J.; Xu, L.Z.; Sun, Z.T.; Li, Y.; Li, E.Z.; Wen, X.L.; Yang, J.; Zhao, Y.G. Applying biochar and flue gas desulfurization gypsum in the root zone to improve saline-alkali soil quality and sunflower yield. Trans. Chin. Soc. Agric. Eng. 2024, 40, 148–157. [Google Scholar]
- Xing, J.; Li, X.Y.; Li, Z.Q.; Wang, X.T.; Hou, N.; Li, D.P. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. Sci. Total Environ. 2024, 924, 171641. [Google Scholar] [CrossRef]
- Tang, X.Q. The Physiological Mechanism of Na+ Transport and Compartmentalization in Nitraria sibirica Pall. Seedlings Under Salt Stress. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2019. [Google Scholar] [CrossRef]
- Wang, X. Effects of Exogenous Gamma-Aminobutyric Acid on Physiological Characteristics of Nirtaria sibirica Under Salt Stress. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2019. [Google Scholar]
- Yao, X.J.; Sun, Q.Y.; Zhang, Z.; Lyu, Y.Z.; Yan, S.Q.; Chen, S.Y.; Shi, Y.X.; Duan, X.T.; Meng, S.H.; Yan, H.F. Comprehensive Evaluation on Salt Tolerance of 61 Alfalfa Cultivars during Seed Germination. Acta Agrestia Sin. 2025, 33, 1181–1191. [Google Scholar]
- Fang, S.B.; Tu, W.R.; Mu, L.; Sun, Z.L.; Hu, Q.Y.; Yang, Y. Saline alkali water desalination project in Southern Xinjiang of China: A review of desalination planning, desalination schemes and economic analysis. Renew. Sustain. Energ. Rev. 2019, 113, 109268. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Jiang, T.X.; Yang, T.; Zhang, F.H. Soil Water and Salt Changes and Salt Balance in Different Crops of Lycium Chinense Intercropping in Saline-alkali Soil. Bull. Soil Water Conserv. 2019, 39, 46–50. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, X.P.; Xu, Y.M.; Yan, X.D.; Ge, H.G.; Guo, N.; Zhang, Y.; Zhang, Q. Growth of Five Medicinal Plants in NaCl-treated Soil and Its Effect on Soil Available Nutrients. Mol. Plant Breed. 2019, 17, 6511–6518. [Google Scholar] [CrossRef]
- Guo, L.P.; Zhou, L.Y.; Kang, C.Z.; Wang, H.Y.; Zhang, W.J.; Wang, S.; Wang, R.S.; Wang, X.; Han, B.X.; Zhou, T.; et al. Strategies for medicinal plants adapting environmental stress and “simulative habitat cultivation” of Dao-di herbs. China J. Chin. Mater. Med. 2020, 45, 1969–1974. [Google Scholar] [CrossRef]
- Yu, W.C.; Yu, Y.; Wang, C.; Zhang, Z.J.; Xue, Z.H. Mechanism by which salt stress induces physiological responses and regulates tanshinone synthesis. Plant Physiol. Biochem. 2021, 164, 10–20. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.P.; Wang, P.P.; Qin, C.; He, L.Q.; Kong, L.Y.; Ren, W.C.; Liu, X.B.; Ma, W. Genome-wide identification of the NAC transcription factors family and regulation of metabolites under salt stress in Isatis indigotica. Int. J. Biol. Macromol. 2023, 240, 124436. [Google Scholar] [CrossRef]
- Wang, J.Y.; Liu, Z.P.; Liu, L.; Liu, C. Effects of NaCl on the growth and alkaloid content of Catharanthus roseus seedlings. Chin. J. Appl. Ecol. 2008, 10, 2143–2148. [Google Scholar] [CrossRef]
- Hussein, E.A.; Aqlan, E.M. Effect of Mannitol and Sodium Chloride on Some Total Secondary Metabolites of Fenugreek Calli Cultured In vitro. Plant Tissue Cult. Biotechnol. 2011, 21, 35–43. [Google Scholar] [CrossRef]
- Chao, D.X.; Ye, B.P. Influence of Environmental Abiotic Factors on Plant Secondary Metabolite Biosynthesis. Chin. J. Pharm. Biotechnol. 2013, 20, 365–368. [Google Scholar] [CrossRef]
- Li, J.N.; You, J.; Jiang, Z.; Zhao, W.; Chen, X. Effects of Saline-alkali Stress on Three Medicinal Component of the Medicinal Plant Rumex japonica. Spec. Wild Econ. Anim. Plant Res. 2022, 44, 8–14. [Google Scholar] [CrossRef]
- Li, A.H. Effects of Different Alkaline Salt Treatments on the Physiological and Biochemical Characteristics of Saposhnikovia divaricata (Turcz.) Schischk. and the Quality of Its Medicinal Materials. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2023. [Google Scholar]
- Wang, M.Y.; Qi, J.X.; Li, W.; Zhang, Z.J.; Zhang, Y.M.; Li, J.X.; Qian, G.T.; Pang, Q.Y.; Li, L.X. Integration of transcriptome and metabolome provides insights into flavonoid biosynthesis in quinoa (Chenopodium quinoa willd.) responsive to saline-alkali stress. Plant Physiol. Biochem. 2025, 227, 109988. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Li, T.Y.; Zhang, S.S.; Li, Y.D.; Zhang, L.P.; Song, W.Q.; Chen, C.B. Overexpression of AtMYB2 promotes tolerance to salt stress and accumulations of tanshinones and phenolic acid in Salvia miltiorrhiza. Int. J. Mol. Sci. 2024, 25, 4111. [Google Scholar] [CrossRef]
- Chen, S.H.; Wang, M.; Xu, Y.B.; Leng, Z.W.; Liang, Y.H. Growth Performance of Lycium barbarum Planted in Saline-sodic Land Region of Western Jilin Province. J. Jilin For. Sci. Technol. 2019, 48, 7–8. [Google Scholar] [CrossRef]
- Guo, Y.H.; Tian, C.H.; Huang, X.; Ma, S.H.; Zhang, Z.H. Analysis of the Improvement Effect of Cultivated Glycyrrhiza on Desert Saline-Alkali Soil and Its Medicinal Yield and Quality. Agric. Sci. Technol. Inf. 2019, 5, 5–10. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Zhao, P.; Wang, Y.L.; Gao, X.F.; Zhao, P.W.; Ma, B.; Fan, B.B. Combined application of organic fertilizer and alginic acid improves the stress resistance and quality of Astragalus mongolicus in saline-alkali land. J. Plant Nutr. Fert. 2024, 30, 757–767. [Google Scholar]

| Regulatory Strategies | Specific Measures | Effects on Soil Properties | Evaluations |
|---|---|---|---|
| Physical Improvement | Sand covering; Land leveling and deep plowing; Irrigation and drainage | Reduce soil capillary action; Break up soil compaction, improve soil structure, enhance drainage, and facilitate the leaching and removal of salts; Reduce water evaporation and remove excess moisture and salt from the soil | Advantages: The foundation for saline land reclamation; Rapidly alleviate salt stress; Effectively improve soil physical structure; Combined with other improvement methods yields better results; Disadvantages: Require significant labor and material resources; Short-term effect, lack long-term soil fertility improvement |
| Chemical Modification | Inorganic amendments (e.g., CaCl2, gypsum/desulfurization gypsum); Organic amendments (e.g., crop straw, livestock manure, biochar) | Ca2+ replaces soil Na+ via ion exchange, reduces soil alkalinity and salt stress; Lower soil pH, Ece and SAR, improve soil structure and fertility; Maintain ROS homeostasis and enhances antioxidant enzyme activity in plants; Increase total nitrogen and organic carbon; Provide microbial refuge, promote nutrient cycling and microbial richness | Advantages: Rapidly adjust soil chemical properties; Enhance long-term soil fertility and microbial activity; Cost-effective for large-scale use; Disadvantages: Have limited nutrient content, requiring additional fertilization; Potential environmental risks if chemical agents are overused. |
| Biological Improvement | Salt-tolerant plant cultivation (e.g., Chenopodium quinoa, Tamarix, Lycium barbarum); Microbial fertilizers (e.g., AMF, composite microbial inoculants) | Absorb and accumulate soil salt via roots, reducing salt content; Improve land utilization rate and economic benefits; Increase crop chlorophyll content, auxin level, nodule number/weight, and nitrogenase activity; Composite inoculants increase soil available nutrients; Reduce water-soluble salt and pH, and promote crop growth; Form plant-microbe networks to enhance stress resistance | Advantages: Low ecological impact; Low cost and suitable for large-scale application; Improve soil ecological function sustainably; Disadvantages: Slower effect compared to physical/chemical methods; Salt-tolerant plants have limited salt-removal capacity; Microbial activity is sensitive to environmental conditions |
| Comprehensive Improvement | Gypsum + organic amendments (e.g., mushroom residue fertilizer, biochar); Titanium gypsum + biochar; Biochar + salt-tolerant bacteria + alkaline soil conditioner + earthworm castings | Reduce soil salinity and alkalinity; Increase organic matter and nutrients; Enhance agronomic traits and yield; Improve carbon sequestration efficiency; Lower soil pH, ECe, SAR, and soluble Na+; Elevate salt-resistant bacteria and C/N cycling microbial abundance; Improve carbon fixation potential and nitrogen cycling efficiency; Reduce HCO3− concentration | Advantages: Synergistic effect of multiple measures, addressing both soil physical/chemical properties and ecological function; Long-term stability in salinity reduction and fertility improvement; Balance yield increase and environmental sustainability; Disadvantages: Complex preparation and application processes; Require precise matching of amendment ratios; Higher initial research and development costs. |
| Chinese Medicinal Herb Name | Stress Conditions | Enhanced Secondary Metabolites | References |
|---|---|---|---|
| Salvia miltiorrhiza | 300 mmol/L NaCl | Tanshinone I; Tanshinone II; Cryptotanshinone | [108] |
| Isatis indigotica | 200 mmol/L NaCl | Eugenol; Dihydrocinnamaldehyde; Dihydrocinnamaldehyde I | [109] |
| Catharanthus roseus | 50 mmol/L NaCl | Vinblastine; Vinblastine base; Vincristine | [110] |
| Taraxacum officinale | NaCl ≤ 1 g/kg | Caffeoylquinic acid | [8] |
| Trigonella foenum-graecum | 0.1% w/v NaCl | Phenolics; Flavonoids; Tannins; | [111] |
| Artemisia annua | 4–6 g/L NaCl | Artemisinin | [112] |
| Rumex japonicas | 200 mmol/L NaCl | Emodin | [113] |
| Glycyrrhiza | 0.2–0.6% salt (NaCl:Na2SO4 = 1:2 | Flavonoids; Glycyrrhizic acid | [7] |
| Saposhnikovia divaricata | 15 g/kg alkaline salt (NaHCO3:Na2CO3 = 9:1) | Cimicifugin glycoside; Cimicifugin; Paeoniae root glycoside | [114] |
| Chenopodium quinoa | 100 mmol/L alkaline salt (NaHCO3:Na2CO3 = 9:1) | Flavonoids; | [115] |
| Thymus vulgaris | 90 mmol/L NaCl | Phenolics; | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, H.; Shao, C.; Cui, Y.; Cao, W.; Wang, Y.; Zhu, J.; Geng, X.; Sun, H.; Zhang, Y. Adaptive Mechanisms and Regulatory Strategies of Plants Under Saline Stress and Prospects for the Development and Utilization of Chinese Herbal Medicines in Saline Land. Horticulturae 2025, 11, 1179. https://doi.org/10.3390/horticulturae11101179
Long H, Shao C, Cui Y, Cao W, Wang Y, Zhu J, Geng X, Sun H, Zhang Y. Adaptive Mechanisms and Regulatory Strategies of Plants Under Saline Stress and Prospects for the Development and Utilization of Chinese Herbal Medicines in Saline Land. Horticulturae. 2025; 11(10):1179. https://doi.org/10.3390/horticulturae11101179
Chicago/Turabian StyleLong, Hongjie, Cai Shao, Yanmei Cui, Weiyu Cao, Yue Wang, Jiapeng Zhu, Xiaomeng Geng, Hai Sun, and Yayu Zhang. 2025. "Adaptive Mechanisms and Regulatory Strategies of Plants Under Saline Stress and Prospects for the Development and Utilization of Chinese Herbal Medicines in Saline Land" Horticulturae 11, no. 10: 1179. https://doi.org/10.3390/horticulturae11101179
APA StyleLong, H., Shao, C., Cui, Y., Cao, W., Wang, Y., Zhu, J., Geng, X., Sun, H., & Zhang, Y. (2025). Adaptive Mechanisms and Regulatory Strategies of Plants Under Saline Stress and Prospects for the Development and Utilization of Chinese Herbal Medicines in Saline Land. Horticulturae, 11(10), 1179. https://doi.org/10.3390/horticulturae11101179

