Previous Issue
Volume 11, September
 
 

Horticulturae, Volume 11, Issue 10 (October 2025) – 114 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 1628 KB  
Review
Advances in Biostimulant Applications for Grapevine (Vitis vinifera L.): Physiological, Agronomic, and Quality Impacts
by Sara Elizabeth Verdugo-Gaxiola, Laura Diaz-Rubio, Myriam Tatiana Montaño-Soto, Liliana del Rocío Castro-López, Guillermo Castillo and Iván Córdova-Guerrero
Horticulturae 2025, 11(10), 1261; https://doi.org/10.3390/horticulturae11101261 (registering DOI) - 18 Oct 2025
Abstract
This manuscript reviews the advances in the application of biostimulants in grapevine (Vitis vinifera L.), emphasizing their physiological, agronomic, and quality impacts within a broader agricultural and scientific context. It highlights the evolution of biostimulant research and the theoretical frameworks that support [...] Read more.
This manuscript reviews the advances in the application of biostimulants in grapevine (Vitis vinifera L.), emphasizing their physiological, agronomic, and quality impacts within a broader agricultural and scientific context. It highlights the evolution of biostimulant research and the theoretical frameworks that support their use, underscoring their growing relevance in sustainable viticulture as a response to environmental challenges and consumer demands for healthier production practices. By analyzing recent findings, the text outlines how biostimulants influence plant physiology, improve agronomic performance, and enhance fruit and wine quality, while also stressing the need for deeper understanding of their mechanisms of action and greater standardization in their application. The discussion suggests that advancing this field requires not only scientific attention but also an integrative vision that links innovation, sustainability, and practical implementation. Ultimately, the manuscript contributes to a more comprehensive appreciation of the role of biostimulants in viticulture, offering insights to guide future research and strategies for grapevine management and quality improvement. Full article
(This article belongs to the Special Issue Grapevine Responses to Abiotic and Biotic Stresses)
Show Figures

Graphical abstract

19 pages, 7823 KB  
Article
EDI-YOLO: An Instance Segmentation Network for Tomato Main Stems and Lateral Branches in Greenhouse Environments
by Peng Ji, Nengwei Yang, Sen Lin and Ya Xiong
Horticulturae 2025, 11(10), 1260; https://doi.org/10.3390/horticulturae11101260 (registering DOI) - 18 Oct 2025
Abstract
Agricultural robots operating in greenhouse environments face substantial challenges in detecting tomato stems, including fluctuating lighting, cluttered backgrounds, and the stems’ inherently slender morphology. This study introduces EfficientV1-C2fDWR-IRMB-YOLO (EDI-YOLO), an enhanced model built on YOLOv8n-seg. First, the original backbone is replaced with EfficientNetV1, [...] Read more.
Agricultural robots operating in greenhouse environments face substantial challenges in detecting tomato stems, including fluctuating lighting, cluttered backgrounds, and the stems’ inherently slender morphology. This study introduces EfficientV1-C2fDWR-IRMB-YOLO (EDI-YOLO), an enhanced model built on YOLOv8n-seg. First, the original backbone is replaced with EfficientNetV1, yielding a 2.3% increase in mAP50 and a 2.6 G reduction in FLOPs. Second, we design a C2f-DWR module that integrates multi-branch dilations with residual connections, enlarging the receptive field and strengthening long-range dependencies; this improves slender-object segmentation by 1.4%. Third, an Inverted Residual Mobile Block (iRMB) is inserted into the neck to apply spatial attention and dual residual paths, boosting key-feature extraction by 1.5% with only +0.7GFLOPs. On a custom tomato-stem dataset, EDI-YOLO achieves 79.3% mAP50 and 33.9% mAP50-95, outperforming the baseline YOLOv8n-seg (75.1%, 31.4%) by 4.2% and 2.6%, and YOLOv5s-seg (66.7%), YOLOv7tiny-seg (75.4%), and YOLOv12s-seg (75.4%) by 12.6%, 3.9%, and 3.9% in mAP50, respectively. Significant improvement is achieved in lateral branch segmentation (60.4% → 65.2%). Running at 86.2 FPS with only 10.4GFLOPs and 8.0 M parameters, EDI-YOLO demonstrates an optimal trade-off between accuracy and efficiency. Full article
(This article belongs to the Section Vegetable Production Systems)
13 pages, 1375 KB  
Article
A Diploid–Tetraploid Cytochimera of Dashu Tea Selected from a Natural Bud Mutant
by Chi Zhang, Sulei She, Haiyan Wang, Jiaheng Li, Xiao Long, Guolu Liang, Qigao Guo, Songkai Li, Ge Li, Lanyan Qian, Di Wu and Jiangbo Dang
Horticulturae 2025, 11(10), 1259; https://doi.org/10.3390/horticulturae11101259 (registering DOI) - 18 Oct 2025
Abstract
Polyploids play significant roles in tea production due to their strong tolerance to adverse environmental conditions and their high levels of certain chemical components. Tetraploid can be used to produce more polyploid tea plants, but there have been only a handful of tetraploids [...] Read more.
Polyploids play significant roles in tea production due to their strong tolerance to adverse environmental conditions and their high levels of certain chemical components. Tetraploid can be used to produce more polyploid tea plants, but there have been only a handful of tetraploids found in tea plants. In spite of the extremely low probabilities, bud mutant selection is an effective way to obtain polyploid tree crops. In the present study, a Dashu tea, cytochimera, derived from a bud mutation was identified by using flow cytometry and chromosome observation. The morphology and photosynthetic characteristics of leaves were investigated briefly. Some chemical components were determined. Finally, the pollen viability and ploidy of progeny were detected. The results show that tetraploid cells account for 71.48 ± 3.88%–72.19 ± 2.80% of the leaf tissue in this cytochimera. Compared with the original diploid, the cytochimera exhibited broader, longer, and thicker leaves. Its net photosynthetic rate (high to 41.77 ± 0.38 μmol CO2‧m−2‧s−1) was higher than that of the original diploid (peak value 28.00 ± 2.29 μmol CO2‧m−2‧s−1) for most of the day when measured in September. Notably, the total content of 19 free amino acids in the tender spring shoots of cytochimera was 22.96 ± 0.58 mg/g, approximately twice of that of the diploid materials analyzed. The contents of 10 free amino acids, including theanine, were significantly higher than those in diploids, with some free amino acid contents reaching up to seven times those observed in diploids. In addition, the cytochimera produced larger pollen grains than the original diploid, although the in vitro germination rate was lower (14.63 ± 1.11%). Three open-pollinated progenies of cytochimera were identified as triploids. To sum up, cytochimera has larger and thicker leaves, a higher photosynthetic rate, and higher content of total free amino acids and some free amino acids, especially theanine, than the original diploid. Moreover, cytochimera has a certain level of fertility and can produce triploids. These findings suggest the potential for selecting polyploid tea plants from bud mutants and for developing new tea germplasms with enhanced amino acid contents. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics, 2nd Edition)
27 pages, 6859 KB  
Article
An Explainable Machine Learning Framework for the Hierarchical Management of Hot Pepper Damping-Off in Intensive Seedling Production
by Zhaoyuan Wang, Kaige Liu, Longwei Liang, Changhong Li, Tao Ji, Jing Xu, Huiying Liu and Ming Diao
Horticulturae 2025, 11(10), 1258; https://doi.org/10.3390/horticulturae11101258 - 17 Oct 2025
Abstract
Facility agriculture cultivation is the main production form of the vegetable industry in the world. As an important vegetable crop, hot peppers are easily threatened by many diseases in a facility microclimate environment. Traditional disease detection methods are time-consuming and allow the disease [...] Read more.
Facility agriculture cultivation is the main production form of the vegetable industry in the world. As an important vegetable crop, hot peppers are easily threatened by many diseases in a facility microclimate environment. Traditional disease detection methods are time-consuming and allow the disease to proliferate, so timely detection and inhibition of disease development have become the focus of global agricultural practice. This article proposed a generalizable and explainable machine learning model for hot pepper damping-off in intensive seedling production under the condition of ensuring the high accuracy of the model. Through Kalman filter smoothing, SMOTE-ENN unbalanced sample processing, feature selection and other data preprocessing methods, 19 baseline models were developed for prediction in this article. After statistical testing of the results, Bayesian Optimization algorithm was used to perform hyperparameter tuning for the best five models with performance, and the Extreme Random Trees model (ET) most suitable for this research scenario was determined. The F1-score of this model is 0.9734, and the AUC value is 0.9969 for predicting the severity of hot pepper damping-off, and the explainable analysis is carried out by SHAP (SHapley Additive exPlanations). According to the results, the hierarchical management strategies under different severities are interpreted. Combined with the front-end visualization interface deployed by the model, it is helpful for farmers to know the development trend of the disease in advance and accurately regulate the environmental factors of seedling raising, and this is of great significance for disease prevention and control and to reduce the impact of diseases on hot pepper growth and development. Full article
(This article belongs to the Special Issue New Trends in Smart Horticulture)
Show Figures

Figure 1

17 pages, 3108 KB  
Article
Autonomous UV-C Treatment and Hyperspectral Monitoring: Advanced Approaches for the Management of Dollar Spot in Turfgrass
by Lorenzo Pippi, Lorenzo Gagliardi, Lisa Caturegli, Lorenzo Cotrozzi, Sofia Matilde Luglio, Simone Magni, Elisa Pellegrini, Claudia Pisuttu, Michele Raffaelli, Marco Santin, Marco Fontanelli, Tommaso Federighi, Claudio Scarpelli, Marco Volterrani and Luca Incrocci
Horticulturae 2025, 11(10), 1257; https://doi.org/10.3390/horticulturae11101257 - 17 Oct 2025
Abstract
Dollar spot is a severe and widespread turfgrass disease. Ultraviolet-C (UV-C) light treatment offers a promising management strategy, and its integration into autonomous mowers could reduce fungicide use, promoting sustainable and efficient turfgrass management. To ensure effectiveness and optimize intervention timing, monitoring is [...] Read more.
Dollar spot is a severe and widespread turfgrass disease. Ultraviolet-C (UV-C) light treatment offers a promising management strategy, and its integration into autonomous mowers could reduce fungicide use, promoting sustainable and efficient turfgrass management. To ensure effectiveness and optimize intervention timing, monitoring is essential and hyperspectral sensing could represent a valuable resource. This study aimed to develop an innovative approach for the early detection and integrated management of dollar spot in bermudagrass by evaluating (i) the efficacy of an autonomous mower equipped with UV-C lamps in mitigating infections, and (ii) the potential of full-range hyperspectral sensing (350–2500 nm) for disease detection and monitoring. The autonomous mower enabled UV-C treatment with a field capacity of 0.04 ha h−1, requiring 1.3 machines to treat 1 ha day−1, and a primary energy consumption of 55.06 kWh ha−1 for a complete weekly treatment. Full-range canopy hyperspectral data (400–2400 nm) enabled rapid, non-destructive field detection. Permutational multivariate analysis of variance (PERMANOVA) detected significant effects of Clarireedia jacksonii (Cj; dollar spot pathogen) and the Cj × UV-C interaction. Partial least-squares discriminant analysis (PLS-DA) separated Cj+/UV+ and Cj+/UV− plots (Accuracy validation ≈ 0.73; K ≈ 0.69). Investigated spectral indices confirmed Cj × UV-C interactions. Future research should explore how to optimize UV-C application regimes, improve system scalability, and enhance the robustness of hyperspectral models across diverse turfgrass genotypes, growth stages, and environmental conditions. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

14 pages, 2477 KB  
Article
Determination of the Resistance of Tolerant Hybrids of Buxus to the Pathogen Cylindrocladium buxicola and the Effect of Nutrition and Climatic Conditions on Leaf Color
by Ivana Šafránková, Jiří Souček, Marie Machanderová, Petr Salaš, Jana Burgová and Ludmila Holková
Horticulturae 2025, 11(10), 1256; https://doi.org/10.3390/horticulturae11101256 - 17 Oct 2025
Abstract
Boxwood (Buxus sp.) plays a key role in historical gardens due to its evergreen foliage and resilience. However, recent outbreaks of disease caused by fungal pathogens such as Calonectria spp. (C. pseudonaviculata, C. henricotiae) and Pseudonectria spp. (P. [...] Read more.
Boxwood (Buxus sp.) plays a key role in historical gardens due to its evergreen foliage and resilience. However, recent outbreaks of disease caused by fungal pathogens such as Calonectria spp. (C. pseudonaviculata, C. henricotiae) and Pseudonectria spp. (P. buxi, P. foliicola), as well as pest pressures from Cydalima perspectalis, have led to significant losses. This study examined 100 boxwood plantings across the Czech Republic to evaluate pest and disease occurrence. Further, six modern boxwood cultivars from the groups of BetterBuxus® and NewGen® were tested in field trials under the climatic conditions of the Czech Republic, focusing on their resistance to abiotic stress and foliage color retention throughout the year. Laboratory trials confirmed all cultivars were susceptible to C. pseudonaviculata, with ‘Renaissance’ showing the slowest disease progression. Field assessments under two contrasting management regimes (“Minimalistic” and “Pampered”) indicated sporadic boxwood blight incidence but frequent Volutella blight outbreaks, particularly where plants suffered frost stress. Leaf color, an important esthetic trait, was evaluated using Munsell charts and measuring the relative chlorophyll content. ‘Skylight’ most closely matched Buxus sempervirens in the shade of green and winter color. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Graphical abstract

16 pages, 962 KB  
Article
Variation Law and Predictive Modeling Construction of Internal Quality in Korla Fragrant Pears Under Multi-Type Damage During Storage
by Yifan Xia, Hong Zhang, Jikai Che, Qing Liang and Yang Liu
Horticulturae 2025, 11(10), 1255; https://doi.org/10.3390/horticulturae11101255 - 17 Oct 2025
Abstract
To enhance the economic benefits of the Korla fragrant pear industry and reduce fruit loss rates, this study investigates changes in pear fruit quality during storage under different damage types. An adaptive neuro-fuzzy inference system (ANFIS), tested with eight different membership functions, was [...] Read more.
To enhance the economic benefits of the Korla fragrant pear industry and reduce fruit loss rates, this study investigates changes in pear fruit quality during storage under different damage types. An adaptive neuro-fuzzy inference system (ANFIS), tested with eight different membership functions, was used to predict the hardness and soluble solids content (SSC) of pears stored under various damage conditions. The results showed that both hardness and SSC of damaged pears decreased with prolonged storage time. During identical storage periods, more severe damage led to faster declines in hardness and SSC, among which impact loads and combined impact-compression loads caused the most rapid reductions in pear hardness and SSC. The ANFIS model with the gauss2mf membership function achieved optimal prediction accuracy for pear hardness (RMSE = 0.2207, R2 = 0.9434); the ANFIS model with the trimf membership function yielded the best prediction for pear SSC (RMSE = 0.2016, R2 = 0.9701). This study provides a theoretical basis for optimizing warehouse management and quality control of Korla fragrant pears, and for determining the optimal treatment window during storage. Full article
12 pages, 1625 KB  
Article
Physiological Responses of Anoectochilus roxburghii to Salt Stress
by Min Li, Hao Rong, Hongxia Li, Na Li and Ying Jiang
Horticulturae 2025, 11(10), 1254; https://doi.org/10.3390/horticulturae11101254 - 17 Oct 2025
Abstract
Salt stress is a significant environmental factor influencing plant growth and development. Anoectochilus roxburghii is a valuable medicinal plant, but it is still unclear how it responds to salinity. In this study, A. roxburghii was used as experimental material to investigate its physiological [...] Read more.
Salt stress is a significant environmental factor influencing plant growth and development. Anoectochilus roxburghii is a valuable medicinal plant, but it is still unclear how it responds to salinity. In this study, A. roxburghii was used as experimental material to investigate its physiological mechanisms underlying salt stress resistance. Seedlings were subjected to various NaCl concentrations (0, 50, 100, 150, and 200 mmol/L), and changes in key physiological parameters were subsequently analyzed. The results indicated that under NaCl-induced salt stress, the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), as well as soluble protein content, initially increased and then decreased, with peak levels observed between 100 and 150 mmol/L. Malondialdehyde (MDA) content exhibited a steady increase with rising salt concentration. Total chlorophyll content declined progressively, while anthocyanin content increased initially but decreased significantly when NaCl concentration exceeded 100 mmol/L. Additionally, the contents of total flavonoids and total phenolics decreased markedly at salt concentrations above 100 mmol/L. These findings suggest that A. roxburghii can tolerate salt stress up to 100 mmol/L for 24 h without exhibiting substantial physiological or morphological damage. This study provides a theoretical basis for analyzing the salt tolerance mechanism of A. roxburghii. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 2875 KB  
Article
Standard Procedures Proposal of Laboratory Experimental Tests Assessment for Water Permeability of Anti-Rain Agricultural Nets
by Audrey Maria Noemi Martellotta, Sergio Castellano, Ileana Blanco, Greta Mastronardi, Pietro Picuno, Roberto Puglisi and Giacomo Scarascia Mugnozza
Horticulturae 2025, 11(10), 1253; https://doi.org/10.3390/horticulturae11101253 - 17 Oct 2025
Abstract
Climate change threatens the agricultural field by affecting production yields and crop quality. Yield protection is an increasingly pressing priority to preserve the ability of agriculture to meet food demand with more sustainable production of appropriate quality and quantity and with less demand [...] Read more.
Climate change threatens the agricultural field by affecting production yields and crop quality. Yield protection is an increasingly pressing priority to preserve the ability of agriculture to meet food demand with more sustainable production of appropriate quality and quantity and with less demand for plant protection products. For this reason, nowadays the use of agricultural nets is becoming increasingly widespread to counteract possible risks from abiotic stresses. Among all agricultural nets, the anti-rain ones have the predominant purpose of protecting crops from damage caused by severe weather events. The present study aims to verify whether anti-rain nets could be used as greenhouse covering material, starting from the evaluation of the rainwater permeability index Φrw. For this purpose, a laboratory rain simulator was designed and several tests were performed on the chosen anti-rain net, varying its inclination and the duration and intensity of the simulated rainfall, returning different normalized permeability indices NPI, of which the standard deviation (SD) was calculated. The optimal rainfall duration of the artificial rain test was determined at the minimum value of the sum of the SDs, identified as about 25%, at a duration of 10 min. Subsequently, tests were carried out to define the Φrw index for a rainfall lasting 10 min, by varying the other parameters, returning the lowest Φrw index of approximately 45% at a 20° net inclination and with the weave perpendicular to the slope. The results highlight the possibility to use anti-rain nets for greenhouse covering, replacing or supplementing commonly used nets, facilitating oxygen exchange and maximizing light capture capacity, essential for vegetative–productive balance. A proposal for standardizing the procedures to test nets, based on experimental tests, has never been proposed in the scientific literature. Regarding fruit and vegetable crops, there are several issues to be evaluated; this study only considers rain protection, through nets can be used for different fruit and vegetable varieties. Full article
Show Figures

Figure 1

16 pages, 3764 KB  
Article
Genome-Wide Identification of Monosaccharide Transporter (MST) Genes in Litchi chinensis and Analysis of Their Potential Roles in Fruit Sugar Accumulation
by Yingjie Wen, Hanyu Zheng, Hailun Liu, Yonghua Jiang, Fachao Shi and Qian Yan
Horticulturae 2025, 11(10), 1252; https://doi.org/10.3390/horticulturae11101252 - 17 Oct 2025
Abstract
Sugars function as essential signaling molecules and metabolic substrates in plant growth, development, yield formation, and fruit quality. The aril of litchi (Litchi chinensis Sonn.) accumulates high levels of hexoses, primarily glucose and fructose; however, the molecular mechanisms underlying this process remain [...] Read more.
Sugars function as essential signaling molecules and metabolic substrates in plant growth, development, yield formation, and fruit quality. The aril of litchi (Litchi chinensis Sonn.) accumulates high levels of hexoses, primarily glucose and fructose; however, the molecular mechanisms underlying this process remain poorly characterized. This study aimed to systematically identify the monosaccharide transporter (MST) gene family in litchi and elucidate its role in aril sugar accumulation. Through a comprehensive analysis of the litchi genome, we identified a total of 45 LcMST genes, which were classified into seven distinct subfamilies: STP, ERD6L, PLT, INT, pGlcT, TMT, and VGT. Analysis of gene structure and conserved motifs revealed notable conservation among members within the same subfamily. Collinearity and gene duplication analyses suggested that the LcMST family expanded through both tandem and whole-genome duplication events, a process primarily governed by purifying selection. Expression profiling across diverse tissues demonstrated that LcMST genes exhibit distinct tissue-specific expression patterns. During fruit development in the hexose-dominant cultivar ‘Tianshuili’, the expression of the tonoplast monosaccharide transporter gene LcTMT1 exhibited a significant positive correlation with the accumulation of fructose, glucose, and total sugars. Heterologous functional complementation assays in yeast confirmed the ability of LcTMT1 to transport both glucose and fructose. In conclusion, this study presents the first genome-wide identification and characterization of the MST gene family in litchi, and identifies LcTMT1 as a key contributor of hexose accumulation in the aril. These findings establish a foundation for elucidating the molecular mechanisms of sugar accumulation in litchi fruit and for guiding future genetic improvement of fruit quality. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 6519 KB  
Article
Detection of SPAD Content in Leaves of Grey Jujube Based on Near Infrared Spectroscopy
by Lanfei Wang, Junkai Zeng, Mingyang Yu, Weifan Fan and Jianping Bao
Horticulturae 2025, 11(10), 1251; https://doi.org/10.3390/horticulturae11101251 - 17 Oct 2025
Abstract
The efficient and non-destructive inspection of the chlorophyll content of grey jujube leaf is of great significance for its growth surveillance and nutritional diagnosis. Near-infrared spectroscopy combined with chemometric methods provides an effective approach to achieve this goal. This study took grey jujube [...] Read more.
The efficient and non-destructive inspection of the chlorophyll content of grey jujube leaf is of great significance for its growth surveillance and nutritional diagnosis. Near-infrared spectroscopy combined with chemometric methods provides an effective approach to achieve this goal. This study took grey jujube leaves as the research object, systematically collected near-infrared spectral data in the range of 4000–10,000 cm−1, and simultaneously measured their soil and plant analyzer development (SPAD) value as a reference index for chlorophyll content. Through various pretreatment and their combination methods on the original spectrum—smooth, standard normal variable transformation (SNV), first derivative (FD), second derivative (SD), smooth + first derivative (Smooth + FD), smooth + second derivative (Smooth + SD), standard normal variable transformation + first derivative (SNV + FD), standard normal variable transformation + second derivative (SNV + SD)—the effects of different methods on the quality of the spectrum and its correlation with SPAD value were compared. The competitive adaptive reweighted sampling algorithm (CARS) was adopted to extract the characteristic wavelength, aiming to reduce data dimensionality and optimize model input. Both BP neural network and RBF neural network prediction models were established, and the model performance under different training functions was compared. The results indicate that after Smooth + FD pretreatment, followed by CARS screening of the characteristic wavelength, the BP neural network model trained using the LBFGS algorithm demonstrated the best performance, with its coefficient of determination (R2) of 0.87 (training set) and 0.85 (validation set), root mean square error (RMSE) of 1.36 (training set) and 1.35 (validation set), and residual prediction deviation (RPD) of 2.81 (training set) and 2.56 (validation set) showing good prediction accuracy and robustness. Research indicates that by combining near-infrared spectroscopy with feature extraction and machine learning methods, the rapid and non-destructive inspection of the grey jujube leaf SPAD value can be achieved, providing reliable technical support for the real-time monitoring of the nutritional status of jujube trees. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 1278 KB  
Article
Characterization of Postharvest Changes in Fruit Quality Traits of Highbush Blueberry (Vaccinium corymbosum L.) Cultivars
by Yige Xu, Xin Wei, Youchun Liu and Cheng Liu
Horticulturae 2025, 11(10), 1250; https://doi.org/10.3390/horticulturae11101250 - 16 Oct 2025
Abstract
This study investigated the dynamic changes in fruit color, texture and quality attributes of blueberry cultivars during a 15-day postharvest storage period to provide theoretical insights for cultivar selection, postharvest preservation and commercial evaluation. Phenotypic and quality traits, including color parameters (CIE-Lab*), texture [...] Read more.
This study investigated the dynamic changes in fruit color, texture and quality attributes of blueberry cultivars during a 15-day postharvest storage period to provide theoretical insights for cultivar selection, postharvest preservation and commercial evaluation. Phenotypic and quality traits, including color parameters (CIE-Lab*), texture attributes (Note: hardness represents firmness and is an indicator in the Brookfield’s texture analyzer), adhesive force and physicochemical indices, were systematically analyzed using a colorimeter, texture analyzer and conventional methods. Principal component analysis (PCA) and cluster analysis were applied to evaluate postharvest performance. Southern highbush cultivars, including ‘EB 9-2’, ‘Meadowlark’, ‘Primadonna’, ‘Eureka’ and ‘Camellia’, exhibited superior comprehensive quality, characterized by small fruit shape index, minimal scar sizes and stable hardness dynamics. During the storage period, ‘Legacy’ demonstrated optimal color stability (ΔE < 3.5 from days 0–15), while ‘EB 9-2’ showed the most significant hardness increase. Scar size, fruit shape index and flesh elasticity were identified as key indicators for analyzing shelf-life hardness variations, offering scientific guidance for cultivar selection and postharvest management. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

19 pages, 5643 KB  
Article
Identification of Reliable Reference Genes for qRT-PCR Normalization in Tomato Genotypes with Contrasting Salinity Tolerance
by Helen I. Rostovtseva, Liliya R. Bogoutdinova, Galina N. Raldugina and Ekaterina N. Baranova
Horticulturae 2025, 11(10), 1249; https://doi.org/10.3390/horticulturae11101249 - 16 Oct 2025
Abstract
Salt-tolerance improvement of tomatoes is largely a task of modern selection and plant molecular genetics because of cultivation on dry and irrigated lands under salt stress. To reveal the salt resistance gene, we need quantitative real-time polymerase chain reaction (qRT-PCR) normalization through reference [...] Read more.
Salt-tolerance improvement of tomatoes is largely a task of modern selection and plant molecular genetics because of cultivation on dry and irrigated lands under salt stress. To reveal the salt resistance gene, we need quantitative real-time polymerase chain reaction (qRT-PCR) normalization through reference genes analysis. Sometimes, housekeeping gene expression changes in response to various stress factors, especially salinity. In this manuscript, we evaluated expression changes of elongation factor 1α X53043.1 (EF1α), actin BT013707.1 (ACT), ubiquitin NM_001346406.1 (UBI), nuclear transcript factor XM_026030313.2 (NFT-Y), β-tubulin NM_001247878.2 (TUB), glyceraldehyde-3 phosphate dehydrogenase NM_001247874.2 (GAPDH), phosphatase 2A catalytic subunit NM_001247587.2 (PP2a), and phosphoglycerate kinase XM_004243920.4 (PGK) in salt-sensitive Solanum lycopersicum L. YaLF line and salt tolerance Rekordsmen cv. under 100 mM NaCl. We also suggested potential correlations between relative water content (RWC), ion accumulation, and reference gene expression in tomato genotypes with contrasting salinity tolerance. We used geNorm, NormFinder, BestKeeper, ∆Ct, and RefFinder algorithms to establish a set of the most reliable tomato candidate genes. The most stable genes for YaLF tomatoes were ACT, UBI, TUB, and PP2a. Despite differences in ranks, the NFT-Y was present in Rekordsmen’s stable set. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

15 pages, 2879 KB  
Article
RsNAC134 Regulates Taproot Skin Color via Positive Regulation of the Chlorophyll Degradation Pathway in Radish (Raphanus sativus)
by Weifang Chen, Chenghuan Yan, Leifu Chen, Lei Cui and Weiling Yuan
Horticulturae 2025, 11(10), 1248; https://doi.org/10.3390/horticulturae11101248 - 16 Oct 2025
Viewed by 70
Abstract
The color of radish taproot skin is an important commercial quality trait that directly affects the visual judgment of consumers. The green/white coloration of radish taproots is caused by chlorophyll accumulation or fading; however, research on the mechanisms of color regulation in green/white [...] Read more.
The color of radish taproot skin is an important commercial quality trait that directly affects the visual judgment of consumers. The green/white coloration of radish taproots is caused by chlorophyll accumulation or fading; however, research on the mechanisms of color regulation in green/white variations remains limited. Therefore, we analyzed transcriptome data from the green radish ‘QZ-16’ and white radish ‘55’ and identified a key color-regulating gene, RsNAC134. The expression of RsNAC134 was significantly reduced in green radish ‘QZ-16’ but markedly increased in white radish ‘55’. Heterologous overexpression of RsNAC134 in transgenic tomatoes resulted in chlorotic phenotypes. Quantitative real-time polymerase chain reaction revealed significant upregulation of chlorophyll degradation pathway genes SlSGR and SlPAO in transgenic tomatoes. Similarly, in white radish, expression of the key chlorophyll degradation genes, RsSGR, RsPAO1, and RsPAO2, was notably increased. Yeast one-hybrid and luciferase assays demonstrated that RsNAC134 directly bound to the promoters of RsSGR, RsPAO1, and RsPAO2. These findings suggest that RsNAC134 regulates chlorophyll degradation by modulating RsSGR, RsPAO1, and RsPAO2 expression, ultimately influencing the radish color transition (loss of green pigmentation) or retention of green coloration. This work unravels novel regulatory factors of chlorophyll degradation and elucidates the molecular network governing chlorophyll degradation, providing crucial insights into the molecular basis of epidermal color variation in radish taproots. Full article
(This article belongs to the Special Issue Breeding by Design: Advances in Vegetables)
Show Figures

Figure 1

17 pages, 1236 KB  
Article
Dynamics of Quality Traits During Cold Storage in ‘Annurca’ Apples: Impact of 1-MCP and the Traditional Melaio Reddening Process
by Giandomenico Corrado, Alessandro Mataffo, Pasquale Scognamiglio, Carlo Molinaro, Maurizio Teobaldelli and Boris Basile
Horticulturae 2025, 11(10), 1247; https://doi.org/10.3390/horticulturae11101247 - 15 Oct 2025
Viewed by 232
Abstract
The ‘Annurca’ apple (Malus domestica), a PGI-protected Italian cultivar, undergoes a mandatory postharvest reddening process (melaio). While crucial for skin color development, this process is associated with flesh softening, creating a conflict with consumer demand for crispness. To resolve this quality [...] Read more.
The ‘Annurca’ apple (Malus domestica), a PGI-protected Italian cultivar, undergoes a mandatory postharvest reddening process (melaio). While crucial for skin color development, this process is associated with flesh softening, creating a conflict with consumer demand for crispness. To resolve this quality trade-off, this study compared different postharvest strategies over a five-month commercial cold storage. Specifically, we performed a time-series analysis of the evolution of ripening and skin color dynamics under three strategies: traditional reddening (Melaio), 1-methylcyclopropene application (MCP), and a 1-MCP treatment followed by reddening (MCP+Melaio). While 1-MCP effectively arrested firmness loss, maintaining firmness above 47 N compared to the Melaio-only treatment which dropped to 35.9 N by the end of storage, the pathways of skin color development differed profoundly. The MCP-only strategy led to a highly non-uniform and visually inconsistent appearance (average Total Color Difference, ΔE* > 12) that persisted throughout storage. In contrast, the traditional melaio process proved indispensable for guiding the fruit towards a significantly more homogeneous final coloration (∆E* ≈ 5.5). The integrated MCP+Melaio strategy successfully reconciled these divergent effects, preserving high flesh firmness (47.9 N) while achieving the superior skin color uniformity characteristic of the traditional process (final ΔE* ≈ 5.6). This study demonstrates that pre-treating ‘Annurca’ apples with 1-MCP before the melaio period offers a viable, scientifically validated approach to resolving the critical trade-off between texture and skin color, enabling the ‘Annurca’ industry to meet modern textural expectations while preserving its unique cultural and quality traditions. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

15 pages, 1648 KB  
Article
A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes
by Marat R. Khaliluev, Nataliya V. Varlamova and Roman A. Komakhin
Horticulturae 2025, 11(10), 1246; https://doi.org/10.3390/horticulturae11101246 - 15 Oct 2025
Viewed by 122
Abstract
Generation of state-of-the-art highly productive cabbage genotypes (Brassica oleracea convar. capitata (L.) Alef.) with improved agronomic traits is attainable using modern biotechnological approaches. However, capitata cabbage is relatively recalcitrant to de novo shoot organogenesis from callus tissue, especially with loss of somatic [...] Read more.
Generation of state-of-the-art highly productive cabbage genotypes (Brassica oleracea convar. capitata (L.) Alef.) with improved agronomic traits is attainable using modern biotechnological approaches. However, capitata cabbage is relatively recalcitrant to de novo shoot organogenesis from callus tissue, especially with loss of somatic cell totipotency during genetic transformation. An effective and rapid protocol for in vitro indirect shoot organogenesis from hypocotyl and cotyledon explants derived from 6-day-old aseptic donor seedlings of Russian cabbage genotypes (the DH line as well as cvs. Podarok and Parus) has been developed. In order to obtain standardized donor explants, aseptic cabbage seeds were germinated under dim light conditions (30–40 µmol m−2 s−1) with a 16 h light/8 h dark photoperiod. Multiple indirect shoot organogenesis (1.47–4.93 shoots per explant) from both cotyledonary leaves and hypocotyl segments with a frequency of 55.2–89.1% was achieved through 45 days of culture on the 0.7% agar-solidified (w/v) Murashige and Skoog (MS) basal medium containing 2 mg/L 6-benzylaminopurine (6-BAP), 0.02 mg/L 1-naphthalene acetic acid (NAA), and 5 mg/L AgNO3. The regenerants were successfully rooted on an MS basal medium (69.2%) without plant growth regulators (PGRs), as well as supplemented with 0.5 mg/L NAA (86.8%). Subsequently, in vitro rooted cabbage plantlets were adapted to soil conditions with an efficiency of 85%. This rapid protocol, allowing for the performance of a full cycle from in vitro seed germination to growing adapted plantlets under ex vitro conditions over 95 days, can be successfully applied to induce an indirect shoot formation in various cabbage genotypes, and it is recommended to produce transgenic plants with improved quality traits and productivity. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Horticulture)
Show Figures

Figure 1

19 pages, 934 KB  
Article
Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato
by Hussein G. Daood, Szilvia Ráth, Abdulnabi A. Abushita, Monika Máté and Lajos Helyes
Horticulturae 2025, 11(10), 1245; https://doi.org/10.3390/horticulturae11101245 - 15 Oct 2025
Viewed by 262
Abstract
This research aimed to explore the influence of climate factors, especially in the three weeks prior to harvest, on the reaction of key phytonutrients in industrial tomatoes used for juice thermal processing and their stability. The cultivation was performed in two areas with [...] Read more.
This research aimed to explore the influence of climate factors, especially in the three weeks prior to harvest, on the reaction of key phytonutrients in industrial tomatoes used for juice thermal processing and their stability. The cultivation was performed in two areas with differing climatic conditions. In the region with higher temperatures and rainfall, the levels and stability of carotenoids were lower compared to the area characterized by warm temperatures and minimal rainfall during both the growth and harvest phases of the tomatoes. The extraction of cold-break (CBE) tomatoes from relatively cool and wet environments resulted in a loss of total carotenoids, particularly lycopene, amounting to 66% and 58% of the initial raw tomato content in 2018 and 2019, respectively, while a markedly reduced loss of 10% was observed after the CBE of tomatoes from the warmer and drier region in both years (36% and 35%). In contrast, hot-break extraction (HBE) demonstrated a higher stability of lycopene compared to CBE, with losses of 43% and 53% in 2018 and 2019, respectively. Additionally, the stability of lycopene in HBE did not show significant differences between the cultivation sites. Climatic conditions influenced the accumulation of geometrical isomers and oxidized forms of lycopene and β-carotene, especially in tomatoes grown in areas with higher rainfall and lower temperatures. A similar trend in response was noted for β-carotene, lutein, phytoene, and phytofluene, as well as total and individual tocopherols. Regarding vitamin C, the environmental factors had no meaningful impact on the vitamin content in tomato fruits; however, its stability during processing, especially with hot-break extraction, was considerably influenced by the climatic conditions of the cultivation site, with p values ranging from <0.01 to <0.001 across different products in various years. The content and stability of phytonutrients in pomace, the by-product from tomato juice processing, were also assessed. In conclusion, tomato fruits and processed products that boast high phytonutrient levels and stability during thermal processing can be achieved through cultivation in conditions of low rainfall and relatively high temperatures, particularly in the three weeks leading up to harvest. Full article
(This article belongs to the Special Issue Advanced Postharvest Technology in Processed Horticultural Products)
Show Figures

Graphical abstract

22 pages, 1913 KB  
Review
Advancements in the Regulation of Flavonoid Compounds in Monocotyledons and Dicotyledons by Plant MYB Transcription Factors
by Haiyan Luo, Qiong Luo, Tingting Bao, Jingtao Nie and Zhihong Sun
Horticulturae 2025, 11(10), 1244; https://doi.org/10.3390/horticulturae11101244 - 15 Oct 2025
Viewed by 151
Abstract
Flavonoids are essential secondary metabolites in plants, predominantly found in flowers, leaves, and fruits. They mainly include anthocyanins, proanthocyanidins, and flavonols. Transcription factors are a crucial family of proteins in plants, playing a significant role in regulating the biosynthesis of secondary metabolites. This [...] Read more.
Flavonoids are essential secondary metabolites in plants, predominantly found in flowers, leaves, and fruits. They mainly include anthocyanins, proanthocyanidins, and flavonols. Transcription factors are a crucial family of proteins in plants, playing a significant role in regulating the biosynthesis of secondary metabolites. This review introduces flavonoids and explores the characteristics and biological functions of MYB transcription factors. It establishes a phylogenetic tree using Arabidopsis thaliana MYB transcription factors as an example, which includes 17 subgroups (S1–S17). The subgroups related to flavonoids are primarily concentrated in S17, further classified into A, C, D, E, and F. The review also discusses the different regulatory roles of MYB transcription factors in flavonoid synthesis in monocotyledonous and dicotyledonous plants. This knowledge provides a theoretical foundation for further studies on the diverse regulatory functions of MYB transcription factors in flavonoid biosynthesis across the plant kingdom. Full article
Show Figures

Figure 1

18 pages, 4209 KB  
Article
Physiological and Biochemical Responses of Mentha spp. to Light Spectrum and Methyl Jasmonate in a Controlled Plant Factory Environment
by Thanyaluk Dangsamer, Panita Chutimanukul, Siripong Sukdee, Theeraphat Liamjinda, Ornprapa Thepsilvisut, Hiroshi Ehara and Preuk Chutimanukul
Horticulturae 2025, 11(10), 1243; https://doi.org/10.3390/horticulturae11101243 - 15 Oct 2025
Viewed by 250
Abstract
Peppermint (Mentha spp.) produces bioactive metabolites under stress. Light spectrum and methyl jasmonate (MeJA) are important factors influencing growth, physiology, and antioxidant defense. In this study, peppermint was cultivated under different light spectra and foliar MeJA concentrations in a controlled environment. Plants [...] Read more.
Peppermint (Mentha spp.) produces bioactive metabolites under stress. Light spectrum and methyl jasmonate (MeJA) are important factors influencing growth, physiology, and antioxidant defense. In this study, peppermint was cultivated under different light spectra and foliar MeJA concentrations in a controlled environment. Plants exposed to a balanced RGB (1:1:1) spectrum showed the greatest morphological development, with plant height (35.99 cm), canopy width (21.24 cm), and chlorophyll content (29.64 SPAD) significantly higher than those in other treatments. Foliar application of MeJA produced concentration-dependent effects: 2.0 mM increased photosynthetic rate to 6.49 µmol m−2 s−1 compared with 4.52 µmol m−2 s−1 in the control, 2.5 mM resulted in the highest fresh and dry biomass (24.82 g/plant and 2.42 g/plant, respectively), and 1.5 mM yielded the highest total phenolics (20.22 mg GAE/g DW) and antioxidant activity (60.97%). These findings demonstrate that peppermint responses to MeJA are strongly dose dependent and that light quality modulates growth by reducing stress compared with monochromatic spectra. Overall, the results suggest that integrating balanced light spectra with optimized MeJA concentrations can improve both biomass and secondary metabolite accumulation, supporting peppermint production under controlled conditions. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

20 pages, 4614 KB  
Article
Foliar Selenium Application During Flowering and Fruiting Alleviates Drought-Induced Oxidative Damage and Promotes Tomato Growth
by Haixue Cui, Yuan Zhong, Huanhuan Li, Xiaoman Qiang, Lijian Sun, Fukui Gao, Gang Wang and Hao Liu
Horticulturae 2025, 11(10), 1242; https://doi.org/10.3390/horticulturae11101242 - 14 Oct 2025
Viewed by 394
Abstract
Drought stress induced by climate change is a major limiting factor for crop growth. Selenium (Se) is recognized as an important exogenous regulator that can mitigate drought and other abiotic stresses, but the effects of Se application at different growth stages remain unclear. [...] Read more.
Drought stress induced by climate change is a major limiting factor for crop growth. Selenium (Se) is recognized as an important exogenous regulator that can mitigate drought and other abiotic stresses, but the effects of Se application at different growth stages remain unclear. In this study, greenhouse-grown tomato plants were subjected to four Se treatments (T1: control; T2: Se at seedling stage; T3: Se at flowering stage; T4: Se at both stages) combined with three irrigation regimes (W1: 50–55%, W2: 65–70%, W3: 80–85% of field capacity). The impacts of Se timing on antioxidant enzymes, osmotic regulators, and growth parameters were evaluated. Drought stress induced oxidative damage, reduced photosynthesis, and inhibited biomass accumulation, while proline content increased with drought severity. Se application showed clear growth-stage specificity: under mild stress, Se at the flowering stage most effectively enhanced antioxidant activity, regulated proline metabolism, improved photosynthetic performance, and promoted growth. Dual-stage application did not provide additional benefits. These findings indicate that applying Se during the flowering and fruiting stage is optimal for alleviating drought-induced growth inhibition in tomato. The results contribute to understanding Se-mediated drought tolerance and may support the development of stage-specific Se fertilizer management strategies. Full article
Show Figures

Figure 1

15 pages, 1900 KB  
Review
Gray Mold in Blueberry: Current Research on Pathogenesis, Host Resistance, and Control Strategies
by Lifeng Xiao, Qiuyue Zhao, Jie Deng, Lingyan Cui, Tingting Zhang, Qin Yang and Sifeng Zhao
Horticulturae 2025, 11(10), 1241; https://doi.org/10.3390/horticulturae11101241 - 14 Oct 2025
Viewed by 237
Abstract
Gray mold, caused by Botrytis cinerea, poses a significant fungal threat to postharvest blueberries, leading to substantial economic losses and challenging the sustainable development of the blueberry industry. This highlights the urgent necessity for comprehensive research to develop effective and sustainable management [...] Read more.
Gray mold, caused by Botrytis cinerea, poses a significant fungal threat to postharvest blueberries, leading to substantial economic losses and challenging the sustainable development of the blueberry industry. This highlights the urgent necessity for comprehensive research to develop effective and sustainable management solutions. This review offers a systematic overview of gray mold in blueberries, with a particular emphasis on elucidating the pathological mechanisms employed by B. cinerea, including its infection pathways and virulence factors. It examines the resistance mechanisms in blueberries, which include both preformed and induced physical and biochemical defenses, and synthesizes existing control strategies. These strategies range from conventional fungicides to emerging alternatives such as biological control agents, natural antimicrobials, physical treatments, and integrated pest management (IPM) approaches. Furthermore, the paper explores future research directions by identifying key knowledge gaps and promising areas for innovation. This study aims to bridge the gap between fundamental knowledge and practical application, thereby providing a robust theoretical foundation and actionable guidance for the effective prevention and management of gray mold in blueberry production and storage. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

18 pages, 7685 KB  
Article
Complete Chloroplast Genome of Hygrophila polysperma (Acanthaceae): Insights into Its Genetic Features and Phylogenetic Relationships
by Li-Xuan Chin, Qiurui Huang, Qinglang Fan, Haibo Tan, Yuping Li, Caixia Peng, Yunfei Deng and Yongqing Li
Horticulturae 2025, 11(10), 1240; https://doi.org/10.3390/horticulturae11101240 - 14 Oct 2025
Viewed by 410
Abstract
Hygrophila polysperma is a type of amphibious plant that originates from Acanthaceae. Here, we report its first complete chloroplast (cp) genome. The complete cp genome is 146,675 bp in length with 38.3% of GC content. There are 130 genes including 86 protein coding [...] Read more.
Hygrophila polysperma is a type of amphibious plant that originates from Acanthaceae. Here, we report its first complete chloroplast (cp) genome. The complete cp genome is 146,675 bp in length with 38.3% of GC content. There are 130 genes including 86 protein coding genes, 36 tRNA genes, and 8 rRNA genes in this genome. Simple short sequence (SSR) analysis found 30 SSRs, 24 of which are located in a large single-copy region. Nucleotide diversity identified six most divergent sequences (trns-GCU, psaA-pafI, psaI-pafII, ycf2, rpl32, and ycf1) among 3 close-related species, H. polysperma, H. ringens, and Asteracantha longifolia. A phylogenetic tree among H. polysperma and another 30 related species was constructed based on the common coding sequence of the cp genome and showed that H. polysperma is most closely related to H. ringens (both belong to subtribe Hygrophilinae) and, together, they form a clade that is sister to A. longifolia. This study provides a basis for systemic and evolution studies as well as the development of molecular markers for species identification and genetic breeding. Full article
(This article belongs to the Special Issue Horticultural Plant Genomics and Quantitative Genetics)
Show Figures

Figure 1

17 pages, 8994 KB  
Article
Nutritional Composition, Bioactive Components and Antioxidant Activity of Garden Cress (Lepidium sativum L.) Grown Under Deficit Irrigation
by Ertan Yildirim, Melek Ekinci, Metin Turan, Hamza Goktas, Derya Nil Budak and Osman Sagdic
Horticulturae 2025, 11(10), 1239; https://doi.org/10.3390/horticulturae11101239 - 14 Oct 2025
Viewed by 303
Abstract
This study examined how different water restriction levels (T100%, T85%, T75%, and T55%) influence the nutritional and bioactive compounds of Bahar and Dadaş cress (Lepidium sativum L.) cultivars. The highest levels of phenolic compounds found in Dadaş and Bahar cress were quercetin [...] Read more.
This study examined how different water restriction levels (T100%, T85%, T75%, and T55%) influence the nutritional and bioactive compounds of Bahar and Dadaş cress (Lepidium sativum L.) cultivars. The highest levels of phenolic compounds found in Dadaş and Bahar cress were quercetin (8.33 ± 0.23–9.32 ± 0.25 µg/L), ferulic acid (8.08 ± 0.18–8.42 ± 0.19 µg/L), catechin (6.83 ± 0.28 µg/L), and caftaric acid (5.40 ± 0.45 µg/L). Mild and moderate drought treatments (85% and 75% humidity) caused notable increases in phenolic compounds. The highest antioxidant enzyme levels were observed as GST, 6GPD, and G6PD in Bahar and Dadaş cress, with enzyme levels rising under drought conditions. Notably, the mild drought treatment roughly doubled peonidin-3-glucoside acetyl levels in the cress cultivars. Sugar contents of Dadaş and Bahar cress cultivars also rose significantly with drought treatment. Riboflavin, the most abundant vitamin in cress cultivars, increased to 40.96 ± 1.24 mg/kg in Dadaş and 30.79 ± 1.60 mg/kg in Bahar cress under drought stress. Amino acids showed the highest increases under severe drought, with asparagine rising by roughly 2.76-fold and leucine increasing by 2.67-fold in Bahar cress. These findings suggest that controlled water restriction can enhance the nutritional and bioactive properties of cress, potentially leading to more nutrient-rich products for the food industry and human health. Full article
Show Figures

Graphical abstract

21 pages, 7305 KB  
Article
Integration of Physiological and Transcriptomic Analyses Provides Insights into the Regulatory Mechanisms of Adventitious Root Formation in Phoebe bournei Cuttings
by Yuhua Li, Haining Xu, Yongjie Zheng, Chenglin Luo, Yueting Zhang, Xinliang Liu and Yanfang Wu
Horticulturae 2025, 11(10), 1238; https://doi.org/10.3390/horticulturae11101238 - 13 Oct 2025
Viewed by 374
Abstract
Phoebe bournei is an important economic tree species in China, its large-scale propagation is limited by the difficulty of adventitious root (AR) formation in cuttings. In this study, morphological, physiological, and transcriptomic analyses were conducted to investigate the process of AR formation in [...] Read more.
Phoebe bournei is an important economic tree species in China, its large-scale propagation is limited by the difficulty of adventitious root (AR) formation in cuttings. In this study, morphological, physiological, and transcriptomic analyses were conducted to investigate the process of AR formation in P. bournei. The results showed that ARs mainly originated from callus tissue. During AR formation, soluble sugar and soluble protein contents changed significantly. Malondialdehyde (MDA) and oxygen free radicals (OFRs) peaked at first sampling stage (PB0), while the activities of polyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) exhibited similar patterns. Lignin content increased during callus induction stage, whereas phenolic content continuously declined throughout rooting. Endogenous hormone levels also changed markedly, and Orthogonal partial least squares discriminant analysis (OPLS-DA) analysis indicated that indole-3-acetic acid (IAA) and abscisic acid (ABA) played dominant roles in this process. KEGG enrichment analysis revealed significant enrichment of the phenylpropanoid biosynthesis pathway in all three comparison groups. A total of 48 differentially expressed genes (DEGs) were enriched in plant hormone signal transduction pathways, with 22 and 14 genes associated with IAA and ABA signaling, respectively. Weighted gene co-expression network analysis (WGCNA) further identified two hub modules related to IAA and ABA contents, including eight hub genes such as D6PKL1 and ISTL1. Correlation analysis revealed that the hub genes D6PKL1 and HSP were significantly positively correlated with IAA4 in the IAA signaling pathway. Overall, this study provides new insights into the mechanisms underlying AR formation in P. bournei cuttings and offers a theoretical basis for optimizing its clonal propagation system. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

14 pages, 3014 KB  
Article
Responses of Growth and Secondary Metabolites in Fish Mint (Houttuynia cordata Thunb.) Cuttings to Far-Red Light
by Zi-Yi Wang, Kuan-Hung Lin, Yen-Chi Yin and Chang-Chang Chen
Horticulturae 2025, 11(10), 1237; https://doi.org/10.3390/horticulturae11101237 - 13 Oct 2025
Viewed by 325
Abstract
Fish mint (Houttuynia cordata Thunb.) is an aromatic herb used as food and medicine across Asia. We evaluated how far-red (FR) light influences growth and secondary metabolites in the non-flowering cultivar ‘BCV02’ propagated by cuttings. Seedlings were grown for 14 days under [...] Read more.
Fish mint (Houttuynia cordata Thunb.) is an aromatic herb used as food and medicine across Asia. We evaluated how far-red (FR) light influences growth and secondary metabolites in the non-flowering cultivar ‘BCV02’ propagated by cuttings. Seedlings were grown for 14 days under FR at 35, 50, and 70 μmol m−2 s−1 (as FR35, 50, and 70, respectively) or without FR (as control, CK). All FR treatments increased plant height but reduced the shoot/rhizome ratio. Total chlorophyll and carotenoid contents were unchanged, while the chlorophyll a/b ratio declined from 2.37 (CK) to 2.15 (FR70). In shoots, combined 3-, 4-, and 5-O-caffeoylquinic acids with rutin, hyperoside, isoquercitrin, and quercitrin reached 12.61–13.83 mg g−1 dry weight (DW) under FR treatments, exceeding CK (8.48 mg g−1 DW). However, in rhizomes, these secondary metabolite contents ranged 0.82–1.00 mg g−1 DW across all treatments. On a per-pot basis, the highest accumulated compounds (4.37 mg per pot) occurred at FR35. Overall, growth and secondary metabolite biosynthesis in fish mint cuttings respond differently to changes in FR treatments, with FR35 optimizing compound accumulation. Quercitrin in shoots was 0.09–0.20 mg g−1 DW and not quantifiable in rhizomes, potentially below pharmacopeial thresholds specified in the Taiwan Herbal Pharmacopeia and Hong Kong Chinese Materia Medica Standards. These results underscore the importance of aligning cultivar choice, light regime, and market specifications to secure both yield and quality of H. cordata. Full article
Show Figures

Figure 1

21 pages, 3081 KB  
Article
Lightweight CNN–Transformer Hybrid Network with Contrastive Learning for Few-Shot Noxious Weed Recognition
by Ruiheng Li, Boda Yu, Boming Zhang, Hongtao Ma, Yihan Qin, Xinyang Lv and Shuo Yan
Horticulturae 2025, 11(10), 1236; https://doi.org/10.3390/horticulturae11101236 - 13 Oct 2025
Viewed by 275
Abstract
In resource-constrained edge agricultural environments, the accurate recognition of toxic weeds poses dual challenges related to model lightweight design and the few-shot generalization capability. To address these challenges, a multi-strategy recognition framework is proposed, which integrates a lightweight backbone network, a pseudo-labeling guidance [...] Read more.
In resource-constrained edge agricultural environments, the accurate recognition of toxic weeds poses dual challenges related to model lightweight design and the few-shot generalization capability. To address these challenges, a multi-strategy recognition framework is proposed, which integrates a lightweight backbone network, a pseudo-labeling guidance mechanism, and a contrastive boundary enhancement module. This approach is designed to improve deployment efficiency on low-power devices while ensuring high accuracy in identifying rare toxic weed categories. The proposed model achieves a real-time inference speed of 18.9 FPS on the Jetson Nano platform, with a compact model size of 18.6 MB and power consumption maintained below 5.1 W, demonstrating its efficiency for edge deployment. In standard classification tasks, the model attains 89.64%, 87.91%, 88.76%, and 88.43% in terms of precision, recall, F1-score, and accuracy, respectively, outperforming existing mainstream lightweight models such as ResNet18, MobileNetV2, and MobileViT across all evaluation metrics. In few-shot classification tasks targeting rare toxic weed species, the complete model achieves an accuracy of 80.32%, marking an average improvement of over 13 percentage points compared to ablation variants that exclude pseudo-labeling and self-supervised modules or adopt a CNN-only architecture. The experimental results indicate that the proposed model not only delivers strong overall classification performance but also exhibits superior adaptability for deployment and robustness in low-data regimes, offering an effective solution for the precise identification and ecological control of toxic weeds within intelligent agricultural perception systems. Full article
Show Figures

Figure 1

35 pages, 6909 KB  
Article
Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco
by Abdelhalim Chmarkhi, Salama El Fatehi, Imane Mehdi, Widad Benziane, Nouhaila Dihaz, Khaoula El Khatib, Aliki Kapazoglou and Younes Hmimsa
Horticulturae 2025, 11(10), 1235; https://doi.org/10.3390/horticulturae11101235 - 13 Oct 2025
Viewed by 412
Abstract
The Mediterranean fig (Ficus carica L.) is a dioecious fruit tree of high nutritional and economic value in the Mediterranean basin. In northern Morocco, phenological desynchronization between male and female fig trees limits pollination and production. This study aimed to characterize the [...] Read more.
The Mediterranean fig (Ficus carica L.) is a dioecious fruit tree of high nutritional and economic value in the Mediterranean basin. In northern Morocco, phenological desynchronization between male and female fig trees limits pollination and production. This study aimed to characterize the phenological stages of indigenous fig and caprifig varieties using the BBCH scale and to evaluate the predictive capacity of artificial neural networks (ANNs). This study was conducted in the Bni Ahmed region over two consecutive years (2021 and 2022) at two sites. At each site, a total of 80 female fig trees were selected. Caprifig trees were selected in accordance with their availability (37 trees/site 1; 24 trees/site 2). Local meteorological data were incorporated into the analysis to evaluate the influence of climatic conditions on phenological stages. Our results revealed significant effects of temperature, humidity, and rainfall on phenological dynamics, along with a clear inter-varietal variability and pronounced desynchronization between male and female fig trees. Early-ripening caprifig varieties showed limited pollination efficiency, whereas late-ripening varieties were better synchronized with the longer receptivity period of female fig trees. Importantly, the ANN model demonstrated exceptional predictive performance (R2 up to 0.985, RMSE < 1 day), serving as a robust and practical tool for forecasting key phenological stages and minimizing potential yield losses. These findings demonstrate the value of combining phenological monitoring with AI-based modeling to improve adaptive management of fig orchards under Mediterranean climate change. This is the first study in Morocco to implement such an integrated approach to fig and caprifig trees. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 2387 KB  
Article
Comparative Proteomic Analysis Provides Insight into the Effect of Monochromatic Light Wavelength on Metabolic Pathways Regulation of the Edible Mushroom Pleurotus ostreatus Grown in Submerged Fermentation
by Georgios Bakratsas, Martina Samiotaki, Renia Fotiadou, Haralambos Stamatis and Petros Katapodis
Horticulturae 2025, 11(10), 1234; https://doi.org/10.3390/horticulturae11101234 - 13 Oct 2025
Viewed by 360
Abstract
Light plays an essential role in regulating the growth, development, and metabolic activities of the edible mushroom Pleurotus ostreatus. In this research, the influence of white, blue, green, yellow, and red light, and darkness, on the global protein expression of P. ostreatus [...] Read more.
Light plays an essential role in regulating the growth, development, and metabolic activities of the edible mushroom Pleurotus ostreatus. In this research, the influence of white, blue, green, yellow, and red light, and darkness, on the global protein expression of P. ostreatus LGAM 1123 grown in submerged culture was explored. The growth of the fungus was not inhibited by light in any of the conditions tested compared with the dark. However, the mycelial protein content was reduced by 10% under blue and white light. Proteomic analysis revealed distinct proteomes for each light wavelength, with red and blue light presenting the most distinctive proteome profiles. (Data are available via ProteomeXchange with identifier PXD065402.) Blue light activates pathways such as the citrate cycle (TCA cycle), glycolysis/gluconeogenesis, and amino acid biosynthesis, while red light stimulates mRNA-related pathways. GC-MS analysis of the biomass revealed differences in the amino acids, sugars, and lipids produced. The distinct regulation of proteins and bioactive compounds under different light wavelengths suggests that specific wavelengths can direct the metabolism of P. ostreatus into biochemical pathways. These strategies could be beneficial for the food industry because particular nutrients can be increased during the fermentation of edible fungi without the need for genetic engineering of the strain. Full article
Show Figures

Graphical abstract

15 pages, 6559 KB  
Article
Chilling-Induced Metabolic Shifts and Flavor Changes in Dendrobium officinale Leaves
by Xinqiao Zhan, Jun Yang and Bizeng Mao
Horticulturae 2025, 11(10), 1233; https://doi.org/10.3390/horticulturae11101233 - 13 Oct 2025
Viewed by 299
Abstract
Refrigeration has become a common practice for preserving Dendrobium officinale products. The molecular mechanisms underlying chilling stress responses, particularly those linking physiological adaptation to flavor-related metabolite changes, remain unclear. This study aimed to explore the transcriptional and metabolic changes in D. officinale leaves [...] Read more.
Refrigeration has become a common practice for preserving Dendrobium officinale products. The molecular mechanisms underlying chilling stress responses, particularly those linking physiological adaptation to flavor-related metabolite changes, remain unclear. This study aimed to explore the transcriptional and metabolic changes in D. officinale leaves during cold treatment and to identify key stress-responsive metabolites underlying flavor modulation and their roles in cold adaptation. Transcriptional clustering analysis revealed distinct expression profiles under varying temperatures, indicating that chilling temperatures affect pathways related to RNA processing, oxidative stress, and secondary metabolism. Metabolomics profiling demonstrated significant metabolite shifts over time, with lipids, organic acids, and phenylpropanoids being prominently altered. Notably, flavonoids like rutin and sugars like trehalose varied in their accumulation depending on the duration of cold exposure. Proteomic analysis indicated that proteins involved in amino acid metabolism and the TCA (tricarboxylic acid) cycle were significantly impacted by prolonged chilling, with amino acids (key osmoprotectants and flavor contributors) accumulating over time, linking cold stress adaptation to sensory quality enhancement. These findings suggest that a chilling temperature primarily affects metabolic flow at different time points, which could help control the quality of D. officinale leaves during cold storage. Full article
Show Figures

Figure 1

16 pages, 986 KB  
Article
Control of Neopestalotiopsis zimbabwana Using Origanum vulgare L. Essential Oil: Combined In Vitro, In Vivo and In Silico Approaches
by Héctor Gómez-Yáñez, Ramón Marcos Soto-Hernández, Lucero del Mar Ruiz-Posadas, Guadalupe Valdovinos-Ponce, Irving Israel Ruiz-López, Cecilia Beatriz Peña-Valdivia and Guadalupe Mora-Báez
Horticulturae 2025, 11(10), 1232; https://doi.org/10.3390/horticulturae11101232 - 13 Oct 2025
Viewed by 341
Abstract
Neopestalotiopsis zimbabwana is an emerging phytopathogen with multiple hosts. Considering the environmental, toxicological, and resistance issues linked to synthetic fungicides, Origanum vulgare L. essential oil (OEO) was evaluated through in vitro, in vivo, and in silico approaches. The pathogen, isolated from [...] Read more.
Neopestalotiopsis zimbabwana is an emerging phytopathogen with multiple hosts. Considering the environmental, toxicological, and resistance issues linked to synthetic fungicides, Origanum vulgare L. essential oil (OEO) was evaluated through in vitro, in vivo, and in silico approaches. The pathogen, isolated from Watsonia borbonica L., was molecularly identified. Gas chromatography–mass spectrometry (GC–MS) analysis showed hexadecanoic acid (15.98%), dodecanoic acid (15.74%), terpinen-4-ol (11.61%), and thymol (7.65%) as the main components. In vitro assays determined a minimum inhibitory concentration (MIC) of 30% OEO and a minimal fungicidal concentration (MFC) of 60% OEO. Growth chamber trials demonstrated that preventive sprays maintained 0% foliar damage—similar to Captan®—while controls reached ≈98%; suspending applications after week 4 resulted in ≈45% damage by week 8. These results confirm that OEO lacks systemic residual activity, acting only as a protectant within preventive integrated pest management (IPM) schemes. Docking to cytochrome b (protein data bank, PDB: 5TL8) indicated strong binding of α-farnesene (−7.638 kcal·mol−1), isoterpinolene (−6.944), and α-terpineol (−6.918), suggesting disruption of mitochondrial respiration via Complex III. OEO represents a promising eco-friendly alternative for managing N. zimbabwana under controlled conditions and reducing reliance on synthetic fungicides. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop