Neopestalotiopsis spp.: A Threat to Strawberry Production and Management
Abstract
:1. Introduction
2. Overview of Neopestalotiopsis Infection in Strawberries
3. Neopestalotiopsis Outbreaks in Strawberry Are Extending Worldwide: Epidemiology and Most Affected Cultivars
4. The Pathogen Neopestalotiopsis: Molecular and Morphological Characterization
5. Neopestalotiopsis Disease Management in Strawberry Crops
6. Perspectives and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parra-Palma, C.; Úbeda, C.; Gil, M.; Ramos, P.; Castro, R.I.; Morales-Quintana, L. Comparative study of the volatile organic compounds of four strawberry cultivars and it relation to alcohol acyltransferase enzymatic activity. Sci. Hortic. 2019, 251, 65–72. [Google Scholar] [CrossRef]
- Hasnaa, S.; Chadia, O.; Abdellah, M.; Azzeddine, E.R.; Asmae, T.; Abdallah, D.; Lhoussine, B. Study of the physicochemical characteristics of different strawberries consumed in Morocco. Curr. Res. Nutr. 2023, 11, 339–350. [Google Scholar] [CrossRef]
- Salas-Arias, K.; Irías-Mata, A.; Sánchez-Kopper, A.; Hernández-Moncada, R.; Salas-Morgan, B.; Villalta-Romero, F.; Calvo-Castro, L.A. Strawberry Fragaria x ananassa cv. Festival: A polyphenol-based phytochemical characterization in fruit and leaf extracts. Molecules 2023, 28, 1865. [Google Scholar] [CrossRef]
- Ko, M.J.; Jayaramaiah, R.H.; Gupta, R.; Kim, S.W.; An, J.U.; Wang, Z.; Li, M.; Kang, N.J.; Hong, K.P.; Kang, J.S.; et al. Evaluation of bioactive compounds in strawberry fruits by a targeted metabolomic approach. Korean J. Hortic. Sci. Technol. 2017, 35, 805–819. [Google Scholar] [CrossRef]
- Basu, A.; Izuora, K.; Betts, N.M.; Ebersole, J.L.; Scofield, R.H. Dietary strawberries improve biomarkers of antioxidant status and endothelial function in adults with cardiometabolic risks in a randomized controlled crossover trial. Antioxidants 2021, 10, 1730. [Google Scholar] [CrossRef]
- Nofal, A.E.; AboShabaan, H.S.; Fayyad, R.M.; Ereba, R.E.; Omar, N.A.; Elsharkawy, S.M.; Elberri, A.I. Immunostimulatory and anti-inflammatory impact of Fragaria ananassa methanol extract in a rat model of cadmium chloride-induced pulmonary toxicity. Front. Immunol. 2023, 14, 1297315. [Google Scholar] [CrossRef]
- Amatori, S.; Mazzoni, L.; Alvarez-Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Errico Provenzano, A.; Persico, G.; Mezzetti, B.; et al. Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Sci. Rep. 2016, 6, 30917. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, X.; Chen, H.; Liu, Y.; Xiao, Y.; Chen, H.; Tang, Z.; Li, Q.; Yao, H. Evaluation of a strawberry fermented beverage with potential health benefits. PeerJ 2021, 9, e11974. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Miller, M.G.; Thangthaeng, N.; Scott, T.M.; Shukitt-Hale, B.; Edirisinghe, I.; Burton-Freeman, B. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food Funct. 2018, 9, 96–106. [Google Scholar] [CrossRef]
- Hernández-Martínez, N.R.; Blanchard, C.; Wells, D.; Salazar-Gutiérrez, M.R. Current state and future perspectives of commercial strawberry production: A review. Sci. Hortic. 2023, 312, 111893. [Google Scholar] [CrossRef]
- González-Ramírez, M.G.; Santoyo-Cortés, V.H.; Arana-Coronado, J.J.; Muñoz-Rodríguez, M. The insertion of Mexico into the global value chain of berries. World Dev. Perspect. 2020, 20, 100240. [Google Scholar] [CrossRef]
- Narro-Sánchez, J.; Dávalos-González, P.A.; Velásquez-Valle, R.; Castro-Franco, J. Main strawberry diseases in Irapuato, Guanajuato and Zamora, Michoacan, Mexico. Acta Hortic. 2006, 708, 167–172. [Google Scholar] [CrossRef]
- Takeda, F.; Janisiewicz, W.J.; Smith, B.J.; Nichols, B. A New approach for strawberry disease control. Eur. J. Hortic. Sci. 2019, 84, 3–13. [Google Scholar] [CrossRef]
- Pastrana, A.M.; Borrero, C.; Pérez, A.G.; Avilés, M. Soilborne pathogens affect strawberry fruit flavor and quality. Plant Sci. 2023, 326, 111533. [Google Scholar] [CrossRef]
- Villarino, M.; Larena, I.; Melgarejo, P.; De Cal, A. Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study. Pest Manag. Sci. 2021, 77, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhang, W.; Zhu, N.; Mao, S.; Tu, K. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Res. Int. 2014, 62, 162–168. [Google Scholar] [CrossRef]
- Avilés, M.; Pastrana, A.M.; Borrero, C. Emerging diseases in Spain strawberry crops: Neopestalotiopsis leaf and crown rot and Fusarium wilt. Plants 2024, 13, 3441. [Google Scholar] [CrossRef]
- Morales-Mora, L.A.; Martínez-Salgado, S.J.; De Ita, M.A.V.; Andrade-Hoyos, P.; Silva-Rojas, H.V.; Romero-Arenas, O. First report of leaf spot and anthracnosis caused by Pestalotiopsis sp. on strawberry in Puebla, Mexico. Plant Dis. 2019, 103, 2668. [Google Scholar] [CrossRef]
- Rebollar-Alviter, A.; Silva-Rojas, H.V.; Fuentes-Aragón, D.; Acosta-González, U.; Martínez-Ruiz, M.; Parra-Robles, B.E. An emerging strawberry fungal disease associated with root rot, crown rot and leaf spot caused by Neopestalotiopsis rosae in Mexico. Plant Dis. 2020, 104, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Harishchandra, D.; Jia, J.; Zuo, Q.; Zhang, G.; Wang, Q.; Yan, J.; Zhang, W.; Li, X. Role of Neopestalotiopsis rosae in causing root rot of strawberry in Beijing, China. Crop Prot. 2021, 147, 105710. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Tsai, C.-Y.; Wu, Y.-M.; Ariyawansa, H.-A.; Chung, C.-L.; Chung, P.-C. First report of Neopestalotiopsis rosae causing leaf blight and crown rot on strawberry in Taiwan. Plant Dis. 2021, 105, 487. [Google Scholar] [CrossRef]
- Essa, T.A.; Kamel, S.M.; Ismail, A.M.; El-Ganainy, S.M. Characterization and chemical control of Neopestalotiopsis rosae the causal agent of strawberry root and crown rot in Egypt. Egypt. J. Phytopathol. 2018, 46, 1–19. [Google Scholar] [CrossRef]
- Gerardo-Lugo, S.S.; Tovar-Pedraza, J.M.; Maharachchikumbura, S.S.N.; Apodaca-Sánchez, M.A.; Correia, K.C.; Sauceda-Acosta, C.P.; Camacho-Tapia, M.; Hyde, K.D.; Marraiki, N.; Elgorban, A.M.; et al. Characterization of Neopestalotiopsis species associated with mango grey leaf spot disease in Sinaloa, Mexico. Pathogens 2020, 9, 788. [Google Scholar] [CrossRef]
- Pandey, A.K.; Sinniah, G.D.; Yadav, S.; Maharachchikumbura, S.S.N. Pestalotiopsis-like species: Host network and lifestyle on tea crop. Fungal Biol. Rev. 2024, 47, 100340. [Google Scholar] [CrossRef]
- Jevremović, D.; Vasić, T.; Živković, S.; Vasilijević, B.; Marić, M.; Vojvodić, M.; Bulajić, A. Neopestalotiopsis clavispora: A causal agent of twig dieback on highbush blueberries in Serbia. J. Plant Dis. Prot. 2022, 129, 1277–1283. [Google Scholar] [CrossRef]
- Rodríguez-Gálvez, E.; Hilário, S.; Lopes, A.; Alves, A. Diversity and pathogenicity of Lasiodiplodia and Neopestalotiopsis species associated with stem blight and dieback of blueberry plants in Peru. Eur. J. Plant Pathol. 2020, 157, 89–102. [Google Scholar] [CrossRef]
- Sarmiento-Chacón, M.; Hernández-García, V.; Rodríguez-Larramendi, L.A.; Salas-Marina, M.Á.; Ríos-Velasco, C. Neopestalotiopsis sp. and Colletotrichum karstii, causal agents of leaf spots on camedor palm (Chamaedorea quezalteca) in Mexico. Rev. Mex. Fitopatol. 2023, 41, 165–181. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Zhang, W.; Liu, M.; Maharachchikumbura, S.S.N.; Zhou, Y.; Huang, J.B.; Nilthong, S.; Wang, Z.Y.; Li, X.H.; Yan, J.Y.; et al. Identification and characterization of pestalotiopsis-like fungi related to grapevine diseases in China. Fungal Biol. 2015, 119, 348–361. [Google Scholar] [CrossRef]
- Howard, C.M.; Albregts, E.E. A strawberry fruit rot caused by Pestalotia longisetula. Phytopathology 1973, 63, 862–863. [Google Scholar] [CrossRef]
- Kenneth, R.G.; Barkai-golan, R.; Netzer, D. A Pestalotia fruit rot of strawberries in Israel. Plant Dis. Rep. 1968, 52, 472–474. [Google Scholar]
- Steyaert, R.L. Contributions à l’étude monographique de Pestalotia de Not. et Monochaetia Sacc. (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bull. Jard. Bot. Brux. 1949, 19, 285–354. [Google Scholar] [CrossRef]
- Guba, E.F. Monograph of Monochaetia and Pestalotia; Harvard University Press: Cambridge, MA, USA, 1961; p. 342. [Google Scholar]
- Maharachchikumbura, S.S.N.; Hyde, K.D.; Groenewald, J.Z.; Xu, J.; Crous, P.W. Pestalotiopsis revisited. Stud. Mycol. 2014, 79, 121–186. [Google Scholar] [CrossRef]
- MycoBank Datbase. Available online: https://www.mycobank.org/ (accessed on 30 November 2024).
- Santos, J.; Hilário, S.; Pinto, G.; Alves, A. Diversity and pathogenicity of pestalotioid fungi associated with blueberry plants in Portugal, with description of three novel species of Neopestalotiopsis. Eur. J. Plant Pathol. 2022, 162, 539–555. [Google Scholar] [CrossRef]
- Diogo, E.; Gonçalves, C.I.; Silva, A.C.; Valente, C.; Bragança, H.; Phillips, A.J.L. Five new species of Neopestalotiopsis associated with diseased Eucalyptus spp. in Portugal. Mycol. Prog. 2021, 20, 1441–1456. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, F.; Lu, Q.; Hao, X.; Zheng, M.; Wang, L.; Li, N.; Ding, C.; Wang, X.; Yang, Y. Diversity of Pestalotiopsis-like species causing gray blight disease of tea plants (Camellia sinensis) in China, including two novel Pestalotiopsis species, and analysis of their pathogenicity. Plant Dis. 2019, 103, 2548–2558. [Google Scholar] [CrossRef]
- Maharachchikumbura, S.S.N.; Guo, L.D.; Cai, L.; Chukeatirote, E.; Wu, W.P.; Sun, X.; Crous, P.W.; Bhat, D.J.; McKenzie, E.H.C.; Bahkali, A.H.; et al. A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers. 2012, 56, 95–129. [Google Scholar] [CrossRef]
- Belisário, R.; Aucique-Pérez, C.E.; Abreu, L.M.; Salcedo, S.S.; de Oliveira, W.M.; Furtado, G.Q. Infection by Neopestalotiopsis spp. occurs on unwounded eucalyptus leaves and is favoured by long periods of leaf wetness. Plant Pathol. 2020, 69, 194–204. [Google Scholar] [CrossRef]
- Maharachchikumbura, S.S.N.; Guo, L.D.; Chukeatirote, E.; Bahkali, A.H.; Hyde, K.D. Pestalotiopsis-morphology, phylogeny, biochemistry and diversity. Fungal Divers. 2011, 50, 167–187. [Google Scholar] [CrossRef]
- Baggio, J.S.; Forcelini, B.B.; Wang, N.Y.; Ruschel, R.G.; Mertely, J.C.; Peres, N.A. Outbreak of leaf spot and fruit rot in Florida strawberry caused by Neopestalotiopsis spp. Plant Dis. 2021, 105, 305–315. [Google Scholar] [CrossRef]
- Watanabe, K.; Parbery, D.G.; Kobayashi, T.; Doi, Y. Conidial adhesion and germination of Pestalotiopsis neglecta. Mycol. Res. 2000, 104, 962–968. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Silva, I.T.; Antunes Cruz, M.F.; Carré-Missio, V. The infection process of Pestalotiopsis longisetula leaf spot on strawberry leaves. J. Phytopathol. 2014, 162, 690–692. [Google Scholar] [CrossRef]
- Zuniga, A.I.; Baggio, J.S.; Peres, N.A. A semi-selective medium to evaluate over-summering survival of Neopestalotiopsis sp. in Florida strawberry fields. Plant Dis. 2024, 108, 2096–2103. [Google Scholar] [CrossRef]
- Morales-Mora, L.A.; Andrade-Hoyos, P.; Valencia-de Ita, M.A.; Romero-Arenas, O.; Silva-Rojas, H.V.; Contreras-Paredes, C.A. Characterization of strawberry associated fungi and in vitro antagonistic effect of Trichoderma harzianum. Rev. Mex. Fitopatol. 2020, 38, 434–449. [Google Scholar] [CrossRef]
- Jiang, P.; Fu, X.; Niu, H.; Chen, S.; Liu, F.; Luo, Y.; Zhang, D.; Lei, H. Recent advances on Pestalotiopsis genus: Chemistry, biological activities, structure–activity relationship, and biosynthesis. Arch. Pharm. Res. 2023, 46, 449–499. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Liu, L.; Xiang, M.; Wang, W.; Sun, X.; Che, Y.; Guo, L.; Liu, G.; Guo, L.; et al. Genomic and transcriptomic analysis of the endophytic fungus reveals its lifestyle and high potential for synthesis of natural products. BMC Genom. 2015, 16, 28. [Google Scholar] [CrossRef]
- Guo, J.; Ren, H.; Ijaz, M.; Qi, X.; Ahmed, T.; You, Y.; Li, G.; Yu, Z.; Islam, M.S.; Ali, H.M.; et al. The completed genome sequence of Pestalotiopsis versicolor, a pathogenic ascomycete fungus with implications for bayberry production. Genomics 2023, 115, 110695. [Google Scholar] [CrossRef]
- Xie, J.; Wei, J.G.; Wang, K.W.; Luo, J.; Wu, Y.J.; Luo, J.T.; Yang, X.H.; Yang, X.B. Three phytotoxins produced by Neopestalotiopsis clavispora, the causal agent of ring spot on Kadsura coccinea. Microbiol. Res. 2020, 238, 126531. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhang, J.Z.; Luo, D.Q. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat. Prod. Rep. 2012, 29, 622–641. [Google Scholar] [CrossRef]
- Espinoza, J.G.; Briceño, E.X.; Keith, L.M.; Latorre, B.A. Canker and twig dieback of blueberry caused by Pestalotiopsis spp. and a Truncatella sp. in Chile. Plant Dis. 2008, 92, 1407–1414. [Google Scholar] [CrossRef]
- Chandana, R.; Poonacha, T.T.; Chethan, D.; Karan, R.; Kruthika, R.; Khan, F.; Ashwini, K.S.; Bevanur, A.; Vani, Y.; Ramesh, G.V.; et al. Neopestalotiopsis rosae, a novel pathogen causing leaf blight and crown rot of strawberries in India. Physiol. Mol. Plant Pathol. 2024, 133, 102377. [Google Scholar] [CrossRef]
- Van Hemelrijck, W.; Ceustermans, A.; Van Campenhout, J.; Lieten, P.; Bylemans, D. crown rot in strawberry caused by Pestalotiopsis. Acta Hortic. 2017, 1156, 781–785. [Google Scholar] [CrossRef]
- Fernández-Ozuna, Y.A.; Gini Álvarez, A.R.; Lopez-Nicora, H.D.; Arrúa Alvarenga, A.A.; Colmán, A.A. First report of Neopestalotiopsis rosae causing leaf spot and crown rot on strawberry (Fragaria × ananassa) in Paraguay. New Dis. Rep. 2023, 48. [Google Scholar] [CrossRef]
- Schierling, T.E.; Voegele, R.T.; El-Hasan, A. First report on the emergence of Neopestalotiopsis rosae as a severe economic threat to strawberry production in Germany. Microorganisms 2025, 13, 6. [Google Scholar] [CrossRef]
- Hidrobo-Chavez, J.; Ramírez-Villacís, D.X.; Barriga-Medina, N.; Herrera, K.; León-Reyes, A. First report of Neopestalotiopsis mesopotamica causing root and crown rot on strawberry in Ecuador. Plant Dis. 2022, 106, 1066. [Google Scholar] [CrossRef]
- Intriago-Reyna, H.O.; Rivas-Figueroa, F.J.; Rivera-Casignia, Á.M.; Álvarez-Romero, P.I.; Ferreira, A.F.T.A.F.e. Outbreaks of crown rot in Fragaria x ananassa caused by Neopestalotiopsis mesopotamica in Ecuador. Emir. J. Food Agric. 2021, 33, 520–527. [Google Scholar] [CrossRef]
- Obregón, V.G.; Meneguzzi, N.G.; Ibañez, J.M.; Lattar, T.E.; Kirschbaum, D.S. First report of Neopestalotiopsis clavispora causing root and crown rot on strawberry plants in Argentina. Plant Dis. 2018, 102, 1856. [Google Scholar] [CrossRef]
- Park, K.; Han, I.; Lee, S.M.; Choi, S.L.; Kim, M.C.; Lee, H. Crown and root rot of strawberry caused by Neopestalotiopsis clavispora in Korea. Kor. J. Mycol. 2019, 47, 427–435. [Google Scholar] [CrossRef]
- Chamorro, M.; Aguado, A.; De los Santos, B. First report of root and crown rot caused by Pestalotiopsis clavispora (Neopestalotiopsis clavispora) on strawberry in Spain. Plant Dis. 2016, 100, 1495. [Google Scholar] [CrossRef]
- Gilardi, G.; Bergeretti, F.; Gullino, M.L.; Garibaldi, A. First report of Neopestalotiopsis clavispora causing root and crown rot on strawberry in Italy. Plant Dis. 2019, 103, 2959. [Google Scholar] [CrossRef]
- Sigillo, L.; Ruocco, M.; Gualtieri, L.; Pane, C.; Zaccardelli, M. First report of Neopestalotiopsis clavispora causing crown rot in strawberry in Italy. J. Plant Pathol. 2020, 102, 281. [Google Scholar] [CrossRef]
- Machín, A.; González, P.; Vicente, E.; Sánchez, M.; Estelda, C.; Ghelfi, J.; Silvera-Pérez, E. First report of root and crown rot caused by Neopestalotiopsis clavispora on strawberry in Uruguay. Plant Dis. 2019, 103, 2946. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Liu, Y.; Zhang, Z.; Wang, Z.; Xue, C.; Ma, Y.; Wang, F. First report of Neopestalotiopsis clavispora causing calyx and receptacle blight on strawberry in China. Plant Dis. 2022, 106, 1307. [Google Scholar] [CrossRef]
- Prematunga, C.J.; You, L.Q.; Gomdola, D.; Balasuriya, A.; Yang, Y.H.; Jayawardena, R.S.; Luo, M. An addition to pestalotioid fungi in china: Neopestalotiopsis fragariae sp. nov. causing leaf spots on Fragaria× ananassa. Asian J. Mycol. 2022, 5, 220–238. [Google Scholar] [CrossRef]
- SIAP (Servicio de Información Agroalimentaria y Pesquera Panorama Agroalimentario 2018–2024). Available online: https://www.gob.mx/siap/acciones-y-programas/panorama-agroalimentario-258035 (accessed on 15 December 2024).
- Lawrence, D.P.; Brittain, G.D.; Aglave, B.; Sances, F.V. first report of Neopestalotiopsis rosae causing crown and root rot of strawberry in California. Plant Dis. 2023, 107, 566. [Google Scholar] [CrossRef]
- Guan, W.; Bonkowski, J.; Creswell, T.; Egel, D.S. Strawberry cultivar susceptibility to Neopestalotiopsis leaf spot in Indiana. Plant Health Prog. 2023, 24, 135–139. [Google Scholar] [CrossRef]
- Madrid, A.M.J.; Munoz, G.; Collins, C.; Brannen, P. First report of the new Neopestalotiopsis species causing strawberry leaf spot and fruit rot in Georgia. Plant Dis. 2024, 108, 2574. [Google Scholar] [CrossRef]
- Rotondo, F.; Klass, T.L.; Scott, K.; McCartney, M.; Jacobs, J.M.; Lewis Ivey, M.L. First report of Neopestalotiopsis disease in Ohio caused by an emerging and novel species of Neopestalotiopsis on strawberry. Plant Dis. 2022, 107, 940. [Google Scholar] [CrossRef]
- McNally, J.; Prapagar, K.; Goldenhar, K.; Pate, E.; Shan, S.; Kalischuk, M. First report of an aggressive species of Neopestalotiopsis affecting strawberry in Canada. New Dis. Rep. 2023, 48, e12210. [Google Scholar] [CrossRef]
- Tovar-Pedraza, J.M.; Solano-Báez, A.R.; Leyva-Mir, S.G.; Tlapal-Bolaños, B.; Camacho-Tapia, M.; García-León, E.; Ayala-Escobar, V.; Nava-Díaz, C.; Quezada-Salinas, A.; Santiago-Santiago, V.; et al. The need and opportunity to update the inventory of plant pathogenic fungi and oomycetes in Mexico. J. Fungi 2024, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Y.; Yang, Y. Pestalotiopsis diversity: Species, dispositions, secondary metabolites, and bioactivities. Molecules 2022, 27, 8088. [Google Scholar] [CrossRef]
- Yu, X.; Huo, L.; Liu, H.; Chen, L.; Wang, Y.; Zhu, X. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiol. Res. 2015, 179, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Gelain, J.; Marin, M.V.; Peres, N.A.; Schnabel, G. Development of a molecular tool for identification of a new Neopestalotiopsis sp. associated with disease outbreaks on strawberry. Plant Dis. 2023, 107, 1544–1549. [Google Scholar] [CrossRef]
- Rebello, C.S.; Wang, N.-Y.; Marin, M.V.; Baggio, J.S.; Peres, N.A. Detection and species differentiation of Neopestalotiopsis spp. from strawberry (Fragaria × ananassa) in Florida using a high-resolution melting analysis. PhytoFrontiers 2023, 3, 156–163. [Google Scholar] [CrossRef]
- Munawar, M.A.; Toljamo, A.; Martin, F.; Oksanen, E.; Kokko, H. Development and evaluation of a recombinase polymerase amplification assay for rapid detection of strawberry red stele pathogen. Phytopathol. Res. 2020, 2, 26. [Google Scholar] [CrossRef]
- Lu, X.; Xu, H.; Song, W.; Yang, Z.; Yu, J.; Tian, Y.; Jiang, M.; Shen, D.; Dou, D. Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification–lateral flow strip assay. Phytopathol. Res. 2021, 3, 12. [Google Scholar] [CrossRef]
- Vielba-Fernández, A.; Dowling, M.; Schnabel, G.; Fernández-Ortuño, D. A loop-mediated isothermal amplification assay for the identification of Botrytis fragariae in strawberry. Plant Dis. 2023, 107, 3414–3421. [Google Scholar] [CrossRef]
- Alonzo, G.; Baggio, J.S.; Peres, N.A. Effect of fumigants on inoculum of Neopestalotiopsis spp. in strawberry crowns and soil. Plant Dis. 2024. [Google Scholar] [CrossRef]
- Tran, T.N.M.; Vu, N.B.D.; Nguyen, M.H. Antifungal activity of essential oil-encapsulated lipid nanoemulsions against Neopestalotiopsis rosae causing leaf spot on strawberry. J. Plant Dis. Prot. 2023, 130, 823–832. [Google Scholar] [CrossRef]
- Darapanit, A.; Boonyuen, N.; Leesutthiphonchai, W.; Nuankaew, S.; Piasai, O. Identification, pathogenicity and effects of plant extracts on Neopestalotiopsis and Pseudopestalotiopsis causing fruit diseases. Sci. Rep. 2021, 11, 22606. [Google Scholar] [CrossRef]
- Baggio, J.S.; Rebello, C.S.; de Morais, M.B.; Marin, M.V.; Gama, A.B.; Forcelini, B.B.; Mertely, J.C.; Peres, N.A. Efficacy of single- and multi-site fungicides against Neopestalotiopsis spp. of strawberry. Plant Dis. 2023, 107, 2177–2184. [Google Scholar] [CrossRef]
- Forcelini, B.B.; Seijo, T.E.; Amiri, A.; Peres, N.A. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Dis. 2016, 100, 2050–2056. [Google Scholar] [CrossRef] [PubMed]
- Fungicide Resistance Action Committee (FRAC). Frac List 2024 FRAC Code List©* 2024: Fungal Control Agents Sorted by Cross-Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels). Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2024.pdf (accessed on 21 January 2024).
- Acosta-González, U.; Leyva-Mir, S.G.; Silva-Rojas, H.V.; Rebollar-Alviter, A. Preventive and curative effects of treatments to manage strawberry root and crown rot caused by Neopestalotiopsis rosae. Plant Dis. 2024, 108, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Amrutha, P.; Vijayaraghavan, R. Evaluation of fungicides and biocontrol agents against Neopestalotiopsis clavispora causing leaf blight of strawberry (Fragaria × ananassa Duch.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 622–628. [Google Scholar] [CrossRef]
- Kummanid, J.; Akimitsu, K.; Nalumpang, S. Mutations of the β-tubulin gene fragments from carbendazim-resistant isolates of Pestalotiopsis sp. causing strawberry leaf blight in Chiang Mai, Thailand. J. Phytopathol. 2017, 165, 515–521. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Chen, J.; Jun, S.; Yuan, Y.; Dai, X.; Wang, F.; Ma, Y. The biological control effect of Bacillus cereus on strawberry leaf spot disease caused by Neopestalotiopsis clavispora. Sci. Hortic. 2024, 327, 112841. [Google Scholar] [CrossRef]
- Yang, R.; Liu, P.; Ye, W.; Chen, Y.; Wei, D.; Qiao, C.; Zhou, B.; Xiao, J. Biological control of root rot of strawberry by Bacillus amyloliquefaciens strains CMS5 and CMR12. J. Fungi 2024, 10, 410. [Google Scholar] [CrossRef]
- Amil-Ruiz, F.; Blanco-Portales, R.; Muñoz-Blanco, J.; Caballero, J.L. The strawberry plant defense mechanism: A molecular review. Plant Cell Physiol. 2011, 52, 1873–1903. [Google Scholar] [CrossRef]
- Garza-Alonso, C.A.; Olivares-Sáenz, E.; González-Morales, S.; Cabrera-De la Fuente, M.; Juárez-Maldonado, A.; González-Fuentes, J.A.; Tortella, G.; Valdés-Caballero, M.V.; Benavides-Mendoza, A. Strawberry biostimulation: From mechanisms of action to plant growth and fruit quality. Plants 2022, 11, 3463. [Google Scholar] [CrossRef]
- Alam, E.; Moyer, C.; Verma, S.; Peres, N.A.; Whitaker, V.M. Exploring the genetic basis of resistance to Neopestalotiopsis species in strawberry. Plant Genome 2024, 17, e20477. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Lin, Y.C.; Xu, Y.C.; Chang, H.X.; Chung, P.C.; Ariyawansa, H.A. High-quality genome assembly of Neopestalotiopsis rosae ML1664, the pathogen causing strawberry leaf blight and crown rot. Mol. Plant Microbe Interact. 2022, 35, 949–953. [Google Scholar] [CrossRef]
Active Ingredient | FRAC Code [85] | Mode of Action | Subgroup |
---|---|---|---|
Fludioxonil | 12 | Signal transduction | MAP/histidine-kinase in osmotic signal transduction (os-2, HOG1): Phenylpyrroles |
Fluazinam | 29 | Respiration | Uncouplers of oxidative phosphorylation |
Difenoconazole Fluotriafol Myclobutanil Propiconazole Tetraconazole Triflumizole | 3 | Sterol biosynthesis in membranes | C14 demethylase in sterol biosynthesis (erg11/cyp51): Demethylation inhibitor (DMI) fungicides |
Hymexazole | 32 | Nucleic acid metabolism | DNA/RNA synthesis (proposed) |
Captan | M04 | Multi-site contact activity | Multi-site contact activity: Phthalimides |
Thiram | M03 | Multi-site contact activity | Multi-site contact activity: Dithiocarbamates and relatives |
Chlorothalonil | M05 | Multi-site contact activity | Multi-site contact activity: Chloronitriles (phthalonitriles) |
Propineb | M03 | Multi-site contact activity | Multi-site contact activity: Dithiocarbamates and relatives |
Copper hydroxide | M01 | Multi-site contact activity | Multi-site contact activity: Inorganic (copper) |
Copper oxychloride | M01 | Multi-site contact activity | Multi-site contact activity: Inorganic (copper) |
Bordeaux mixture | M01 | Multi-site contact activity | Multi-site contact activity: Inorganic (copper) |
Fungicide combination | |||
Pydiflumetofen + Fludioxonil | 7 | Respiration | Complex II, succinate-dehydrogenase: Succinate- dehydrogenase inhibitor (SDHI) fungicides |
12 | Signal transduction | MAP/histidine-kinase in osmotic signal transduction (os-2, HOG1): Phenylpyrroles | |
Cyprodinil + Fludioxonil | 9 | Amino acids and protein synthesis | Methionine biosynthesis (proposed) (cgs gene): Anilino-pyrimidine (AP) fungicides |
12 | Signal transduction | MAP/histidine-kinase in osmotic signal transduction (os-2, HOG1): Phenylpyrroles | |
Prochloraz + Thiram | 3 | Sterol biosynthesis in membranes | C14-demethylase in sterol biosynthesis (erg11/cyp51): Demethylation inhibitor (DMI) fungicides |
M03 | Multi-site contact activity | Multi-site contact activity: Dithiocarbamates and relatives | |
Carbendazim + Mancozeb | 1 | Cytoskeleton and motor proteins | Tubulin polymerization |
M03 | Multi-site contact activity | Multi-site contact activity: Dithiocarbamates and relatives | |
Cymoxanil + Mancozeb | 27 | Unknown mode of action | Unknown: Cyanoacetamide-oxime |
M03 | Multi-site contact activity | Multi-site contact activity: Dithiocarbamates and relatives |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Hernández, J.G.; León-Ramírez, C.G.; Abraham-Juárez, M.d.R.; Tlapal-Bolaños, B.; Olalde-Portugal, V.; Délano-Frier, J.P.; Martínez-Antonio, A.; Aguilar-Zárate, P. Neopestalotiopsis spp.: A Threat to Strawberry Production and Management. Horticulturae 2025, 11, 288. https://doi.org/10.3390/horticulturae11030288
Ávila-Hernández JG, León-Ramírez CG, Abraham-Juárez MdR, Tlapal-Bolaños B, Olalde-Portugal V, Délano-Frier JP, Martínez-Antonio A, Aguilar-Zárate P. Neopestalotiopsis spp.: A Threat to Strawberry Production and Management. Horticulturae. 2025; 11(3):288. https://doi.org/10.3390/horticulturae11030288
Chicago/Turabian StyleÁvila-Hernández, José Guadalupe, Claudia Geraldine León-Ramírez, Ma. del Rosario Abraham-Juárez, Bertha Tlapal-Bolaños, Víctor Olalde-Portugal, John Paul Délano-Frier, Agustino Martínez-Antonio, and Pedro Aguilar-Zárate. 2025. "Neopestalotiopsis spp.: A Threat to Strawberry Production and Management" Horticulturae 11, no. 3: 288. https://doi.org/10.3390/horticulturae11030288
APA StyleÁvila-Hernández, J. G., León-Ramírez, C. G., Abraham-Juárez, M. d. R., Tlapal-Bolaños, B., Olalde-Portugal, V., Délano-Frier, J. P., Martínez-Antonio, A., & Aguilar-Zárate, P. (2025). Neopestalotiopsis spp.: A Threat to Strawberry Production and Management. Horticulturae, 11(3), 288. https://doi.org/10.3390/horticulturae11030288