Advancements in the Regulation of Flavonoid Compounds in Monocotyledons and Dicotyledons by Plant MYB Transcription Factors
Abstract
1. Introduction
2. Flavonoid Biosynthetic Pathways
3. Structural Characteristics and Origin of MYB Transcription Factors
3.1. Structural Characteristics and Classification of MYB Transcription Factors
3.2. Origin and Differentiation of MYB Transcription Factors
4. The Regulation of Flavonoid Synthesis by MYB Transcription Factors
4.1. Involvement of MYB Transcription Factors in Monocotyledonous Plants in Flavonoid Metabolism, Regulating the Color of Flowers, Fruits, etc.
| Species (Family) | Gene | Type | Metabolism | Function | Accession | Reference |
|---|---|---|---|---|---|---|
| Arabidopsis thaliana (Brassicaceae) | AtMYB5 | R2R3-MYB | Flavonoids, Proanthocyanidins | Activation | AT3G13540.1 | [54] |
| AtMYB11/PFG2 | R2R3-MYB | Flavonols | Activation | AT3G62610.1 | [74] | |
| AtMYB12/PFG1 | R2R3-MYB | Flavonols | Activation | AT2G47460.1 | [43] | |
| AtMYB75/PAP1 | R2R3-MYB | Anthocyanins | Activation | AT1G56650.1 | [45] | |
| AtMYB90/PAP2 | R2R3-MYB | Anthocyanins | Activation | AT1G66390.1 | [45] | |
| AtMYB111/PFG3 | R2R3-MYB | Flavonols | Activation | AT5G49330.1 | [74] | |
| AtMYB113 | R2R3-MYB | Anthocyanins | Activation | AT1G66370.1 | [44] | |
| AtMYB114 | R2R3-MYB | Anthocyanins | Activation | AT1G66380.1 | [44] | |
| AtMYB123/AtTT2 | R2R3-MYB | Proanthocyanidins | Activation | AT5G35550.1 | [46] | |
| AtMYB3 | R2R3-MYB | Flavonoids | Inhibition | AT1G22640.1 | [75] | |
| AtMYB4 | R2R3-MYB | Flavonoids | Inhibition | AT4G38620.1 | [48] | |
| AtMYB7 | R2R3-MYB | Flavonols | Inhibition | AT2G16720.1 | [76] | |
| AtMYB32 | R2R3-MYB | Flavonoids | Inhibition | AT4G34990.1 | [50] | |
| AtMYBL2 | R3-MYB | Anthocyanins | Inhibition | AT1G71030.1 | [52] | |
| AtCPC | R3-MYB | Anthocyanins | Inhibition | AT2G46410.1 | [75] | |
| Oryza sativa (Poaceae) | OsC1(COLOURLESS1) | R2R3-MYB | Anthocyanins | Activation | LOC_Os06g10350.1 | [54] |
| OsP1(PERICARP COLOUR1) | R2R3-MYB | Flavonols | Activation | LOC_Os03g19120.1 | [55] | |
| OsMYB3/Kala3 | R2R3-MYB | Anthocyanins | Activation | LOC_Os03g29614.1 | [53] | |
| Zea mays (Poaceae) | ZmC1(COLOURLESS1) | R2R3-MYB | Anthocyanins | Activation | Zm00001d044975_P001 | [56] |
| ZmPL(PURPLE LEAF) | R2R3-MYB | Anthocyanins | Activation | Zm00001d037118_P001 | [58] | |
| ZmP1(PERICARP COLOUR) | R2R3-MYB | Flavonols | Activation | Zm00001d028850_P001 | [57] |
| Species (Family) | Gene | Type | Metabolism | Function | Accession | Reference |
|---|---|---|---|---|---|---|
| Lilium spp. (Liliaceae) | LhMYB6 | R2R3-MYB | Anthocyanins | Activation | BAJ05399.1 | [61] |
| LhMYB12 | R2R3-MYB | Anthocyanins | Activation | BAJ05398.1 | [61] | |
| LhMYB12-Lat | R2R3-MYB | Anthocyanins | Activation | BAO04194.1 | [62] | |
| LhR3MYB1 | R3-MYB | Anthocyanins | Inhibition | BBG71951.1 | [63] | |
| LhR3MYB2 | R3-MYB | Anthocyanins | Inhibition | BBG71952.1 | [63] | |
| Oncidium spp. (Orchidaceae) | OgMYB1 | R2R3-MYB | Anthocyanins | Activation | ABS58501.1 | [64] |
| Tulipa fosteriana (Liliaceae) | TfMYB3 | R2R3-MYB | Anthocyanins | Activation | AHY20034.1 | [65] |
| TfMYB4 | R2R3-MYB | Anthocyanins | Activation | AHY20035.1 | [65] | |
| TfMYB5 | R2R3-MYB | Anthocyanins | Activation | AHY20036.1 | [65] | |
| Phalaenopsis aphrodite (Orchidaceae) | PeMYB2 | R2R3-MYB | Anthocyanins | Activation | AIS35919.1 | [66] |
| PeMYB11 | R2R3-MYB | Anthocyanins | Activation | AIS35928.1 | [66] | |
| PeMYB12 | R2R3-MYB | Anthocyanins | Activation | AIS35929.1 | [66] | |
| Musa acuminata (Musaceae) | MaMYBPA1 | R2R3-MYB | Proanthocyanidins | Activation | Ma03_g07840.1 | [68] |
| MaMYBPA2 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | Ma10_g17650.1 | [67,68] | |
| MaMYBA1 | R2R3-MYB | Anthocyanins | Activation | Ma06_g05960.1 | [67] | |
| MaMYBA2 | R2R3-MYB | Anthocyanins | Activation | Ma09_g27990.1 | [67] | |
| MaMYBPR1/MaMYB4 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | Ma03_g21920.1 | [68] | |
| MaMYBPR2 | R2R3-MYB | Anthocyanins | Inhibition | Ma06_g11140.1 | [68] | |
| MaMYBPR3 | R2R3-MYB | Anthocyanins | Inhibition | Ma08_g16760.1 | [68] | |
| MaMYBPR4 | R2R3-MYB | Anthocyanins | Inhibition | Ma10_g19970.1 | [68] | |
| Allium cepa (Amaryllidaceae) | AcMYB1 | R2R3-MYB | Anthocyanins | Activation | AQP25672.1 | [70] |
| Dendrobium spp. (Orchidaceae) | DhMYB2 | R2R3-MYB | Anthocyanins | Activation | AQS79852.1 | [71] |
| Freesia hybrida (Iridaceae) | FhMYB5 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | QAX87835.1 | [72] |
| FhPAP1 | R2R3-MYB | Anthocyanins | Activation | QJW70307.1 | [72] | |
| FhMYB27 | R2R3-MYB | Anthocyanins | Inhibition | QJW70308.1 | [72] | |
| FhMYBx | R3-MYB | Anthocyanins | Inhibition | QJW70309.1 | [72] | |
| Narcissus tazetta (Amaryllidaceae) | NtMYB2 | R2R3-MYB | Anthocyanins | Inhibition | ATO58377.1 | [73] |
| NtMYB3 | R2R3-MYB | Flavonoids | Inhibition | AGO33166.1 | [73] |
4.2. Involvement of MYB Transcription Factors in Dicotyledonous Plants in Flavonoid Metabolism, Regulating the Color of Flowers, Fruits, etc.
5. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2021, 22, 103–114. [Google Scholar] [CrossRef]
- Islam, K.; Rawoof, A.; Ahmad, I.; Dubey, M.; Momo, J.; Ramchiary, N. Capsicum chinense MYB Transcription Factor Genes: Identification, Expression Analysis, and Their Conservation and Diversification With Other Solanaceae Genomes. Front. Plant Sci. 2021, 12, 265–280. [Google Scholar] [CrossRef]
- Ding, H.; Li, Y.; Zhang, Y.; Meng, H.; Wang, K.; Sun, Q.; Li, X.; Dong, H.; Chen, L.; He, F. Bioinformatics analysis of Myelin Transcription Factor 1. Technol. Health Care 2021, 29, 441–453. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, D.; Li, L.; Su, X.; Sun, Y.; Wang, L.; Yu, Y.; Wan, X.; Xu, L.; Li, C. Comprehensive analysis of safflower R2R3-MYBs reveals the regulation mechanism of CtMYB76 on flavonol biosynthesis. Ind. Crops Prod. 2025, 15, 227–244. [Google Scholar] [CrossRef]
- Zhao, C.; Hou, H.; Wu, J.; Zhu, Y.; Shao, Q.; Lv, A. DcMYB30 negatively function in drought tolerance of Dendrobium catenatum by modulating flavonoid biosynthesis. Plant Physiol. Biochem. 2025, 11, 199–221. [Google Scholar] [CrossRef]
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019, 10, 494–504. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, L.; Wang, H.; Chen, X.; Wang, Y.; Yang, H.; Wei, C.; Wan, X.; Xia, T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct. Integr. Genom. 2013, 13, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 377–392. [Google Scholar] [CrossRef]
- Davies, K.M.; Jibran, R.; Zhou, Y.; Albert, N.W.; Brummell, D.A.; Jordan, B.R.; Bowman, J.L.; Schwinn, K.E. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Front. Plant Sci. 2020, 11, 7–21. [Google Scholar] [CrossRef]
- Wilkins, O.; Nahal, H.; Foong, J.; Provart, N.J.; Campbell, M.M. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 2009, 149, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, X.; Yu, C.; Wang, C.; Jin, Y.; Zhang, H. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar. BMC Plant Biol. 2020, 20, 173–197. [Google Scholar] [CrossRef]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2020, 57, 1205–1215. [Google Scholar] [CrossRef]
- Ma, D.; Constabel, C.P. Complex regulation of proanthocyanidin biosynthesis in plants by R2R3 MYB activators and repressors. Recent Adv. Polyphen. Res. 2021, 7, 207–225. [Google Scholar]
- Agraharam, G.; Girigoswami, A.; Girigoswami, K. Myricetin: A Multifunctional Flavonol in Biomedicine. Curr. Pharmacol. Rep. 2022, 8, 48–61. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, Q.; Aniya; Chen, J.; Jin, Z. Copigmentation effect of flavonols on anthocyanins in black mulberry juice and their interaction mechanism investigation. Food Chem. 2023, 399, 927–941. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.B.; Li, Y.H.; Shu, X.C.; Pu, Y.T.; Wang, X.J.; Wang, T.; Wang, Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023, 28, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Li, K.; Yang, D.; Liu, N.; Zhang, L.; Zhao, L.; Zhang, X.; Liu, Y.; Gao, L.; et al. Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS. Molecules 2021, 26, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Q.; Liu, C.; Zhang, N.; Xu, W. Flavonoids as key players in cold tolerance: Molecular insights and applications in horticultural crops. Hortic. Res. 2025, 12, 366–380. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, L.; Zhong, Y. Structure, evolution, and roles of MYB transcription factors proteins in secondary metabolite biosynthetic pathways and abiotic stresses responses in plants: A comprehensive review. Front. Plant Sci. 2025, 16, 844–860. [Google Scholar] [CrossRef]
- Patyka, M.; Khablak, S.; Patyka, T.; Bondareva, L.; Dolia, M.; Spychak, V.; Lykholat, Y. Evolution of immune mechanisms in monocots and dicots in response to microbial pathogens and abiotic stressors. Biosyst. Divers. 2025, 33, 531–545. [Google Scholar] [CrossRef]
- Saigo, T.; Wang, T.; Watanabe, M.; Tohge, T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr. Opin. Plant Biol. 2020, 55, 93–99. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Tian, B.; Shi, G.; Liu, C.; Guo, J.; Cao, G.; Wei, F. Metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key metabolites and candidate genes in purple wheat (Triticum aestivum L.). Physiol. Plant 2023, 175, 921–936. [Google Scholar] [CrossRef]
- Yang, T.; Wu, X.; Wang, W.; Wu, Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. Mol. Plant 2023, 16, 145–167. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y.; Liao, Y.; Gong, Y.; Yang, J. Unveiling the evolution of VIP1 subgroup bZIP transcription factors in plants and the positive effects of BdiVIP1A on heat stress response in Brachypodium distachyon. Plant Cell Rep. 2025, 44, 179–195. [Google Scholar] [CrossRef]
- Kuzmin, E.; Taylor, J.S.; Boone, C. Retention of duplicated genes in evolution. Trends Genet. 2022, 38, 59–72. [Google Scholar] [CrossRef]
- Clapier, C.R. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int. J. Mol. Sci. 2021, 22, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, L.; Jiang, W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 93–108. [Google Scholar] [CrossRef]
- Thakur, S.; Vasudev, P.G. MYB transcription factors and their role in Medicinal plants. Mol. Biol. Rep. 2022, 49, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Hua, Q.; Chen, C.; Zhang, Z.; Zhang, R.; Zhao, J.; Hu, G.; Chen, J.; Qin, Y. Genome-Wide Characterization of R2R3-MYB Transcription Factors in Pitaya Reveals a R2R3-MYB Repressor HuMYB1 Involved in Fruit Ripening through Regulation of Betalain Biosynthesis by Repressing Betalain Biosynthesis-Related Genes. Cells 2021, 10, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wen, J.; Xia, Y.; Zhang, L.; Du, H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. Hortic. Res. 2022, 9, 58–74. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, B.; Gu, G.; Yuan, J.; Shen, S.; Jin, L.; Lin, Z.; Lin, J.; Xie, X. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genom. 2022, 23, 432–458. [Google Scholar] [CrossRef]
- LaFountain, A.; Yuan, Y. Repressors of anthocyanin biosynthesis. New Phytol. 2021, 231, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Lipsick, J.S. One billion years of Myb. Oncogene 1996, 13, 223–235. [Google Scholar] [PubMed]
- Jiang, C.; Gu, J.; Chopra, S.; Gu, X.; Peterson, T. Ordered origin of the typical two- and three-repeat Myb genes. Gene 2004, 22, 326–349. [Google Scholar] [CrossRef]
- Lucas, C.W.; Maximilian, L.; Stacey, D.S. MYB regulator of ‘colorless’ flavonols underlies the evolution of red flowers in Iochroma (Solanaceae). G3 2025, 230, jkaf230. [Google Scholar]
- Li, P.; Xia, E.; Fu, J.; Xu, Y.; Zhao, X.; Tong, W.; Tang, Q.; Tadege, M.; Fernie, A.; Zhao, J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). Plant J. Cell Mol. Biol. 2022, 110, 1144–1165. [Google Scholar] [CrossRef]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Abdirad, S.; Ghaffari, M.R.; Majd, A.; Irian, S.; Soleymaniniya, A.; Daryani, P.; Koobaz, P.; Shobbar, Z.S.; Farsad, L.K.; Yazdanpanah, P.; et al. Genome-Wide Expression Analysis of Root Tips in Contrasting Rice Genotypes Revealed Novel Candidate Genes for Water Stress Adaptation. Front. Plant Sci. 2022, 13, 79–92. [Google Scholar] [CrossRef]
- Schilbert, H.M.; Glover, B.J. Analysis of flavonol regulator evolution in the Brassicaceae reveals MYB12, MYB111 and MYB21 duplications and MYB11 and MYB24 gene loss. BMC Genom. 2022, 23, 604–617. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, C.; Guo, X.; Li, H.; Lu, H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int. J. Mol. Sci. 2021, 22, 90–104. [Google Scholar] [CrossRef]
- Ma, L.; Liu, K.W.; Li, Z.; Hsiao, Y.Y.; Qi, Y.; Fu, T.; Tang, G.D.; Zhang, D.; Sun, W.H.; Liu, D.K.; et al. Diploid and tetraploid genomes of Acorus and the evolution of monocots. Nat. Commun. 2023, 14, 61–75. [Google Scholar] [CrossRef]
- Adhikari, P.B.; Kasahara, R.D. An Overview on MADS Box Members in Plants: A Meta-Review. Int. J. Mol. Sci. 2024, 25, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Mehrtens, F.; Kranz, H.; Bednarek, P.; Weisshaar, B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005, 138, 83–96. [Google Scholar] [CrossRef]
- Gonzalez, A.; Zhao, M.; Leavitt, J.; Lloyd, A. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. Cell Mol. Biol. 2008, 53, 814–827. [Google Scholar] [CrossRef]
- Borevitz, J.; Xia, Y.; Blount, J.; Dixon, R.; Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 2000, 12, 383–2394. [Google Scholar] [CrossRef] [PubMed]
- Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 2001, 13, 2099–2114. [Google Scholar] [CrossRef] [PubMed]
- Preston, J.; Wheeler, J.; Heazlewood, J.; Li, S.F.; Parish, R.W. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J. 2004, 40, 979–995. [Google Scholar] [CrossRef]
- Li, X.; Zhong, M.; Qu, L.; Yang, J.; Liu, X.; Zhao, Q.; Liu, X.; Zhao, X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci. 2021, 310, 983–996. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Guan, M.; Zhao, C.; Geng, P.; Zhao, Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J. Cell Mol. Biol. 2020, 101, 637–652. [Google Scholar] [CrossRef]
- Zimmermann, I.; Heim, M.; Weisshaar, B.; Uhrig, J. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. Cell Mol. Biol. 2004, 40, 22–34. [Google Scholar] [CrossRef]
- Matsui, K.; Umemura, Y.; Ohme-Takagi, M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J. 2008, 55, 954–967. [Google Scholar] [CrossRef]
- Dubos, C.; Le Gourrierec, J.; Baudry, A.; Huep, G.; Lanet, E.; Debeaujon, I.; Routaboul, J.; Alboresi, A.; Weisshaar, B.; Lepiniec, L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2008, 55, 940–953. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, H.; Zhao, M.; Yang, Z.; Zhou, Z.; Guo, Y.; Lin, Y.; Chen, H. OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice. Mol. Breed. 2021, 41, 51–65. [Google Scholar] [CrossRef]
- Upadhyaya, G.; Das, A.; Ray, S. A rice R2R3-MYB (OsC1) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis. Physiol. Plant. 2021, 173, 2334–2349. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, H.; Zhu, H.; Huang, C.; Liu, C.; Chang, Y.; Kong, Z.; Zhou, Z.; Wang, G.; Lin, Y.; et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol. 2019, 223, 705–721. [Google Scholar] [CrossRef]
- Paz-Ares, J.; Ghosal, D.; Wienand, U.; Peterson, P.; Saedler, H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987, 6, 684–699. [Google Scholar] [CrossRef]
- Grotewold, E.; Drummond, B.; Bowen, B.; Peterson, T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 1994, 76, 543–553. [Google Scholar] [CrossRef]
- Cone, K.; Cocciolone, S.; Burr, F.; Burr, B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 1993, 5, 1795–1805. [Google Scholar] [PubMed]
- Higgins, I.J.; Choudury, S.G.; Husbands, A.Y. Mechanisms driving functional divergence of transcription factor paralogs. New Phytol. 2025, 247, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Lou, Q.; Hao, L.; Qi, G.; Tian, Y.; Pu, X.; He, C.; Wang, Y.; Xu, W.; Xu, Z.; et al. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. Plant J. 2022, 109, 1305–1318. [Google Scholar] [CrossRef]
- Yamagishi, M.; Shimoyamada, Y.; Nakatsuka, T.; Masuda, K. Two R2R3-MYB Genes, Homologs of Petunia AN2, Regulate Anthocyanin Biosyntheses in Flower Tepals, Tepal Spots and Leaves of Asiatic Hybrid Lily. Plant Cell Physiol. 2010, 13, 55–69. [Google Scholar] [CrossRef]
- Yamagishi, M.; Toda, S.; Tasaki, K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). New Phytol. 2014, 201, 1009–1020. [Google Scholar] [CrossRef]
- Sakai, M.; Yamagishi, M.; Matsuyama, K. Repression of anthocyanin biosynthesis by R3-MYB transcription factors in lily (Lilium spp.). Plant Cell Rep. 2019, 38, 609–622. [Google Scholar] [CrossRef]
- Chiou, C.; Yeh, K. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol. Biol. 2008, 66, 379–388. [Google Scholar] [CrossRef]
- Yuan, Y.; Shi, Y.; Tang, D. Isolation and characterization of R2R3-MYB and basic helix–loop–helix (bHLH) transcription factors involved in anthocyanin biosynthesis in tulip tepals. Acta Physiol. Plant. 2020, 42, 56–71. [Google Scholar] [CrossRef]
- Hsu, C.; Chen, Y.; Tsai, W.; Chen, W.; Chen, H. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiol. 2015, 168, 175–191. [Google Scholar] [CrossRef]
- Busche, M.; Pucker, B.; Weisshaar, B.; Stracke, R. Three R2R3-MYB transcription factors from banana (Musa acuminata) activate structural anthocyanin biosynthesis genes as part of an MBW complex. BMC Res. Notes 2023, 16, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Rajput, R.; Naik, J.; Stracke, R.; Pandey, A. Interplay between R2R3 MYB-type activators and repressors regulates proanthocyanidin biosynthesis in banana (Musa acuminata). New Phytol. 2022, 236, 1108–1127. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, S.; Yang, Q.; Gao, H.; Sheng, O.; Bi, F.; Li, C.; Dong, T.; Yi, G.; He, W.; et al. MaMYB4, an R2R3-MYB Repressor Transcription Factor, Negatively Regulates the Biosynthesis of Anthocyanin in Banana. Front. Plant Sci. 2020, 11, 704–719. [Google Scholar] [CrossRef] [PubMed]
- Schwinn, K.E.; Ngo, H.; Kenel, F.; Brummell, D.A.; Albert, N.W.; McCallum, J.A.; Pither-Joyce, M.; Crowhurst, R.N.; Eady, C.; Davies, K.M. The onion (Allium cepa L.) R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis. Front. Plant Sci. 2016, 7, 1865–1880. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiu, J.; Ding, L.; Huang, M.; Huang, S.; Yang, G.; Yin, J. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Plant Physiol. Biochem. 2017, 112, 335–345. [Google Scholar] [CrossRef]
- Xiaotong, S.; Deyu, Z.; Ruifang, G.; Meng, Q.; Liudi, Z.; Jia, Z.; Yanan, W.; Qi, Z.; Niu, Z.; Guoyun, X.; et al. Molecular insights into TT2-type MYB regulators illuminate the complexity of floral flavonoids biosynthesis in Freesia hybrida. Hortic. Res. 2025, 12, 52–68. [Google Scholar]
- Anwar, M.; Wang, G.; Wu, J.; Waheed, S.; Allan, A.; Zeng, L. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco. Molecules 2018, 23, 781–795. [Google Scholar] [CrossRef]
- Stracke, R.; Ishihara, H.; Huep, G.; Barsch, A.; Mehrtens, F.; Niehaus, K.; Weisshaar, B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. Cell Mol. Biol. 2007, 50, 660–677. [Google Scholar] [CrossRef]
- Zhu, H.; Fitzsimmons, K.; Khandelwal, A.; Kranz, R. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol. Plant 2009, 2, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Fornalé, S.; Lopez, E.; Salazar-Henao, J.; Fernández-Nohales, P.; Rigau, J.; Caparros-Ruiz, D. AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol. 2014, 55, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Guo, Q.; Li, H.; Yuan, G.; Gui, Q.; Xiao, Y.; Liao, M.; Yang, L. Integrated transcriptomic and WGCNA analyses reveal candidate genes regulating mainly flavonoid biosynthesis in Litsea coreana var. sinensis. BMC Plant Biol. 2024, 24, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Brisou, G.; Dalmais, M.; Thévenin, J.; van der Wal, F.; Latrasse, D.; Suresh Devani, R.; Benhamed, M.; Dubreucq, B.; Boualem, A.; et al. TT2The Seed Development Factors and Regulate Heat Stress Response in. Genes 2021, 12, 46–59. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, K.; Sun, Z.; Yan, M.; Chen, C.; Zhang, X.; Tang, Y.; Wu, Y. LNK1 and LNK2 Corepressors Interact with the MYB3 Transcription Factor in Phenylpropanoid Biosynthesis. Plant Physiol. 2017, 174, 1348–1358. [Google Scholar] [CrossRef]
- Czemmel, S.; Stracke, R.; Weisshaar, B.; Cordon, N.; Harris, N.; Walker, A.; Robinson, S.; Bogs, J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009, 151, 1513–1530. [Google Scholar] [CrossRef]
- Poudel, P.R.; Azuma, A.; Kobayashi, S.; Koyama, K.; Goto-Yamamoto, N. VvMYBAs induce expression of a series of anthocyanin biosynthetic pathway genes in red grapes (Vitis vinifera L.). Sci. Hortic. 2021, 283, 121–134. [Google Scholar] [CrossRef]
- Bogs, J.; Jaffé, F.; Takos, A.; Walker, A.; Robinson, S. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 2007, 143, 1347–1361. [Google Scholar] [CrossRef] [PubMed]
- Terrier, N.; Torregrosa, L.; Ageorges, A.; Vialet, S.; Verriès, C.; Cheynier, V.; Romieu, C. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol. 2009, 149, 1028–1041. [Google Scholar] [CrossRef]
- Deluc, L.; Bogs, J.; Walker, A.R.; Ferrier, T.; Decendit, A.; Merillon, J.-M.; Robinson, S.P.; Barrieu, F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol. 2008, 147, 2041–2053. [Google Scholar] [CrossRef]
- Koyama, K.; Numata, M.; Nakajima, I.; Goto-Yamamoto, N.; Matsumura, H.; Tanaka, N. Functional characterization of a new grapevine MYB transcription factor and regulation of proanthocyanidin biosynthesis in grapes. J. Exp. Bot. 2014, 65, 4433–4449. [Google Scholar] [CrossRef]
- Cavallini, E.; Matus, J.T.; Finezzo, L.; Zenoni, S.; Loyola, R.; Guzzo, F.; Schlechter, R.; Ageorges, A.; Arce-Johnson, P.; Tornielli, G.B. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol. 2015, 167, 1448–1470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, G.; Liu, L.; Zhang, Q.; Han, Z.; Chen, X.; Li, B. A R2R3-MYB Transcription Factor, VvMYBC2L2, Functions as a Transcriptional Repressor of Anthocyanin Biosynthesis in Grapevine (Vitis vinifera L.). Molecules 2018, 24, 92–107. [Google Scholar] [CrossRef] [PubMed]
- James, A.; Ma, D.; Mellway, R.; Gesell, A.; Yoshida, K.; Walker, V.; Tran, L.; Stewart, D.; Reichelt, M.; Suvanto, J.; et al. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure. Plant Physiol. 2017, 174, 154–171. [Google Scholar] [CrossRef]
- Ma, D.; Reichelt, M.; Yoshida, K.; Gershenzon, J.; Constabel, C. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J. Cell Mol. Biol. 2018, 96, 949–965. [Google Scholar] [CrossRef]
- Wan, S.; Li, C.; Ma, X.; Luo, K. PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep. 2017, 36, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Ma, D.; Constabel, C. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiol. 2015, 167, 693–710. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, L.; Liu, S.; Zhou, L.; Wang, X.; Wang, W.; Cai, L.; Wu, X.; Chang, Y.; Wang, S. A repressor motif-containing poplar R3 MYB-like transcription factor regulates epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis. J. Plant Biol. 2016, 59, 525–535. [Google Scholar] [CrossRef]
- Verdier, J.; Zhao, J.; Torres-Jerez, I.; Ge, S.; Liu, C.; He, X.; Mysore, K.; Dixon, R.; Udvardi, M. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc. Natl. Acad. Sci. USA 2012, 109, 1766–1771. [Google Scholar] [CrossRef]
- Li, P.; Chen, B.; Zhang, G.; Chen, L.; Dong, Q.; Wen, J.; Mysore, K.; Zhao, J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol. 2016, 210, 905–921. [Google Scholar] [CrossRef]
- Liu, C.; Jun, J.; Dixon, R. MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula. Plant Physiol. 2014, 165, 1424–1439. [Google Scholar] [CrossRef]
- Naik, J.; Rajput, R.; Pucker, B.; Stracke, R.; Pandey, A. The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula. Plant Mol. Biol. 2021, 106, 157–172. [Google Scholar] [CrossRef]
- Peel, G.; Pang, Y.; Modolo, L.; Dixon, R. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J. Cell Mol. Biol. 2009, 59, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.; Liu, C.; Xiao, X.; Dixon, R. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula. Plant Cell 2015, 27, 2860–2879. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Rao, X.; Li, Y.; Jun, J.; Dixon, R. Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnol. J. 2021, 19, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Han, T.; Xun, H.; Zeng, X.; Li, P.; Li, Y.; Wang, Y.; Shao, Y.; Cheng, X.; Feng, X.; et al. MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J. Exp. Bot. 2021, 72, 4401–4418. [Google Scholar] [CrossRef]
- Martínez-Rivas, F.; Blanco-Portales, R.; Serratosa, M.; Ric-Varas, P.; Guerrero-Sánchez, V.; Medina-Puche, L.; Moyano, L.; Mercado, J.; Alseekh, S.; Caballero, J.; et al. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening. Plant J. Cell Mol. Biol. 2023, 114, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yue, M.; Liu, Y.; Zhang, N.; Lin, Y.; Zhang, Y.; Wang, Y.; Li, M.; Luo, Y.; Zhang, Y. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria× ananassa). Plant Biotechnol. J. 2023, 15, 83–98. [Google Scholar] [CrossRef]
- Schaart, J.G.; Dubos, C.; Romero De La Fuente, I.; van Houwelingen, A.M.; de Vos, R.C.; Jonker, H.H.; Xu, W.; Routaboul, J.M.; Lepiniec, L.; Bovy, A.G. Identification and characterization of MYB-b HLH-WD 40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol. 2013, 197, 454–467. [Google Scholar] [CrossRef]
- Medina-Puche, L.; Cumplido-Laso, G.; Amil-Ruiz, F.; Hoffmann, T.; Ring, L.; Rodríguez-Franco, A.; Caballero, J.L.; Schwab, W.; Muñoz-Blanco, J.; Blanco-Portales, R. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria× ananassa fruits. J. Exp. Bot. 2014, 65, 401–417. [Google Scholar] [CrossRef]
- Aharoni, A.; De Vos, C.; Wein, M.; Sun, Z.; Greco, R.; Kroon, A.; Mol, J.; O’Connell, A. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. Cell Mol. Biol. 2001, 28, 319–332. [Google Scholar] [CrossRef]
- He, G.; Zhang, R.; Jiang, S.; Wang, H.; Ming, F. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Hortic. Res. 2023, 10, 80–94. [Google Scholar] [CrossRef]
- Jiao, T.; Huang, Y.; Wu, Y.; Jiang, T.; Li, T.; Liu, Y.; Liu, Y.; Han, Y.; Liu, Y.; Jiang, X.; et al. Functional diversity of subgroup 5 R2R3-MYBs promoting proanthocyanidin biosynthesis and their key residues and motifs in tea plant. Hortic. Res. 2023, 10, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Wang, L.; Zhang, Y.; Ruan, L.; Li, H.; Wu, L.; Xu, L.; Zhang, C.; Zhou, X.; Cheng, H.; et al. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. Plant J. Cell Mol. Biol. 2019, 97, 825–840. [Google Scholar] [CrossRef]
- Vimolmangkang, S.; Han, Y.; Wei, G.; Korban, S. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biol. 2013, 13, 176–186. [Google Scholar] [CrossRef]
- An, X.; Tian, Y.; Chen, K.; Liu, X.; Liu, D.; Xie, X.; Cheng, C.; Cong, P.; Hao, Y. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol. 2015, 56, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef]
- Wang, N.; Xu, H.; Jiang, S.; Zhang, Z.; Lu, N.; Qiu, H.; Qu, C.; Wang, Y.; Wu, S.; Chen, X. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J. Cell Mol. Biol. 2017, 90, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Jiang, H.; Mao, Z.; Wang, N.; Jiang, S.; Xu, H.; Yang, G.; Zhang, Z.; Chen, X. The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynthesis in apple. Plant Physiol. Biochem. 2019, 139, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Y.; Yu, L.; Jiang, H.; Guo, Z.; Xu, H.; Jiang, S.; Fang, H.; Zhang, J.; Su, M.; et al. MdWRKY11 Participates in Anthocyanin Accumulation in Red-Fleshed Apples by Affecting MYB Transcription Factors and the Photoresponse Factor MdHY5. J. Agric. Food Chem. 2019, 67, 8783–8793. [Google Scholar] [CrossRef] [PubMed]
- Chagné, D.; Lin-Wang, K.; Espley, R.; Volz, R.; How, N.; Rouse, S.; Brendolise, C.; Carlisle, C.; Kumar, S.; De Silva, N.; et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 2013, 161, 225–239. [Google Scholar] [CrossRef]
- Ban, Y.; Honda, C.; Hatsuyama, Y.; Igarashi, M.; Bessho, H.; Moriguchi, T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 2007, 48, 958–970. [Google Scholar] [CrossRef]
- Wang, N.; Qu, C.; Jiang, S.; Chen, Z.; Xu, H.; Fang, H.; Su, M.; Zhang, J.; Wang, Y.; Liu, W.; et al. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples. Plant J. Cell Mol. Biol. 2018, 96, 39–55. [Google Scholar] [CrossRef]
- Xu, H.; Wang, N.; Liu, J.; Qu, C.; Wang, Y.; Jiang, S.; Lu, N.; Wang, D.; Zhang, Z.; Chen, X. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol. Biol. 2017, 94, 149–165. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, K.; Qi, Y.; Lv, G.; Ren, X.; Liu, Z.; Ma, F. Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit (Actinidia chinensis). J. Agric. Food Chem. 2021, 69, 3677–3691. [Google Scholar] [CrossRef]
- Wang, L.; Tang, W.; Hu, Y.; Zhang, Y.; Sun, J.; Guo, X.; Lu, H.; Yang, Y.; Fang, C.; Niu, X.; et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. Plant J. Cell Mol. Biol. 2019, 99, 359–378. [Google Scholar] [CrossRef]
- Jian, W.; Cao, H.; Yuan, S.; Liu, Y.; Lu, J.; Lu, W.; Li, N.; Wang, J.; Zou, J.; Tang, N.; et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic. Res. 2019, 6, 22–38. [Google Scholar] [CrossRef]
- Cao, X.; Qiu, Z.; Wang, X.; Van Giang, T.; Liu, X.; Wang, J.; Wang, X.; Gao, J.; Guo, Y.; Du, Y.; et al. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. J. Exp. Bot. 2017, 68, 5745–5758. [Google Scholar] [CrossRef]
- Li, J.; Luan, Q.; Han, J.; Zhang, C.; Liu, M.; Ren, Z. CsMYB60 directly and indirectly activates structural genes to promote the biosynthesis of flavonols and proanthocyanidins in cucumber. Hortic. Res. 2020, 7, 103–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Ma, H.; Duan, X.; Gao, S.; Zhou, X.; Cheng, Y. The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers. Plant Physiol. Biochem. 2021, 164, 279–288. [Google Scholar] [CrossRef]
- Duan, A.; Deng, Y.; Tan, S.; Xu, Z.; Xiong, A. A MYB activator, DcMYB11c, regulates carrot anthocyanins accumulation in petiole but not taproot. Plant Cell Environ. 2023, 46, 2794–2809. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Q.; Feng, K.; Yu, X.; Xiong, A. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol. J. 2020, 18, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Katayama-Ikegami, A.; Yonemori, K. Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Sci. Hortic. 2011, 130, 373–380. [Google Scholar] [CrossRef]
- Akagi, T.; Ikegami, A.; Tsujimoto, T.; Kobayashi, S.; Sato, A.; Kono, A.; Yonemori, K. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol. 2009, 151, 2028–2045. [Google Scholar] [CrossRef]
- Zhou, H.; Lin-Wang, K.; Liao, L.; Gu, C.; Lu, Z.; Allan, A.; Han, Y. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Front. Plant Sci. 2015, 6, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xie, L.; Ma, Y.; Ren, C.; Xing, M.; Fu, Z.; Wu, X.; Yin, X.; Xu, C.; Li, X. PpMYB15 and PpMYBF1 transcription factors are involved in regulating flavonol biosynthesis in peach fruit. J. Agric. Food Chem. 2018, 67, 644–652. [Google Scholar] [CrossRef]
- Rahim, M.; Busatto, N.; Trainotti, L. Regulation of anthocyanin biosynthesis in peach fruits. Planta 2014, 240, 913–929. [Google Scholar] [CrossRef]
- Schwinn, K.; Venail, J.; Shang, Y.; Mackay, S.; Alm, V.; Butelli, E.; Oyama, R.; Bailey, P.; Davies, K.; Martin, C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 2006, 18, 831–851. [Google Scholar] [CrossRef] [PubMed]
- Moyano, E.; Martínez-Garcia, J.F.; Martin, C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell 1996, 8, 1519–1532. [Google Scholar] [PubMed]
- Tamagnone, L.; Merida, A.; Parr, A.; Mackay, S.; Culianez-Macia, F.; Roberts, K.; Martin, C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 1998, 10, 135–154. [Google Scholar] [CrossRef]
- Quattrocchio, F.; Wing, J.; van der Woude, K.; Souer, E.; de Vetten, N.; Mol, J.; Koes, R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 1999, 11, 1433–1444. [Google Scholar] [CrossRef]
- Quattrocchio, F.; Verweij, W.; Kroon, A.; Spelt, C.; Mol, J.; Koes, R. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 2006, 18, 1274–1291. [Google Scholar] [CrossRef]
- Albert, N.; Lewis, D.; Zhang, H.; Schwinn, K.; Jameson, P.; Davies, K. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J. Cell Mol. Biol. 2011, 65, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.; Davies, K.; Lewis, D.; Zhang, H.; Montefiori, M.; Brendolise, C.; Boase, M.; Ngo, H.; Jameson, P.; Schwinn, K. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 2014, 26, 962–980. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, T.; Pan, Q.; Anupol, N.; Chen, H.; Shi, J.; Liu, F.; Deqiang, D.; Wang, C.; Zhao, J.; et al. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnol. J. 2019, 17, 2078–2095. [Google Scholar] [CrossRef]
- Zou, K.; Wang, Y.; Zhao, M.; Zhao, L.; Xu, Z. Cloning and expression analysis of RrMYB113 gene related to anthocyanin biosynthesis in Rosa rugose. Am. J. Plant Sci. 2018, 9, 701–710. [Google Scholar] [CrossRef]
- Zhai, R.; Zhao, Y.; Wu, M.; Yang, J.; Li, X.; Liu, H.; Wu, T.; Liang, F.; Yang, C.; Wang, Z.; et al. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biol. 2019, 19, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Zhao, S.; Xu, H.; Allan, A.; Zhang, X.; Fan, L.; Chen, L.; Su, J.; Shu, Q.; Li, K. The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Mol. Biol. 2021, 106, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Ming, M.; Allan, A.; Gu, C.; Li, L.; Wu, X.; Wang, R.; Chang, Y.; Qi, K.; Zhang, S.; et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J. Cell Mol. Biol. 2017, 92, 437–451. [Google Scholar] [CrossRef] [PubMed]



| Collective Term | Classification | Function | Category | Roles in Biosynthesis | Reference |
|---|---|---|---|---|---|
| Structural Genes | EBG | Catalyze the initial reaction in secondary metabolism | PAL | Catalyzes the deamination of phenylalanine to form trans-cinnamic acid | [13] |
| C4H | Catalyzes the hydroxylation of trans-cinnamic acid to form p-coumaric acid | [13] | |||
| 4CL | Catalyzes the conjugation of p-coumaric acid with CoA to form 4-coumaroyl-CoA | [14] | |||
| CHI | Catalyzes the intramolecular isomerization of chalcone | [16] | |||
| CHS | Catalyzes the synthesis of proanthocyanidins, generates chalcone, and regulates the production efficiency of chalcone | [16] | |||
| F3′H | Catalyzes the hydroxylation of flavanone to generate dihydrokaempferol | [16] | |||
| F3′5′H | Catalyzes the conversion of flavanone to trihydroxyflavanone and the conversion of dihydrokaempferol to dihydromyricetin | [16] | |||
| F3H | Catalyzes the conversion of flavanone and dihydrokaempferol to dihydroquercetin | [17] | |||
| LBG | Directs metabolic flux toward the proanthocyanidin biosynthetic branch | FLS | Catalyzes the oxidative cyclization of dihydroflavonols to generate flavonols | [17] | |
| DFR | Catalyzes the conversion of dihydroflavonols to leucoanthocyanidins | [18] | |||
| UFGT | Catalyzes the glycosylation of anthocyanidins to form stable anthocyanins | [18] | |||
| ANS | Catalyzes the oxidative cyclization of leucoanthocyanidins to generate anthocyanidins | [17] |
| Species (Family) | Gene | Type | Metabolism | Function | Accession | Reference |
|---|---|---|---|---|---|---|
| Vitis vinifera (Vitaceae) | VvMYBF1 | R2R3-MYB | Flavonols | Activation | ACV81697.1 | [80] |
| VvMYBA1 | R2R3-MYB | Anthocyanins | Activation | BAD18977.1 | [81] | |
| VvMYBA2 | R2R3-MYB | Anthocyanins | Activation | BAD18978.1 | [81] | |
| VvMYBPA1 | R2R3-MYB | Proanthocyanidins | Activation | CAJ90831.1 | [82] | |
| VvMYBPA2 | R2R3-MYB | Proanthocyanidins | Activation | ACK56131.1 | [83] | |
| VvMYB5a | R2R3-MYB | Flavonoids | Activation | AAS68190.1 | [84] | |
| VvMYB5b | R2R3-MYB | Flavonoids | Activation | AAX51291.1 | [84] | |
| VvMYBPAR | R2R3-MYB | Proanthocyanidins | Activation | BAP39802.1 | [85] | |
| VvMYBC2-L1 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | AFX64995.1 | [86] | |
| VvMYBC2-L2 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | ACX50288.2 | [87] | |
| VvMYBC2-L3 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | AIP98385.1 | [86] | |
| Populus trichocarpa (Salicaceae) | PtrMYB115 | R2R3-MYB | Proanthocyanidins | Activation | Potri.002G173900.1 | [88] |
| PtrMYB134 | R2R3-MYB | Proanthocyanidins | Activation | Potri.006G221800.1 | [88] | |
| PtrMYB165 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | Potri.010G114000.1 | [89] | |
| PtrMYB182 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | Potri.004G088100.1 | [91] | |
| PtrMYB194 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | Potri.008G128500.1 | [89] | |
| PtrMYB57 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | Potri.T011400.1 | [90] | |
| PtrRML1 | R3-MYB | Anthocyanins | Inhibition | Potri.012G031200.1 | [92] | |
| Medicago sativa (Fabaceae) | MtPAR | R2R3-MYB | Proanthocyanidins | Activation | ADU78729.1 | [93] |
| MtMYB5 | R2R3-MYB | Proanthocyanidins | Activation | XP_003601609.1 | [95] | |
| MtMYB14 | R2R3-MYB | Proanthocyanidins | Activation | AFJ53058.1 | [95] | |
| MtMYB134 | R2R3-MYB | Flavonols | Activation | QUD39823.1 | [96] | |
| MtLAP1 | R2R3-MYB | Anthocyanins | Activation | ACN79541.1 | [97] | |
| MtMYB2 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | XP_003616388.1 | [98] | |
| Glycine max (Fabaceae) | GmTT2A | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | XP_003541301.1 | [99] |
| GmTT2B | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | NP_001342587.1 | [99] | |
| GmMYB5A | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | NP_001241492.1 | [99] | |
| GmMYBA2 | R2R3-MYB | Anthocyanins | Activation | Glyma.09G235100.1 | [100] | |
| GmMYBR | R2R3-MYB | Anthocyanins | Inhibition | Glyma.20G013000.1 | [100] | |
| Fragaria × ananassa (Rosaceae) | FaMYB123 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | FvH4_5g32460.t2 | [101] |
| FaMYB5 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | USN17642.1 | [102] | |
| FaMYB9 | R2R3-MYB | Proanthocyanidins | Activation | AFL02460.1 | [103] | |
| FaMYB10 | R2R3-MYB | Anthocyanins | Activation | ABX79947.1 | [104] | |
| FaMYB11 | R2R3-MYB | Proanthocyanidins | Activation | AFL02461.1 | [103] | |
| FaMYB1 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | AAK84064.1 | [105] | |
| Rosa chinensis (Rosaceae) | RcMYB1 | R2R3-MYB | Anthocyanins | Activation | XP_024189921.1 | [106] |
| Camellia sinensis (Theaceae) | CsMYB5a | R2R3-MYB | Proanthocyanidins | Activation | KAF5936438.1 | [107] |
| CsMYB5b | R2R3-MYB | Proanthocyanidins | Activation | XP_028089226.1 | [107] | |
| CsMYB5e | R2R3-MYB | Proanthocyanidins | Activation | XP_028116920.1 | [107] | |
| CsMYB75 | R2R3-MYB | Anthocyanins | Activation | UYR25389.1 | [108] | |
| Malus domestica (Rosaceae) | MdMYB1 | R2R3-MYB | Anthocyanin | Activation | ADQ27443.1 | [109] |
| MdMYB3 | R2R3-MYB | Anthocyanins, Flavonols | Activation | AEX08668.1 | [109] | |
| MdMYB9 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | ABB84757.1 | [110] | |
| MdMYB10 | R2R3-MYB | Anthocyanins | Activation | ACQ45201.1 | [111,114] | |
| MdMYB11 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Activation | AAZ20431.1 | [110] | |
| MdMYB12 | R2R3-MYB | Proanthocyanidins | Activation | XP_008337875.1 | [112] | |
| MdMYB22 | R2R3-MYB | Flavonols | Activation | AAZ20438.1 | [113] | |
| MdMYB110a | R2R3-MYB | Anthocyanins | Activation | AFC88038.1 | [115] | |
| MdMYBA | R2R3-MYB | Anthocyanins | Activation | BAF80582.1 | [116] | |
| MdMYBPA1 | R2R3-MYB | Proanthocyanidins | Activation | AIF70441.1 | [117] | |
| MdMYB16 | R2R3-MYB | Anthocyanins | Inhibition | ADL36756.1 | [118] | |
| Actinidia chinensis (Actinidiaceae) | AcMYBF110 | R2R3-MYB | Anthocyanins | Activation | AYJ72555.1 | [119] |
| AcMYB123 | R2R3-MYB | Anthocyanins | Activation | QAT77713.1 | [120] | |
| Solanum lycopersicum (Solanaceae) | SlMYB75/AN2 | R2R3-MYB | Anthocyanins | Activation | Solyc10g086250.2.1 | [121] |
| SlMYBATV | R3-MYB | Anthocyanins | Inhibition | Solyc07g052490.3.1 | [122] | |
| Cucumis sativus (Cucurbitaceae) | CsMYB60 | R2R3-MYB | Flavonols, Proanthocyanidins | Activation | CsaV3_4G001130.1 | [123] |
| Paeonia suffruticosa (Paeoniaceae) | PsMYB58 | R2R3-MYB | Anthocyanins | Activation | AMW36067.1 | [124] |
| Daucus carota (Apiaceae) | DcMYB113 | R2R3-MYB | Anthocyanins | Activation | DCAR_008994 | [125,126] |
| Diospyros kaki (Ebenaceae) | DkMyb2 | R2R3-MYB | Proanthocyanidins | Activation | BAI49719.1 | [127] |
| DkMyb4 | R2R3-MYB | Proanthocyanidins | Activation | BAI49721.1 | [128] | |
| Prunus persica(Rosaceae) | PpMYB7 | R2R3-MYB | Proanthocyanidins | Activation | ALO81018.1 | [129] |
| PpMYB15 | R2R3-MYB | Flavonols | Activation | Prupe.8G270000 | [130] | |
| PpMYBF1 | R2R3-MYB | Flavonols | Activation | Prupe.1G125300 | [130] | |
| PpMYB10 | R2R3-MYB | Anthocyanin | Activation | ABX79945.1 | [131] | |
| PpMYB18 | R2R3-MYB | Anthocyanins, Proanthocyanidins | Inhibition | ALO81021.1 | [131] | |
| Antirrhinum majus(Plantaginaceae) | AmROS1 | R2R3-MYB | Anthocyanins | Activation | ABB83826.1 | [132] |
| AmROS2 | R2R3-MYB | Anthocyanins | Activation | ABB83827.1 | [132] | |
| AmVENOSA | R2R3-MYB | Anthocyanins | Activation | ABB83828.1 | [132] | |
| AmMYB340 | R2R3-MYB | Flavonols | Activation | - | [133] | |
| AmMYB305 | R2R3-MYB | Flavonols | Activation | - | [133] | |
| AmMYB308 | R2R3-MYB | Flavonoids | Inhibition | P81393 | [134] | |
| AmMYB330 | R2R3-MYB | Flavonoids | Inhibition | P81395 | [134] | |
| Petunia hybrida(Solanaceae) | PhAN2 | R2R3-MYB | Anthocyanins | Activation | AAF66727.1 | [135] |
| PhPH4 | R2R3-MYB | Anthocyanins | Activation | AAY51377.1 | [136] | |
| PhDPL | R2R3-MYB | Anthocyanins | Activation | ADW94950.1 | [137] | |
| PhPHZ | R2R3-MYB | Anthocyanins | Activation | ADW94951.1 | [137] | |
| PhMYB27 | R2R3-MYB | Anthocyanins | Inhibition | AHX24372.1 | [138] | |
| PhMYBx | R3-MYB | Anthocyanins | Inhibition | AHX24371.1 | [138] | |
| Rosa rugosa(Rosaceae) | RrMYB5 | R2R3-MYB | Proanthocyanidins | Activation | AYP10274.1 | [139] |
| RrMYB10 | R2R3-MYB | Proanthocyanidins | Activation | CCA29099.1 | [139] | |
| RrMYB113 | R2R3-MYB | Anthocyanins | Activation | AXQ12351.1 | [140] | |
| Pyrus spp.(Rosaceae) | PbMYB12b | R2R3-MYB | Flavonols | Activation | XP_009339792.2 | [141] |
| PyMYB10 | R2R3-MYB | Anthocyanins | Activation | ADN26574.1 | [142] | |
| PyMYB114 | R2R3-MYB | Anthocyanins | Activation | ASY06612.1 | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; Luo, Q.; Bao, T.; Nie, J.; Sun, Z. Advancements in the Regulation of Flavonoid Compounds in Monocotyledons and Dicotyledons by Plant MYB Transcription Factors. Horticulturae 2025, 11, 1244. https://doi.org/10.3390/horticulturae11101244
Luo H, Luo Q, Bao T, Nie J, Sun Z. Advancements in the Regulation of Flavonoid Compounds in Monocotyledons and Dicotyledons by Plant MYB Transcription Factors. Horticulturae. 2025; 11(10):1244. https://doi.org/10.3390/horticulturae11101244
Chicago/Turabian StyleLuo, Haiyan, Qiong Luo, Tingting Bao, Jingtao Nie, and Zhihong Sun. 2025. "Advancements in the Regulation of Flavonoid Compounds in Monocotyledons and Dicotyledons by Plant MYB Transcription Factors" Horticulturae 11, no. 10: 1244. https://doi.org/10.3390/horticulturae11101244
APA StyleLuo, H., Luo, Q., Bao, T., Nie, J., & Sun, Z. (2025). Advancements in the Regulation of Flavonoid Compounds in Monocotyledons and Dicotyledons by Plant MYB Transcription Factors. Horticulturae, 11(10), 1244. https://doi.org/10.3390/horticulturae11101244

