Natural Diversity of Crataegus monogyna Jacq. in Northeastern Türkiye Encompassing Morphological, Biochemical, and Molecular Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fruit and Leaf Characterization
2.3. Biochemical Analysis
Phenolic Profile
2.4. Molecular Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Fruit, Leaf Characterization, and Biochemical Analysis
3.2. Individual Phenolic Compounds
3.3. Correlation of Principal Component and Heatmap Analysis
3.4. Molecular Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Salami, S.A. Botanical, phytochemical, anti-microbial and pharmaceutical characteristics of hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Sümbül, A.; Yaman, M.; Nadeem, M.A.; Say, A.; Baloch, F.S.; Popescu, G.C. Assessing the genetic diversity in hawthorn (Crataegus spp.) genotypes using morphological, phytochemical and molecular markers. Genet. Resour. Crop Evol. 2023, 70, 135–146. [Google Scholar] [CrossRef]
- Cakmak, U. Phytochemical analyses by LC-HRMS, FTIR spectral analysis, antioxidant, antidiabetic and antityrosinase activity of Crataegus orientalis Pall. ex M. Bieb fruit extracted with various solvents. J. Sci. Food Agric. 2024, 104, 3767–3775. [Google Scholar] [CrossRef]
- Liu, P.; Kallio, H.; Lü, D.; Zhou, C.; Yang, B. Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography–electrospray ionisation mass spectrometry. Food Chem. 2011, 127, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, A.; Ahmadi, N.; Salehi, P.; Sonboli, A.; Alirezalu, K.; Mousavi Khaneghah, A.; Barba, F.J.; Munekata, P.E.S.; Lorenzo, J.M. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods 2020, 9, 436. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chen, C.T.; Wang, S.Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009, 117, 426–431. [Google Scholar] [CrossRef]
- Dönmez, A.A. Nomenclatural, taxonomic and biogeographic novelties in the Turkish Crataegus L. (Rosaceae-Maleae) taxa. Adansonia 2014, 36, 245–253. [Google Scholar] [CrossRef]
- Çalışkan, O.; Bayazıt, S.; Kılıç, D. Alıç (Crataegus spp.) cultivation. In Minör Meyveler-1; Sülüşoğlu Durul, M., Polat, M., Eds.; İKSAD Publishing: Ankara, Türkiye, 2022. [Google Scholar]
- Donmez, A.A. Taxonomic notes on the genus Crataegus (Rosaceae) in Turkey. Bot. J. Linn. Soc. 2007, 155, 231–240. [Google Scholar] [CrossRef]
- Tadeo, E.; Muñiz, E.; Rull, J.; Yee, W.L.; Aluja, M.; Lasa, R. Development of a low-cost and effective trapping device for apple maggot fly (Diptera: Tephritidae) monitoring and control in Mexican Commercial Hawthorn Groves. J. Econ. Entomol. 2017, 110, 1658–1667. [Google Scholar] [CrossRef]
- Çalışkan, O.; Gündüz, K.; Bayazıt, S. Sarı alıç (Crataegus azarolus L.) genotipinin morfolojik, biyolojik ve meyve kalite özelliklerinin incelenmesi. J. Agric. Fac. Gaziosmanpaşa Univ. (JAFAG) 2018, 35, 69–74. (In Turkish) [Google Scholar]
- Corlett, R.T. Plant diversity in a changing world: Status, trends, and conservation needs. Plant Divers. 2016, 38, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, M.; Alonso-Blanco, C.; Vreugdenhil, D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 2004, 55, 141–172. [Google Scholar] [CrossRef]
- Ali, F.; Nadeem, M.A.; Habyarimana, E.; Yılmaz, A.; Nawaz, M.A.; Khalil, I.H.; Ercişli, S.; Chung, G.; Chaudhary, H.J.; Baloch, F.S. Molecular characterization of genetic diversity and similarity centers of safflower accessions with ISSR markers. Braz. J. Bot. 2020, 43, 109–121. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Yaman, M. Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Mol. Biol. Rep. 2022, 49, 5293–5301. [Google Scholar] [CrossRef] [PubMed]
- Yaman, M.; Sun, M.; Sümbül, A.; Demirel, F.; Tunç, Y.; Khadivi, A.; Yılmaz, K.U. Multivariate analysis of morphological variation, biochemical content, antioxidant activity, and molecular characteristics of autochthonous Berberis crataegina DC. genotypes in Central Türkiye. BMC Plant Biol. 2024, 24, 1155. [Google Scholar] [CrossRef] [PubMed]
- Sümbül, A.; Yildiz, E.; Yaman, M.; Dirim, E.; Ateş, U.; Say, A.; Ünsal, H.T.; Öztürk, B.; Necas, T. Morphological, biochemical, and molecular evaluation of genetic diversity in different plum genotypes (Prunus domestica L.). Genet. Resour. Crop Evol. 2024, 71, 1973–1988. [Google Scholar] [CrossRef]
- Yildiz, E.; Pinar, H.; Uzun, A.; Yaman, M.; Sumbul, A.; Ercisli, S. Identification of genetic diversity among Juglans regia L. genotypes using molecular, morphological, and fatty acid data. Genet. Resour. Crop Evol. 2021, 68, 1425–1437. [Google Scholar] [CrossRef]
- Demirel, S.; Demirel, F. Molecular identification and population structure of emmer and einkorn wheat lines with dif-ferent ploidy levels using SSR markers. Genet. Resour. Crop Evol. 2024, 71, 363–372. [Google Scholar] [CrossRef]
- Sümbül, A.; Yildiz, E.; Sabir, A.; Nadeem, M.A. Investigation of genetic diversity among autochthonous grape cultivars grown in Türkiye using molecular primers. Genet. Resour. Crop Evol. 2024, 71, 3507–3520. [Google Scholar] [CrossRef]
- Gurlen, A.; Gundogdu, M.; Ozer, G.; Ercisli, S.; Duralija, B. Primary, secondary metabolites and molecular characterization of hawthorn (Crataegus spp.) genotypes. Agronomy 2020, 10, 1731. [Google Scholar] [CrossRef]
- Amiri, S.; Mohammadi, R. The effect of plant growth regulators on hawthorn (Crataegus sp.) in vitro direct regeneration and confirmation of the genetic fidelity. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2020, 154, 786–791. [Google Scholar] [CrossRef]
- Eren, B.; Keskin, B.; Demirel, F.; Demirel, S.; Türkoğlu, A.; Yilmaz, A.; Haliloğlu, K. Assessment of genetic diversity and population structure in local alfalfa genotypes using iPBS molecular markers. Genet. Resour. Crop Evol. 2023, 70, 617–628. [Google Scholar] [CrossRef]
- Gürcan, K.; Yılmaz, K.U.; Tunç, Y.; Yaman, M.; Güneş, A.; Yıldız, E.; Demirel, F.; Demirel, S.; Khadivi, A. Evaluation of genetic diversity in some hybrid individuals of honeyberry (Lonicera caerulea L.) based on fruit characteristics, leaf morphology, vitamin C, antioxidant activity, and biochemical and nutritional contents. BMC Plant Biol. 2024, 24, 1158. [Google Scholar] [CrossRef]
- Güney, M.; Kafkas, S.; Keles, H.; Aras, S.; Ercişli, S. Characterization of hawthorn (Crataegus spp.) genotypes by SSR markers. Physiol. Mol. Biol. Plants 2018, 24, 1221–1230. [Google Scholar] [CrossRef]
- Erfani-Moghadam, J.; Mozafari, M.; Fazeli, A. Genetic variation of some hawthorn species based on phenotypic characteristics and RAPD marker. Biotechnol. Biotechnol. Equip. 2016, 30, 247–253. [Google Scholar] [CrossRef]
- Emami, A.; Shabanian, N.; Rahmani, M.S.; Khadivi, A.; Mohammad-Panah, N. Genetic characterization of the Crataegus genus: Implications for in situ conservation. Sci. Hortic. 2018, 231, 56–65. [Google Scholar] [CrossRef]
- Sheng, F.; Chen, S.Y.; Tian, J.; Li, P.; Qin, X.; Wang, L.; Luo, S.P.; Li, J. Morphological and ISSR Molecular Markers Reveal Genetic Diversity of Wild Hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China. J. Integr. Agric. 2017, 16, 2482–2495. [Google Scholar] [CrossRef]
- Khiari, S.; Boussaid, M.; Messaoud, C. Genetic diversity and population structure in natural populations of Tunisian Azarole (Crataegus azarolus L. var. aronia L.) assessed by microsatellite markers. Biochem. Syst. Ecol. 2015, 59, 264–270. [Google Scholar] [CrossRef]
- Mohammed, K.E.; Ahmad, N.S.; Ahmad, S.A. Genetic diversity of wild hawthorn (Crataegus spp.) in Iraqi Kurdistan region using biochemical and molecular markers. Genet. Resour. Crop Evol. 2025. [Google Scholar] [CrossRef]
- Karaer, F.; Kılınç, M. The Flora of Kelkit Valley. TÜBITAK Turk. J. Bot. 2001, 25, 195–238. [Google Scholar]
- Davis, P.H. Flora of Türkiye and the East AegeanIslands; Edinburgh University Press: Edinburgh, UK, 1965–1988. [Google Scholar]
- Rahmani, M.S.; Shabanian, N.; Khadivi-Khub, A.; Woeste, K.E.; Badakhshan, H.; Alikhani, L. Population structure and genotypic variation of Crataegus pontica inferred by molecular markers. Gene 2015, 572, 123–129. [Google Scholar] [CrossRef]
- Khadivi, A.; Heidari, P.; Rezaei, M.; Safari-Khuzani, A.; Sahebi, M. Morphological variabilities of Crataegus monogyna and Crataegus pentagyna in northeastern areas of Iran. Ind. Crops Prod. 2019, 139, 111531. [Google Scholar] [CrossRef]
- Christensen, K.I. Revision of Crataegus sect. Crataegus and Nothosect. Crataeguineae (Rosaceae-Maloideae) in the old world. Syst. Bot. Monogr. 1992, 35, 1–199. [Google Scholar] [CrossRef]
- Thomas, P.A.; Leski, T.; La Porta, N.; Dering, M.; Iszkuło, G. Biological flora of the British Isles: Crataegus laevigata. J. Ecol. 2021, 109, 572–596. [Google Scholar] [CrossRef]
- Hill, B.; Roger, T.; Vorhagen, F.W. Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Trans. Graph. (TOG) 1997, 16, 109–154. [Google Scholar] [CrossRef]
- Recky, M.; Leberl, F. Windows detection using k-means in cie-lab color space. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 356–359. [Google Scholar]
- Corbala’n, M.; Milla’n, M.A.S.; Yzuel, M.A.J. Color pattern recognition with CIELAB coordinates. Opt. Eng. 2002, 41, 130–138. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Elikara, A.U.; Popescu, G.C.; Demirel, S.; Sümbül, A.; Yaman, M.; Demirel, F.; Say, A.; Güneş, A. Effect of Rhizobacteria Application on Nutrient Content, Bioactive Compounds, Antioxidant Activity, Color Properties and Fruit Characteristics of Strawberry Cultivars. Processes 2024, 12, 2242. [Google Scholar] [CrossRef]
- Giusti, M.M.; Rodríguez-Saona, L.E.; Wrolstad, R.E. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J. Agric. Food. Chem. 1999, 47, 4631–4637. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ozturk, B.; Yıldız, K.; Kucuker, E. Effect of pre-harvest methyl jasmonate treatments on ethylene production, water-soluble phenolic compounds and fruit quality of Japanese plums. J. Sci. Food Agric. 2015, 95, 583–591. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 39–40. [Google Scholar]
- Uzun, A.; Gulsen, O.; Kafa, G.; Seday, U. Field performance and molecular diversification of lemon selections. Sci. Hortic. 2009, 120, 473–478. [Google Scholar] [CrossRef]
- Yanar, M.; Ercisli, S.; Yilmaz, K.; Sahiner, H.; Taskin, T.; Zengin, Y.; Akgul, I.; Celik, F. Morphological and chemical diversity among hawthorn (Crataegus spp.) genotypes from Turkey. Sci. Res. Essays 2011, 6, 35–38. [Google Scholar]
- Khadivi-Khub, A.; Karimi, S.; Kameli, M. Morphological diversity of naturally grown Crataegus monogyna (Rosaceae, Maloideae) in Central Iran. Braz. J. Bot. 2015, 38, 921–936. [Google Scholar] [CrossRef]
- Özderin, S.; Fakir, H. Some botanical properties of hawthorn (Crataegus L. spp.) taxa natural distributed in the western Anatolia part of Turkey. Int. J. Agric. Innov. Res. 2015, 4, 567–572. [Google Scholar]
- Stoenescu, A.M.; Cosmulescu, S. Variability of morphological characteristics in hawthorn (Crataegus monogyna L.) fruit genotypes. South-West. J. Hortic. Biol. Environ. 2020, 11, 15. [Google Scholar]
- Ercisli, S. A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 2004, 51, 419–435. [Google Scholar] [CrossRef]
- Gundogdu, M.; Ozrenk, K.; Ercisli, S.; Kan, T.; Kodad, O.; Hegedus, A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014, 47, 21. [Google Scholar] [CrossRef]
- Balasooriya, B.L.W.K.; Samson, R.; Mbikwa, F.; Vitharana, U.W.A.; Boeckx, P.; Van Meirvenne, M. Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environ. Exp. Bot. 2009, 65, 386–394. [Google Scholar] [CrossRef]
- Kuhn, T.; Jancsó, B.; Ruprecht, E. Hawthorn (Crataegus L.) taxa and their hybrids in north-western Romania: A recommendation for national identification keys based on morphometric analyses. Contrib. Bot. 2020, 55, 7–26. [Google Scholar] [CrossRef]
- Yalçın Dokumacı, K.; Uslu, N.; Hacıseferoğulları, H.; Örnek, M.N. Determination of Some Physical and Chemical Properties of Common Hawthorn (Crataegus monogyna Jacq. var.). Erwerbs-Obstbau 2021, 63, 99–106. [Google Scholar] [CrossRef]
- Bektaş, M.; Bükücü, Ş.B.; Özcan, A.; Sütyemez, M. Plant and pomological characteristics of hawthorn (Crataeugus spp.) genotypes found in Akçadağ and Hekimhan region. Turk. J. Agric. Nat. Sci. 2017, 4, 484–490. (In Turkish) [Google Scholar]
- Radi, F.Z.; Bencheikh, N.; Anarghou, H.; Bouhrim, M.; Alqahtani, A.S.; Hawwal, M.F.; Zair, T. Quality control, phytochemical profile, and biological activities of Crataegus monogyna Jacq. and Crataegus laciniata Ucria fruits aqueous extracts. Saudi Pharm. J. 2023, 31, 101753. [Google Scholar] [CrossRef] [PubMed]
- Nazhand, A.; Lucarini, M.; Durazzo, A.; Zaccardelli, M.; Cristarella, S.; Souto, S.B.; Santini, A. Hawthorn (Crataegus spp): An updated overview on its beneficial properties. Forests 2020, 11, 564. [Google Scholar] [CrossRef]
- Mihailović, M.; Dinić, S.; Arambašić Jovanović, J.; Uskoković, A.; Grdović, N.; Vidaković, M. The influence of plant extracts and phytoconstituents on antioxidant enzymes activity and gene expression in the prevention and treatment of impaired glucose homeostasis and diabetes complications. Antioxidants 2021, 10, 480. [Google Scholar] [CrossRef]
- Güzel, N. Hawthorn: Extraction of bioactive compounds by thermosonication and evaluation of physico-chemical properties. Gıda 2021, 46, 939–948. (In Turkish) [Google Scholar]
- Okatan, V.; Gündoğdu, M.; Çoalk, A.M. Determination of some chemical and pomological characteristics of different hawthorn genotypes (Crataegus spp.) fruits grown in Uşak. J. Ins. Sci. Technol. 2017, 7, 39–44. [Google Scholar] [CrossRef]
- Çalişkan, O.; Gündüz, K.; Serçe, S.; Toplu, C.; Kamiloğlu, O.; Sengül, M.; Ercişli, S. Phytochemical characterization of several hawthorn (Crataegus spp.) species sampled from the Eastern Mediterranean region of Turkey. Pharmacogn. Mag. 2012, 8, 16–21. [Google Scholar] [CrossRef]
- Salmanian, S.; Sadeghi, M.A.; Alami, M.; Ghorbani, M. Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. J. Agric. Sci. Technol. 2014, 16, 343–354. [Google Scholar]
- Chang, C.L.; Chen, H.S.; Shen, Y.C.; Lai, G.H.; Lin, P.K.; Wang, C.M. Phytochemical composition, antioxidant activity and neuroprotective effect of Crataegus pinnatifida fruit. South Afr. J. Bot. 2013, 88, 432–437. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of Marrubium vulgare L. Sci. World J. 2021, 7011493. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Ez-Zahra Amrati, F.; Mssillou, I.; Boukhira, S.; Djiddi Bichara, M.; El Abdali, Y.; Galvão de Azevedo, R.; Bousta, D. Phenolic Composition of Crataegus monogyna Jacq. Extract and Its Anti-Inflammatory, Hepatoprotective, and Antileukemia Effects. Pharmaceuticals 2024, 17, 786. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, N.; Tunçel, M. Assessment of phenolic acid content and in vitro antiradical characteristics of hawthorn. J. Med. Food 2011, 14, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Mojtahed Zadeh Asl, R.; Niakousari, M.; Hashemi Gahruie, H.; Saharkhiz, M.J.; Mousavi Khaneghah, A. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Res. Int. 2018, 107, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Bunce, J.A.; Maas, J.L. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J. Agric. Food Chem. 2003, 51, 4315–4320. [Google Scholar] [CrossRef] [PubMed]
- Keinänen, M.; Julkunen-Tiitto, R.; Mutikainen, P.; Walls, M.; Ovaska, J.; Vapaavuori, E. Trade-offs in phenolic metabolism of silver birch: Effects of fertilization, defoliation, and genotype. Ecology 1999, 80, 1970–1986. [Google Scholar] [CrossRef]
- Cohen, S.D.; Kennedy, J.A. Plant metabolism and the environment: Implications for managing phenolics. Crit. Rev. Food Sci. Nutr. 2010, 50, 620–643. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Hacıseferoğulları, H.; Marakoğlu, T.; Arslan, D. Hawthorn (Crataegus spp) fruit: Some physical and chemical properties. J. Food Eng. 2005, 69, 409–413. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Shen, G.; Gu, Y.; Guo, Y.; Han, J. Altitude-driven variations in nutritional, bioactive, and mineral profiles of hawthorn (Crataegus spp.). Foods 2025, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Li, J.Z.; Kayahara, H.; Ma, L.; Wu, L.X.; Nakamura, K. Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography. J. Agric. Food Chem. 2006, 54, 4574–4581. [Google Scholar] [CrossRef]
- Hair, J.J.; Black, W.C.; Babin, B.J.; Anderson, R.R.; Tatham, R.L. Multivariate Data Analysis; MacMillan Pub: New York, NY, USA, 2006. [Google Scholar]
- Say, A.; Sümbül, A.; Dirim, E.; Yaman, M.; Yildiz, E. Unravelling the Genetic Diversity of Oleaster (Elaeagnus angustifolia L.) with Multivariate Analysis. Appl. Fruit Sci. 2024, 66, 719–730. [Google Scholar] [CrossRef]
- Sümbül, A.; Yıldız, E. Explanation of morphological and biochemical diversity of autochthonous grapes grown in Türkiye (Kelkit Basin) using multivariate analysis. Turk. J. Food Agric. Sci. 2024, 6, 160–172. [Google Scholar] [CrossRef]
- Garazhian, M.; Gharaghani, A.; Eshghi, S. Genetic diversity and inter-relationships of fruit bio-chemicals and antioxidant activity in Iranian wild blackberry species. Sci. Rep. 2020, 10, 18983. [Google Scholar] [CrossRef] [PubMed]
- Betancourt-Olvera, M.; Nieto-Ángel, R.; Urbano, B.; González-Andrés, F. Analysis of the biodiversity of hawthorn (Crataegus spp.) from the morphological, molecular, and ethnobotanical approaches, and implications for genetic resource conservation in scenery of increasing cultivation: The case of Mexico. Genet. Resour. Crop Evol. 2018, 65, 897–916. [Google Scholar] [CrossRef]
- Muradoğlu, F.; Gürsoy, S.; Güler, E. Multivariate analysis revealed the morphological variability among Crataegus species. Yuz. Yıl Univ. J. Agric. Sci. 2021, 31, 961–972. [Google Scholar] [CrossRef]
- Ghanbari, A.; Estaji, A.; Fahim, S.; Jamali, M. Assessment of genetic diversity among Crataegus genotypes by Application of ISSR markers in Ardabil province. J. Plant Mol. Breed. 2019, 7, 77–83. [Google Scholar]
- Beigmohamadi, M.; Rahmani, F.; Mirzaei, L. Study of Genetic Diversity Among Crataegus Species (Hawthorn) Using ISSR Markers in Northwestern of Iran. Pharm. Biomed. Res. 2021, 7, 59–66. [Google Scholar] [CrossRef]
- Serçe, S.; Şimşek, Ö.; Toplu, C.; Kamiloǧlu, Ö.; Çalişkan, O.; Gündüz, K.; Özgen, M.; Kaçar, Y.A. Relationships among Crataegus accessions sampled from Hatay, Turkey, as assessed by fruit characteristics and RAPD. Genet. Resour. Crop Evol. 2011, 58, 933–942. [Google Scholar] [CrossRef]
- Sagbas, H.I.; Ercisli, S.; Ozkan, G.; Ilhan, G. Inter-and ıntraspecific genetic variation of native hawthorn (Crataegus spp.) genotypes grown in the Çoruh valley in Türkiye. Erwerbs-Obstbau 2023, 65, 2537–2546. [Google Scholar] [CrossRef]
- Coşkun, Ö.F.; Toprak, S.; Mavi, K. Some seed properties and molecular analysis with inter-primary binding site (iPBS) retrotranposons markers of edible-seeded watermelon genotypes. Genet. Resour. Crop Evol. 2024, 71, 3151–3162. [Google Scholar] [CrossRef]
- Coskun, O.F.; Gulsen, O. Determination of markers associated with important agronomic traits of watermelon (Citrullus lanatus L.). J. Agric. Sci. Technol. 2024, 26, 1359–1371. [Google Scholar] [CrossRef]
- Cornea-Cipcigan, M.; Pamfil, D.; Sisea, C.R.; Margaoan, R. Characterization of Cyclamen genotypes using morphological descriptors and DNA molecular markers in a multivariate analysis. Front. Plant Sci. 2023, 14, 1100099. [Google Scholar] [CrossRef] [PubMed]
- Galili, T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.A.; dos Santos, B.R.C. Silagem da palma forrageira consorciada com resíduos da mandioca e bagaço da cana-de-açúcar: Revisão. Pubvet 2018, 12, 133. [Google Scholar] [CrossRef]
- Tabaripour, R.; Sheidai, M.; Talebi, S.M.; Noormohammadi, Z. Molecular and morphological investigation in Hymenocrater: Species delimitation, relationship, divergence time and DNA barcoding. Genet. Resour. Crop Evol. 2021, 68, 2003–2017. [Google Scholar] [CrossRef]
Genotype | N | E | Altitude (m) | Region |
---|---|---|---|---|
M1 | 40°10′31 | 38°07′32 | 903 | Suşehri (South) |
M2 | 40°10′36 | 38°07′27 | 920 | Suşehri (South) |
M3 | 40°10′22 | 38°09′35 | 876 | Suşehri (South) |
M4 | 40°10′38 | 38°11′20 | 870 | Suşehri (South) |
M5 | 40°10′21 | 38°18′38 | 956 | Suşehri (South) |
M6 | 40°10′29 | 38°18′39 | 957 | Suşehri (South) |
M7 | 40°08′35 | 38°01′49 | 1469 | Suşehri (South) |
M8 | 40°08′22 | 38°01′47 | 1508 | Suşehri (South) |
M9 | 40°07′56 | 38°01′52 | 1508 | Suşehri (South) |
M10 | 40°17′50 | 38°15′08 | 1204 | Şebinkarahisar (North) |
M11 | 40°17′37 | 38°15′39 | 1232 | Şebinkarahisar (North) |
M12 | 40°17′26 | 38°16′40 | 1006 | Şebinkarahisar (North) |
M13 | 40°16′59 | 38°19′52 | 1183 | Şebinkarahisar (North) |
M14 | 40°17′02 | 38°19′54 | 1189 | Şebinkarahisar (North) |
M15 | 40°17′04 | 38°20′13 | 1201 | Şebinkarahisar (North) |
M16 | 40°06′35 | 38°19′00 | 879 | Akıncılar (East) |
M17 | 40°06′25 | 38°18′59 | 891 | Akıncılar (East) |
M18 | 40°06′13 | 38°19′12 | 900 | Akıncılar (East) |
M19 | 40°05′50 | 38°19′46 | 927 | Akıncılar (East) |
M20 | 40°06′54 | 38°21′33 | 927 | Akıncılar (East) |
M21 | 40°06′59 | 38°21′47 | 928 | Akıncılar (East) |
Genotype | FWe | FWi | FL | SW | SN | LW | LL | PL | PT |
---|---|---|---|---|---|---|---|---|---|
M1 | 0.97 ± 0.02 i–l 1 | 11.48 ± 0.40 jk | 12.14 ± 0.24 gh | 0.18 ± 0.01 fg | 1.00 | 20.38 ± 0.81 j | 26.67 ± 1.16 i | 9.53 ± 0.68 f | 0.33 ± 0.01 m |
M2 | 0.85 ± 0.03 m | 11.45 ± 0.28 jk | 11.90 ± 0.25 h | 0.16 ± 0.00 f–i | 1.00 | 29.64 ± 2.56 d–h | 36.75 ± 2.24 de | 14.26 ± 1.88 b–e | 0.38 ± 0.01 k–m |
M3 | 1.28 ± 0.03 e | 13.28 ± 0.15 d | 13.63 ± 0.11 e | 0.16 ± 0.00 f–i | 1.00 | 32.63 ± 3.05 b–e | 35.17 ± 3.13 ef | 22.96 ± 3.77 a | 0.45 ± 0.05 h–l |
M4 | 1.01 ± 0.02 h–j | 12.13 ± 0.18 g–i | 12.53 ± 0.25 fg | 0.18 ± 0.01 fg | 1.00 | 35.33 ± 6.50 a–d | 40.18 ± 4.14 cd | 15.96 ± 1.35 b–d | 0.68 ± 0.06 b |
M5 | 0.94 ± 0.05 kl | 11.77 ± 0.21 h–j | 12.13 ± 0.19 gh | 0.18 ± 0.01 fg | 1.00 | 24.49 ± 2.69 g–j | 29.08 ± 1.70 g–i | 12.52 ± 1.17 d–f | 0.49 ± 0.03 e–i |
M6 | 0.55 ± 0.01 n | 9.74 ± 0.23 l | 10.47 ± 0.29 j | 0.11 ± 0.00 j | 1.00 | 30.62 ± 6.53 d–f | 33.78 ± 4.14 ef | 17.85 ± 4.90 b | 0.56 ± 0.10 c–g |
M7 | 0.92 ± 0.04 l | 11.78 ± 0.24 h–j | 12.58 ± 0.25 fg | 0.15 ± 0.01 hi | 1.00 | 19.53 ± 1.02 j | 26.10 ± 1.20 i | 10.57 ± 0.91 ef | 0.52 ± 0.03 d–h |
M8 | 1.03 ± 0.04 h | 11.73 ± 0.07 i–k | 12.71 ± 0.33 f | 0.19 ± 0.01 ef | 1.00 | 26.34 ± 2.80 f–i | 31.02 ± 2.26 f–h | 14.40 ± 3.22 b–e | 0.58 ± 0.09 c–e |
M9 | 1.13 ± 0.03 g | 12.59 ± 0.33 f | 13.56 ± 0.18 e | 0.19 ± 0.01 ef | 1.00 | 27.37 ± 2.62 e–i | 32.98 ± 2.68 e–g | 15.75 ± 3.90 b–d | 0.60 ± 0.06 b–d |
M10 | 2.08 ± 0.01 c | 16.07 ± 0.23 c | 15.24 ± 0.23 c | 0.45 ± 0.01 b | 2.00 | 37.71 ± 1.59 a–c | 46.17 ± 1.18 ab | 17.08 ± 0.67 bc | 0.60 ± 0.02 b–d |
M11 | 2.44 ± 0.03 b | 16.58 ± 0.39 b | 15.85 ± 0.30 b | 0.32 ± 0.02 c | 1.00 | 37.90 ± 2.23 ab | 46.18 ± 1.08 ab | 13.58 ± 0.88 c–f | 0.86 ± 0.06 a |
M12 | 2.87 ± 0.06 a | 18.39 ± 0.28 a | 16.36 ± 0.10 a | 0.51 ± 0.03 a | 2.00 | 27.79 ± 2.69 e–h | 31.13 ± 1.53 f–h | 15.82 ± 2.93 b–d | 0.38 ± 0.04 k–m |
M13 | 1.37 ± 0.04 d | 13.24 ± 0.35 de | 14.74 ± 0.47 d | 0.21 ± 0.00 de | 1.00 | 24.28 ± 1.01 h–j | 32.33 ± 0.31 fg | 13.03 ± 0.44 c–f | 0.39 ± 0.01 j–m |
M14 | 1.26 ± 0.01 ef | 12.84 ± 0.19 ef | 15.38 ± 0.39 bc | 0.22 ± 0.00 d | 1.00 | 30.23 ± 7.29 f–g | 32.07 ± 4.56 fg | 14.05 ± 0.26 b–e | 0.41 ± 0.06 i–m |
M15 | 1.12 ± 0.02 g | 12.16 ± 0.11 gh | 12.64 ± 0.26 f | 0.17 ± 0.00 f–h | 1.00 | 37.21 ± 3.38 a–c | 47.85 ± 3.13 a | 17.25 ± 3.09 bc | 0.65 ± 0.03 bc |
M16 | 0.840.01± m | 11.40 ± 0.05 jk | 11.36 ± 0.37 i | 0.14 ± 0.01 ij | 1.00 | 21.88 ± 2.36 ij | 27.09 ± 1.78 hi | 10.42 ± 1.64 ef | 0.45 ± 0.04 h–l |
M17 | 0.96 ± 0.02 j–l | 11.32 ± 0.10 k | 11.38 ± 0.13 i | 0.14 ± 0.01 ij | 1.00 | 35.48 ± 5.11 a–d | 42.07 ± 3.38 bc | 13.97 ± 2.80 b–e | 0.57 ± 0.06 c–f |
M18 | 0.96 ± 0.02 j–l | 11.61 ± 0.30 jk | 12.99 ± 0.62 f | 0.16 ± 0.00 f–i | 1.00 | 28.25 ± 2.60 e–h | 32.02 ± 2.01 fg | 14.00 ± 1.20 b–e | 0.48 ± 0.02 f–j |
M19 | 0.99 ± 0.02 h–k | 11.34 ± 0.38 k | 13.52 ± 0.42 e | 0.14 ± 0.01 ij | 1.00 | 41.19 ± 1.12 a | 41.50 ± 1.97 c | 23.53 ± 2.73 a | 0.47 ± 0.03 g–k |
M20 | 1.02 ± 0.04 hi | 12.05 ± 0.11 g–i | 12.69 ± 0.14 f | 0.17 ± 0.01 f–h | 1.00 | 31.86 ± 2.86 c–f | 40.38 ± 1.18 cd | 16.73 ± 2.14 b–d | 0.46 ± 0.06 h–k |
M21 | 1.22 ± 0.06 f | 12.45 ± 0.24 fg | 15.48 ± 0.21 bc | 0.21 ± 0.02 de | 1.00 | 27.19 ± 3.60 e–i | 31.89 ± 2.64 fg | 13.84 ± 2.04 b–e | 0.35 ± 0.07 m |
LSD | 0.06 ** | 0.42 ** | 0.50 ** | 0.02 ** | 0.00 | 5.86 ** | 4.16 ** | 4.22 ** | 0.09 ** |
Genotype | L* | a* | b* | TP | TF | TA | TAnth. |
---|---|---|---|---|---|---|---|
M1 | 26.53 ± 1.03 a–e 1 | 98.11 ± 4.48 e | 7.89 ± 0.42 | 299.99 ± 0.99 k | 27.39 ± 0.20 m | 47.10 ± 0.20 j | 52.96 ± 0.10 l |
M2 | 25.67 ± 0.36 b–f | 102.10 ± 2.05 c–e | 7.69 ± 0.18 | 321.61 ± 1.01 i | 28.50 ± 0.30 l | 49.90 ± 0.05 f | 57.14 ± 0.10 j |
M3 | 27.72 ± 1.41 ab | 84.90 ± 6.57 f | 8.12 ± 0.31 | 170.26 ± 1.20 s | 19.15 ± 0.10 q | 35.60 ± 0.10 p | 34.18 ± 0.08 s |
M4 | 26.87 ± 1.91 a–d | 104.88 ± 7.52 b–e | 8.27 ± 01.17 | 283.77 ± 1.07 n | 24.80 ± 0.15 o | 43.60 ± 0.15 l | 56.53 ± 0.13 k |
M5 | 26.41 ± 1.17 a–f | 101.32 ± 2.81 c–e | 7.68 ± 0.14 | 294.58 ± 1.00 l | 29.61 ± 0.10 k | 43.90 ± 0.05 l | 51.67 ± 0.12 n |
M6 | 24.25 ± 0.55 f | 106.50 ± 3.29 b–d | 8.88 ± 01.47 | 248.63 ± 0.30 q | 32.08 ± 0.05 h | 37.10 ± 0.10 o | 44.71 ± 0.11 q |
M7 | 25.10 ± 2.17 c–f | 106.43 ± 3.75 b–d | 7.25 ± 0.05 | 491.88 ± 1.00 a | 48.13 ± 0.30 a | 56.70 ± 0.10 a | 79.43 ± 0.13 b |
M8 | 26.51 ± 0.36 a–e | 107.87 ± 2.25 a–c | 8.73 ± 0.31 | 329.72 ± 1.02 h | 30.35 ± 0.14 j | 49.30 ± 0.20 g | 63.49 ± 0.09 g |
M9 | 27.60 ± 2.15 ab | 99.34 ± 6.71 de | 10.08 ± 1.42 | 364.85 ± 1.10 f | 45.17 ± 0.14 b | 50.70 ± 0.30 d | 64.89 ± 0.09 f |
M10 | 27.26 ± 0.56 a–c | 111.07 ± 4.95 ab | 7.74 ± 0.23 | 151.34 ± 1.04 u | 16.74 ± 0.04 r | 29.20 ± 0.10 r | 26.83 ± 0.03 t |
M11 | 26.45 ± 0.89 a–f | 114.73 ± 3.44 a | 8.39 ± 0.99 | 259.45 ± 1.10 o | 26.53 ± 0.13 n | 43.10 ± 0.10 m | 45.71 ± 0.11 p |
M12 | 27.93 ± 0.52 a | 107.03± 0.75 a–d | 7.36 ± 0.61 | 345.93 ± 1.03 g | 37.76 ± 0.06 e | 47.50 ± 0.20 i | 62.60 ± 0.15 h |
M13 | 26.48 ± 2.13 a–f | 106.07 ± 5.22 b–d | 8.26 ± 0.43 | 251.34 ± 1.00 p | 31.84 ± 0.10 i | 39.90 ± 0.40 n | 46.20 ± 0.05 o |
M14 | 25.27 ± 0.79 c–f | 83.42 ± 6.98 f | 7.40 ± 0.21 | 370.26 ± 1.06 e | 32.58 ± 0.08 g | 50.20 ± 0.20 ef | 65.88 ± 0.08 e |
M15 | 26.09 ± 1.96 a–f | 100.60 ± 2.47 c–e | 8.50 ± 1.57 | 405.39 ± 1.09 c | 39.98 ± 0.13 c | 52.20 ± 0.30 c | 72.54 ± 0.14 c |
M16 | 26.09 ± 1.96 a–f | 100.60 ± 2.47 c–e | 8.50 ± 1.57 | 154.04 ± 1.00 t | 19.52 ± 0.02 p | 32.30 ± 0.20 q | 26.34 ± 0.06 u |
M17 | 24.53 ± 1.47 ef | 104.73 ± 3.15 b–e | 7.91 ± 0.41 | 178.36 ± 1.06 r | 18.96 ± 0.11 q | 37.00 ± 0.10 o | 35.67 ± 0.07 r |
M18 | 26.05 ± 1.78 a–f | 81.32 ± 4.66 f | 8.02 ± 2.04 | 445.93 ± 1.03 b | 39.61 ± 0.11 d | 56.20 ± 0.20 b | 79.79 ± 0.09 a |
M19 | 25.30 ± 0.26 c–f | 78.20 ± 4.47 f | 7.87 ± 0.38 | 291.88 ± 1.00 m | 32.95 ± 0.12 f | 44.30 ± 0.10 k | 52.66 ± 0.06 m |
M20 | 24.88 ± 0.96 d–f | 101.83 ± 4.28 c–e | 7.21 ± 0.28 | 316.20 ± 1.15 j | 31.84 ± 0.08 i | 48.70 ± 0.20 h | 62.00 ± 0.13 i |
M21 | 24.25 ± 0.22 f | 83.25 ± 8.27 f | 7.22 ± 1.08 | 381.07 ± 1.07 d | 48.13 ± 0.12 a | 50.30 ± 0.20 e | 67.87 ± 0.09 d |
LSD | 2.24 * | 7.81 ** | 1.54 n.s | 1.70 ** | 0.23 ** | 0.31 ** | 0.17 ** |
Genotype | AA | Cat | p-HydA | PA | CA | ChlA | E | p-CA | FA | R |
---|---|---|---|---|---|---|---|---|---|---|
M1 | 17.06 ± 0.06 i 1 | 17.23 ± 0.03 f | 0.15 ± 0.01 de | 1.21 ± 0.01 e | 4.07 ± 0.02 l | 9.53 ± 0.03 e | 6.96 ± 0.06 I | 1.65 ± 0.01 e | 5.06 ± 1.16 | 35.08 ± 0.08 f |
M2 | 20.92 ± 0.07 d | 11.02 ± 0.02 n | 0.06 ± 0.00 kl | 0.19 ± 0.01 kl | 4.24 ± 0.03 k | 4.24 ± 0.02 j | 3.22 ± 0.02 n | 1.16 ± 0.01 j | 1.62 ± 0.03 | 12.12 ± 0.05 q |
M3 | 10.60 ± 0.06 s | 7.29 ± 0.25 q | 0.07 ± 0.01 jk | 0.22 ± 0.00 k | 3.30 ± 0.02 n | 3.14 ± 0.01 k | 2.62 ± 0.02 r | 7.43 ± 0.03 a | 2.17 ± 0.02 | 23.80 ± 0.05 j |
M4 | 36.90 ± 0.09 b | 19.12 ± 0.04 d | 0.12 ± 0.01 g | 0.17 ± 0.02 lm | 6.38 ± 0.03 i | 6.08 ± 0.02 f | 5.80 ± 0.04 j | 1.13 ± 0.01 j | 2.14 ± 0.01 | 25.90 ± 0.06 h |
M5 | 17.19 ± 0.10 h | 15.69 ± 0.04 i | 0.12 ± 0.00 g | 0.35 ± 0.02 i | 6.90 ± 0.03 h | 4.39 ± 0.02 i | 7.99 ± 0.06 g | 0.86 ± 0.01 l | 1.75 ± 0.02 | 22.04 ± 0.04 l |
M6 | 12.04 ± 0.04 o | 24.54 ± 0.04 c | 0.12 ± 0.01 g | 1.70 ± 0.02 c | 9.66 ± 0.01 b | 10.10 ± 0.04 d | 9.86 ± 0.03 e | 1.30 ± 0.02 h | 2.52 ± 0.03 | 22.56 ± 0.05 k |
M7 | 15.38 ± 0.08 j | 25.83 ± 0.08 b | 0.14 ± 0.00 ef | 2.00 ± 0.03 a | 10.21 ± 0.03 a | 16.16 ± 0.04 a | 13.83 ± 0.05 a | 3.94 ± 0.04 b | 2.70 ± 0.02 | 74.05 ± 0.09 a |
M8 | 10.95 ± 0.05 r | 16.55 ± 0.05 g | 0.08 ± 0.00 j | 0.22 ± 0.01 k | 7.38 ± 0.03 f | 1.74 ± 0.01 p | 11.35 ± 0.04 b | 1.27 ± 0.02 h ı | 2.68 ± 0.03 | 19.70 ± 0.04 n |
M9 | 11.37 ± 0.12 q | 13.50 ± 0.04 l | 0.60 ± 0.02 a | 0.14 ± 0.00 m | 9.43 ± 0.05 c | 1.91 ± 0.03 o | 10.15 ± 0.02 d | 0.46 ± 0.01 p | 3.26 ± 0.04 | 21.15 ± 0.06 m |
M10 | 10.46 ± 0.06 t | 5.12 ± 0.02 t | 0.05 ± 0.00 l | 0.59 ± 0.01 g | 1.06 ± 0.01 t | 2.42 ± 0.02 l | 2.30 ± 0.02 s | 0.24 ± 0.00 q | 0.29 ± 0.01 | 4.53 ± 0.03 s |
M11 | 15.18 ± 0.08 k | 11.65 ± 0.04 m | 0.12 ± 0.01 g | 1.68 ± 0.03 c | 2.55 ± 0.05 q | 5.97 ± 0.02 g | 2.06 ± 0.03 t | 2.06 ± 0.03 d | 0.79 ± 0.03 | 38.89 ± 0.07 e |
M12 | 12.33 ± 0.03 n | 15.95 ± 0.05 h | 0.01 ± 0.00 n | 1.95 ± 0.05 b | 3.66 ± 0.06 m | 3.15 ± 0.03 k | 5.50 ± 0.02 k | 3.71 ± 0.04 c | 1.31 ± 0.04 | 8.89 ± 0.06 c |
M13 | 13.73 ± 0.04 m | 14.95 ± 0.61 j | 0.13 ± 0.01 fg | 1.57 ± 0.02 d | 7.19 ± 0.04 g | 5.02 ± 0.02 h | 8.78 ± 0.03 f | 1.24 ± 0.03 i | 2.67 ± 0.04 | 26.12 ± 0.04 g |
M14 | 11.34 ± 0.04 q | 5.52 ± 0.02 r | 0.01 ± 0.00 n | 0.32 ± 0.01 i | 3.23 ± 0.03 o | 1.55 ± 0.02 q | 3.27 ± 0.02 n | 1.07 ± 0.02 k | 1.64 ± 0.01 | 10.54 ± 0.04 r |
M15 | 11.54 ± 0.06 p | 8.42 ± 0.04 p | 0.10 ± 0.01 h | 0.77 ± 0.02 f | 2.45 ± 0.05 r | 5.00 ± 0.03 h | 3.13 ± 0.03 o | 0.52 ± 0.02 o | 0.66 ± 0.00 | 16.52 ± 0.03 p |
M16 | 38.56 ± 0.06 a | 13.77 ± 0.06 k | 0.12 ± 0.02 g | 0.51 ± 0.01 h | 5.34 ± 0.04 j | 10.88 ± 0.03 c | 5.24 ± 0.02 l | 1.39 ± 0.03 g | 1.89 ± 0.04 | 52.41 ± 0.07 b |
M17 | 19.69 ± 0.09 e | 29.53 ± 0.03 a | 0.19 ± 0.01 c | 0.33 ± 0.01 i | 8.28 ± 0.04 e | 10.98 ± 0.03 b | 7.86 ± 0.04 h | 1.60 ± 0.02 f | 2.64 ± 0.04 | 48.36 ± 0.03 d |
M18 | 23.15 ± 0.07 c | 9.07 ± 0.03 o | 0.36 ± 0.02 b | 0.28 ± 0.02 j | 2.65 ± 0.01 p | 2.32 ± 0.01 m | 2.73 ± 0.01 q | 1.07 ± 0.02 k | 1.39 ± 0.02 | 1.57 ± 0.01 u |
M19 | 18.97 ± 0.07 f | 5.44 ± 0.04 rs | 0.03 ± 0.00 m | 0.58 ± 0.02 g | 2.61 ± 0.04 p | 2.10 ± 0.01 n | 4.96 ± 0.01 m | 2.04 ± 0.01 d | 1.32 ± 0.01 | 17.58 ± 0.05 o |
M20 | 14.79 ± 0.09 l | 18.65 ± 0.05 e | 0.10 ± 0.01 h | 1.56 ± 0.04 d | 8.35 ± 0.03 d | 4.25 ± 0.03 j | 10.96 ± 0.03 c | 0.66 ± 0.02 n | 2.58 ± 0.04 | 24.08 ± 0.04 i |
M21 | 18.39 ± 0.07 g | 5.24 ± 0.02 st | 0.17 ± 0.02 d | 0.33 ± 0.01 i | 1.73 ± 0.03 s | 1.02 ± 0.01 r | 3.01 ± 0.01 p | 0.74 ± 0.01 m | 0.70 ± 0.02 | 4.34 ± 0.03 t |
LSD | 0.12 ** | 0.25 ** | 0.02 ** | 0.04 ** | 0.06 ** | 0.04 ** | 0.06 ** | 0.04 ** | 2.38 | 0.09 ** |
Marker Name | Sequence (5′-3′) | TB | PB | PR (%) | Bp | Rp | Ne | I | PIC |
---|---|---|---|---|---|---|---|---|---|
HVH(TCC)7 | HVHTCCTCCTCCTCCTCCTCCTCC | 10 | 10 | 100 | 300–1200 | 2.37 | 1.79 | 0.63 | 0.44 |
(GA)8YG | GAGAGAGAGAGAGAGAYG | 7 | 5 | 71.43 | 200–950 | 3.22 | 1.53 | 0.51 | 0.34 |
(AGC)6G | AGCAGCAGCAGCAGCAGCG | 9 | 9 | 100 | 350–1050 | 2.86 | 1.59 | 0.55 | 0.36 |
(GAA)6 | GAAGAAGAAGAAGAAGAA | 7 | 6 | 85.71 | 200–900 | 2.39 | 1.78 | 0.62 | 0.43 |
(GT)6GG | GTGTGTGTGTGTGG | 9 | 9 | 100 | 400–900 | 2.43 | 1.74 | 0.61 | 0.42 |
(CAC)3GC | CACCACCACGC | 8 | 8 | 100 | 200–1200 | 2.56 | 1.68 | 0.59 | 0.40 |
BDB(CA)7C | BDBCACACACACACACAC | 12 | 8 | 66.67 | 350–1000 | 2.72 | 1.66 | 0.53 | 0.38 |
Total | 62 | 55 | |||||||
Mean | 8.86 | 7.86 | 89.12 | - | 2.65 | 1.68 | 0.58 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erkek, B.; Yaman, M.; Sümbül, A.; Demirel, S.; Demirel, F.; Coşkun, Ö.F.; Say, A.; Eren, B.; Aydin, A.; Eroglu, A. Natural Diversity of Crataegus monogyna Jacq. in Northeastern Türkiye Encompassing Morphological, Biochemical, and Molecular Features. Horticulturae 2025, 11, 238. https://doi.org/10.3390/horticulturae11030238
Erkek B, Yaman M, Sümbül A, Demirel S, Demirel F, Coşkun ÖF, Say A, Eren B, Aydin A, Eroglu A. Natural Diversity of Crataegus monogyna Jacq. in Northeastern Türkiye Encompassing Morphological, Biochemical, and Molecular Features. Horticulturae. 2025; 11(3):238. https://doi.org/10.3390/horticulturae11030238
Chicago/Turabian StyleErkek, Bora, Mehmet Yaman, Ahmet Sümbül, Serap Demirel, Fatih Demirel, Ömer Faruk Coşkun, Ahmet Say, Barış Eren, Adnan Aydin, and Ayten Eroglu. 2025. "Natural Diversity of Crataegus monogyna Jacq. in Northeastern Türkiye Encompassing Morphological, Biochemical, and Molecular Features" Horticulturae 11, no. 3: 238. https://doi.org/10.3390/horticulturae11030238
APA StyleErkek, B., Yaman, M., Sümbül, A., Demirel, S., Demirel, F., Coşkun, Ö. F., Say, A., Eren, B., Aydin, A., & Eroglu, A. (2025). Natural Diversity of Crataegus monogyna Jacq. in Northeastern Türkiye Encompassing Morphological, Biochemical, and Molecular Features. Horticulturae, 11(3), 238. https://doi.org/10.3390/horticulturae11030238