A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Generation of Aseptic Donor Explants
2.3. Induction of Callus Formation and Somatic Organogenesis
2.4. Rooting of In Vitro Regenerated Shoots and Their Adaptation to Soil Conditions
2.5. Statistical Processing of Experimental Data
3. Results
3.1. Selection of Seed Sterilization Method and Culture Conditions for Generation of Aseptic Cabbage Seedlings and Standardized Explants
3.2. Callus Formation Efficiency
3.3. Efficiency of Indirect Somatic Shoot Organogenesis
3.4. Efficiency of Indirect Somatic Root Organogenesis
3.5. In Vitro Rooting of Cabbage Regenerants and Plantlets Adaptation to Soil Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FAO | Food and Agriculture Organization of the United Nations |
| GRF | Growth-regulating factor |
| MS | Murashige and Skoog basal medium |
| PGRs | Plant growth regulators |
| 6-BAP | 6-benzylaminopurine |
| IAA | 3-indolyl acetic acid |
| TDZ | Thidiazuron (1-phenyl-3-(1,2,3-thidiazol-5-yl)urea) |
| NAA | 1-naphthalene acetic acid |
| SEM | Standard error of the mean |
References
- Food and Agriculture Organization (FAO). World’s Cabbage Production. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 15 June 2025).
- Lu, L.; Monakhos, S.G.; Lim, Y.P.; Yi, S.Y. Early Defense Mechanisms of Brassica oleracea in Response to Attack by Xanthomonas campestris pv. campestris. Plants 2021, 10, 2705. [Google Scholar] [CrossRef]
- Das Laha, S.; Kundu, A.; Podder, S. Impact of Biotic Stresses on the Brassicaceae Family and Opportunities for Crop Improvement by Exploiting Genotyping Traits. Planta 2024, 259, 97. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, N.K.; Meena, R.C.; Kumar, S.; Kumar, P.; Chand, K. Cabbage Breeding Tools for Biotic and Abiotic Resistance. Rom. J. Hortic. 2024, 5, 23–32. [Google Scholar] [CrossRef]
- Parkash, C.; Kumar, S.; Thakur, N.; Singh, S.; Sharma, B.B. Cabbage: Breeding and Genomics. Veg. Sci. 2023, 50, 231–243. [Google Scholar] [CrossRef]
- Jabeen, A.; Mir, J.I.; Malik, G.; Yasmeen, S.; Ganie, S.A.; Rasool, R.; Hakeem, K.R. Biotechnological Interventions of Improvement in Cabbage (Brassica oleracea var. capitata L.). Sci. Hortic. 2024, 329, 112966. [Google Scholar] [CrossRef]
- Bursakov, S.A.; Karlov, G.I.; Kharchenko, P.N. Marker Breeding of White Cabbage. RUDN J. Agron. Anim. Ind. 2024, 19, 578–591. [Google Scholar]
- Pivovarov, V.F.; Bondareva, L.L.; Shmykova, N.A.; Shumilina, D.V.; Mineikina, A.I. New Generation Hybrids of White Cabbage (Brassica oleracea L. convar. capitata var. alba DC) Based on Doubled Haploids. Sel’skokhozyaistvennaya Biol. 2017, 52, 143–151. [Google Scholar]
- Thakur, P.; Kumari, N.; Kumar, A.; Sharma, P.; Chadha, S. Recent Advances in Development and Utilization of Double Haploids (DHs) in Economically Important Vegetable Crops. Plant Cell Tissue Organ Cult. 2023, 156, 15. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yoon, I.S.; Suh, S.C.; Kim, H.I. Enhanced Disease Resistance in Transgenic Cabbage and Tobacco Expressing a Glucose Oxidase Gene from Aspergillus niger. Plant Cell Rep. 2002, 20, 857–863. [Google Scholar] [CrossRef]
- Bhattacharya, R.C.; Maheswari, M.; Dineshkumar, V.; Kirti, P.B.; Bhat, S.R.; Chopra, V.L. Transformation of Brassica oleracea var. capitata with Bacterial betA Gene Enhances Tolerance to Salt Stress. Sci. Hort. 2004, 100, 215–227. [Google Scholar]
- Rafat, A.; Abd Aziz, M.; Abd Rashid, A.; Abdullah, S.N.A.; Kamaladini, H.; Sirchi, M.T.; Javadi, M. Optimization of Agrobacterium tumefaciens-mediated Transformation and Shoot Regeneration after Co-cultivation of Cabbage (Brassica oleracea subsp. capitata) cv. KY Cross with AtHSP101 gene. Sci. Hortic. 2010, 124, 1–8. [Google Scholar]
- Xing, Y.; Raza, M.A.; He, Y.; Song, J.; Song, J. BoPRR9, a Pseudo-Response Regulator Protein from Cabbage, Plays a Negative Regulatory Role in the Response to Cold Stress. Environ. Exp. Bot. 2024, 224, 105801. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, Y.; Ma, H.; Ji, J.; Wang, Y.; Zhuang, M.; Yang, L.; Fang, Z.; Li, J.; et al. Generation of Novel bpm6 and dmr6 Mutants with Broad-Spectrum Resistance Using a Modified CRISPR/Cas9 System in Brassica oleracea. J. Integr. Plant Biol. 2025, 67, 1214–1216. [Google Scholar] [CrossRef]
- Gerszberg, A. Tissue Culture and Genetic Transformation of Cabbage (Brassica oleracea var. capitata): An Overview. Planta 2018, 248, 1037–1048. [Google Scholar]
- Kirakosyan, R.; Kalashnikova, E. Morphogenesis of Anthers Isolated from Cabbage (Brassica oleracea L.) in vitro. KnE Life Sci. 2022, 7, 385–393. [Google Scholar] [CrossRef]
- Mineykina, A.; Bondareva, L.; Soldatenko, A.; Domblides, E. Androgenesis of Red Cabbage in Isolated Microspore Culture In Vitro. Plants 2021, 10, 1950. [Google Scholar] [CrossRef] [PubMed]
- Kozar, E.V.; Kozar, E.G.; Domblides, E.A. Effect of the Method of Microspore Isolation on the Efficiency of Isolated Microspore Culture In Vitro for Brassicaceae Family. Horticulturae 2022, 8, 864. [Google Scholar] [CrossRef]
- Kozar, E.V.; Domblides, E.A. Protocol for Obtaining Doubled Haploids in Isolated Microspore Culture in vitro for Poorly Responsive Genotypes of Brassicaceae Family. Biol. Methods Protoc. 2024, 9, bpae091. [Google Scholar] [CrossRef] [PubMed]
- Doğru, S.M.; Balkaya, A.; Kurtar, E.S. In vitro Micropropagation of Maintainer White Head Cabbage Lines Using Cotyledon and Hypocotyl Explants. Black Sea J. Agric. 2022, 5, 180–188. [Google Scholar] [CrossRef]
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T. In vitro Regeneration of Eight Cultivars of Brassica oleracea var. capitata. In Vitro Cell. Dev. Biol. Plant 2015, 25, 80–87. [Google Scholar] [CrossRef]
- Munshi, M.K.; Roy, P.K.; Kabir, M.H.; Ahmed, G. In vitro Regeneration of Cabbage (Brassica oleracea L. var. capitata) through Hypocotyl and Cotyledon Culture. Plant Tissue Cult. Biotech. 2007, 17, 131–136. [Google Scholar]
- Hasan, A.M.; ElKaaby, E.A.; AL-Jumaily, R.M.K. In Vitro Effects of Different Combinations of Phytohormones on Callus Induction from Different Explants of Cabbage Brassica oleracea var. capitata L. Seedlings. Iraq. J. Sci. 2021, 62, 3476–3486. [Google Scholar] [CrossRef]
- Gambhir, G.; Kumar, P.; Srivastava, D. High Frequency Regeneration of Plants from Cotyledon and Hypocotyl Cultures in Brassica oleracea cv. Pride of India. Biotechnol. Rep. 2017, 15, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Stajič, E. Improvements in Protoplast Isolation Protocol and Regeneration of Different Cabbage (Brassica oleracea var. capitata L.) Cultivars. Plants 2023, 12, 3074. [Google Scholar] [PubMed]
- Stelmach-Wityk, K.; Szymonik, K.; Grzebelus, E.; Kiełkowska, A. Development of an Optimized Protocol for Protoplast-to-plant Regeneration of Selected Varieties of Brassica oleracea L. BMC Plant Biol. 2024, 24, 1279. [Google Scholar] [CrossRef] [PubMed]
- Kiełkowska, A.; Brąszewska, A. Demethylating Drugs Alter Protoplast Development, Regeneration, and the Genome Stability of Protoplast-derived Regenerants of Cabbage. BMC Plant Biol. 2025, 25, 463. [Google Scholar] [CrossRef]
- Gambhir, G.; Srivastava, D.K. Thidiazuron Induces High Frequency Shoot Regeneration in Leaf and Petiole Explants of Cabbage (Brassica oleracea L. var. capitata). J. Biotechnol. Biomater. 2015, 5, 172. [Google Scholar]
- Dănăilă-Guidea, S.; Rosu, A.; Ionica, M.; Visan, L.; Dobrinoiu, R. Caulogenesis Approaches Applied in vitro Micropropagation Varieties—Cabeza Negra 2, Arena and Red Amager—Of Brassica oleracea var. capitata rubra Form. Curr. Trend Nat. Sci. 2012, 1, 75–79. [Google Scholar]
- Daud, N.; Hasbullah, N.; Azis, N.; Rasad, F.; Amin, M.; Lassim, M. In vitro Regeneration of Brassica oleracea var. capitata trough Steams, Roots, Leaves and Petioles Cultures. In Proceedings of the International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2015), Dubai, United Arab Emirates, 23–24 December 2015; pp. 7–8. [Google Scholar]
- Pavlović, S.; Adžić, S.; Cvikić, D.; Zdravković, J.; Zdravković, M. In vitro Culture as a Part of Brassica oleracea var. capitata L. Breeding. Genetika 2012, 44, 611–618. [Google Scholar]
- Pavlović, S.; Vinterhalter, B.; Zdravković-Korać, S.; Zdravković, J.; Cvikić, D.; Mitić, N. Recurrent Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryos of Cabbage (Brassica oleracea var. capitata) and Cauliflower (Brassica oleracea var. botrytis). Plant Cell Tissue Organ. Cult. 2013, 113, 397–406. [Google Scholar]
- Murasnige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Qamar, Z.; Jahangir, G.Z.; Nasir, I.A.; Husnain, T. In-vitro Production of Cabbage and Cauliflower. Adv. Life Sci. 2014, 1, 112–118. [Google Scholar]
- Sparrow, P.A.C.; Irwin, J.A.; Goldsack, C.M.; Østergaard, L. Brassica Transformation: Commercial Application and Powerful Research Tool. Transgenic Plant J. 2007, 1, 330–339. [Google Scholar]
- Bhalla, P.L.; Singh, M.B. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat. Protoc. 2008, 3, 181–189. [Google Scholar] [CrossRef]
- Zontikova, S.A.; Sharafova, O.F.; Polyakov, A.V. Genetic Transformation of White Head Cabbage with the Purpose of Increasing of Resistance to Phytopathogens. Potato Veg. 2009, 7, 24–25. (in Russian). [Google Scholar]
- Sheng, X.; Yu, H.; Wang, J.; Shen, Y.; Gu, H. Establishment of a Stable, Effective and Universal Genetic Transformation Technique in the Diverse Species of Brassica oleracea. Front. Plant Sci. 2022, 3, 1021669. [Google Scholar] [CrossRef]
- Ravanfar, S.A.; Orbovic, V.; Moradpour, M.; Abdul Aziz, M.; Karan, R.; Wallace, S.; Parajuli, S. Improvement of Tissue Culture, Genetic Transformation, and Applications of Biotechnology to Brassica. Biotech. Genet. Eng. Rev. 2017, 33, 1–25. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.L.; Guo, Y.D. High-frequency Embryogenesis, Regeneration of Broccoli (Brassica oleracea var. italica) and Analysis of Genetic Stability by RAPD. Sci. Hortic. 2007, 111, 203–208. [Google Scholar]
- Jacq, A.; Pernot, C.; Martinez, Y.; Domergue, F.; Payré, B.; Jamet, E.; Burlat, V.; Pacquit, V. The Arabidopsis Lipid Transfer Protein 2 (AtLTP2) is Involved in Cuticle-cell Wall Interface Integrity and in Etiolated Hypocotyl Permeability. Front. Plant Sci. 2017, 8, 263. [Google Scholar] [CrossRef]
- Neves, M.; Correia, S.; Cavaleiro, C.; Canhoto, J. Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. Plants 2021, 10, 1208. [Google Scholar] [CrossRef]
- Paladi, R.K.; Rai, A.N.; Penna, S. Silver Nitrate Modulates Organogenesis in Brassica juncea (L.) through Differential Antioxidant Defense and Hormonal Gene Expression. Sci. Hortic. 2017, 226, 261–267. [Google Scholar] [CrossRef]
- Assou, J.; Wamhoff, D.; Rutzen, L.; Winkelmann, T. Optimization of in vitro Adventitious Shoot Regeneration in Brassica juncea L. of Different Origins for Application in Genetic Transformation and Genome Editing. Europ. J. Hortic. Sci. 2024, 89, 1–16. [Google Scholar] [CrossRef]
- Al Ramadan, R.; Karas, M.; Ranušová, P.; Moravčíková, J. Effect of Silver Nitrate on in vitro Regeneration and Antioxidant Responses of Oilseed Rape Cultivars (Brassica napus L.). J. Microbiol. Biotech. Food Sci. 2021, 10, e4494. [Google Scholar]
- Cristea, T.O.; Leonte, C.; Brezeanu, C.; Brezeanu, M.; Ambarus, S.; Calin, M.; Prisecaru, M. Effect of AgNO3 on Androgenesis of Brassica oleracea L. Anthers Cultivated in vitro. Afr. J. Biotechnol. 2012, 11, 13788–13795. [Google Scholar] [CrossRef]
- Swamy, H.M.; Nagesha, S.N.; Navale, P.M.; Gowda, T.K.S.; Asokan, R.; Mahmood, R. Genetic Transformation of Cabbage (Brassica oleracea var. capitata) with Synthetic cry1F Gene to Impart Resistant to Diamondback Moth (Plutella xylostella). J. Appl. Hortic. 2013, 15, 3–9. [Google Scholar]




| Culture Medium | Explant | Genotype | Mean (Culture Medium × Explant) | Mean (Culture Medium) | ||
|---|---|---|---|---|---|---|
| DH Line | cv. Parus | cv. Podarok | ||||
| MS1 | Cotyledon | 100 l | 100 l | 60.1 a | 86.7 abc | 82.5 a |
| Hypocotyl | 75.0 abc | 93.3 defghi | 66.6 ab | 78.3 a | ||
| MS2 | Cotyledon | 100 l | 76.8 abcd | 70.3 abc | 82.4 ab | 88.8 a |
| Hypocotyl | 89.9 cdefgh | 100 l | 95.5 efghijkl | 95.1 c | ||
| MS3 | Cotyledon | 100 l | 98.8 hijkl | 84.2 bcdefg | 94.3 c | 91.0 a |
| Hypocotyl | 80.6 abcdef | 95.5 fghijkl | 86.9 bcdefg | 87.7 abc | ||
| MS4 | Cotyledon | 93.3 defgh | 100 l | 86.9 bcdefg | 93.4 c | 93.1 a |
| Hypocotyl | 97.6 ghijkl | 100 l | 80.6 abcdef | 92.7 abc | ||
| Mean (genotype × explant) | Cotyledon | 98.3 d | 93.9 bcd | 75.4 a | ― | |
| Hypocotyl | 85.8 ab | 97.2 cd | 82.4 ab | |||
| Mean (explant) | Cotyledon | 89.2 a | ||||
| Hypocotyl | 88.5 a | |||||
| Mean (genotype) | 92.1 b | 95.6 b | 78.9 a | |||
| Culture Medium | Explant | Genotype | Mean (Culture Medium × Explant) | Mean (Culture Medium) | ||
|---|---|---|---|---|---|---|
| DH Line | cv. Parus | cv. Podarok | ||||
| MS1 | Cotyledon | 80.6 jklm | 86.9 klm | 13.0 a | 60.2 bcd | 55.2 a |
| Hypocotyl | 50.5 defgh | 66.7 efghijklm | 33.2 abcd | 50.1 ab | ||
| MS2 | Cotyledon | 69.9 fghijklm | 32.7 abcd | 16.3 a | 39.6 a | 50.1 a |
| Hypocotyl | 58.5 defghij | 89.9 m | 33.2 abcd | 60.5 b | ||
| MS3 | Cotyledon | 80.6 jklm | 77.8 hijklm | 61.8 defghijk | 73.4 d | 73.0 b |
| Hypocotyl | 55.2 defghij | 89.1 lm | 73.4 ghijklm | 72.6 cd | ||
| MS4 | Cotyledon | 53.3 defghij | 80.6 ijklm | 13.0 a | 49.0 ab | 56.1 a |
| Hypocotyl | 43.2 bcdef | 100 n | 46.5 cdefg | 63.2 bcd | ||
| Mean (genotype × explant) | Cotyledon | 71.1 d | 69.5 cd | 26.0 a | ― | |
| Hypocotyl | 51.9 b | 86.4 e | 46.6 b | |||
| Mean (explant) | Cotyledon | 55.5 a | ||||
| Hypocotyl | 61.6 a | |||||
| Mean (genotype) | 61.5 b | 78.0 c | 36.3 a | |||
| Culture Medium | Explant | Genotype | Mean (Culture Medium × Explant) | Mean (Culture Medium) | ||
|---|---|---|---|---|---|---|
| DH Line | cv. Parus | cv. Podarok | ||||
| MS1 | Cotyledon | 67.1 ijklmn | 75.0 jklmn | 36.4 efghi | 59.5 e | 34.6 b |
| Hypocotyl | 8.7 abcdef | 1.2 ab | 19.2 bcdefg | 9.7 ab | ||
| MS2 | Cotyledon | 29.6 cdefghi | 36.5 fghi | 77.5 lmn | 47.9 cde | 34.3 b |
| Hypocotyl | 2.4 ab | 0 a | 60.0 hijklmn | 20.8 b | ||
| MS3 | Cotyledon | 13.8 abcdef | 34.7 defghi | 1.2 ab | 16.6 b | 10.2 a |
| Hypocotyl | 6.7 abcdef | 0 a | 4.5 abc | 3.7 a | ||
| MS4 | Cotyledon | 76.8 klmn | 86.0 mn | 100 o | 87.6 f | 67.9 c |
| Hypocotyl | 86.0 n | 8.7 abcdef | 50.0 ghijkl | 48.2 de | ||
| Mean (genotype × explant) | Cotyledon | 46.8 cd | 58.1 d | 53.8 d | ― | |
| Hypocotyl | 26.0 b | 2.5 a | 33.4 bc | |||
| Mean (explant) | Cotyledon | 52.9 b | ||||
| Hypocotyl | 20.6 a | |||||
| Mean (genotype) | 36.4 a | 30.3 a | 43.6 a | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaliluev, M.R.; Varlamova, N.V.; Komakhin, R.A. A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes. Horticulturae 2025, 11, 1246. https://doi.org/10.3390/horticulturae11101246
Khaliluev MR, Varlamova NV, Komakhin RA. A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes. Horticulturae. 2025; 11(10):1246. https://doi.org/10.3390/horticulturae11101246
Chicago/Turabian StyleKhaliluev, Marat R., Nataliya V. Varlamova, and Roman A. Komakhin. 2025. "A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes" Horticulturae 11, no. 10: 1246. https://doi.org/10.3390/horticulturae11101246
APA StyleKhaliluev, M. R., Varlamova, N. V., & Komakhin, R. A. (2025). A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes. Horticulturae, 11(10), 1246. https://doi.org/10.3390/horticulturae11101246

