Olive Plant Treated with Different Geo-Material Foliar Film (Zeolite and Kaolin Based): Leaf Characteristics and Oil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Bologna site (44°31′28.9″ N 11°20′21.1″ E; 54 m ASL), in this site 25 trees for each thesis were treated with three different foliar application: Kaolin (K-B) in water solution at a dosage of 3.0 kg/hL of H2O; Natural Zeolite (NZ-B) at a dosage of 0.6 kg/hL of H2O; Test (T-B) where olive trees were not treated with any compound.
- San Lazzaro di Savena site (44°27′00″ N, 11°23′33″ E; 216 m ASL in Bologna province), in this olive orchard 25 plants for each thesis were treated with three different foliar applications: Natural Zeolite (NZ-SL) dissolved in water at a dosage of 0.6 kg/hL of H2O; Zeolite Enriched with ammonium (EZ-SL) dissolved in water at a dosage of 0.6 kg/hL of H2O; Test (T-SL) where olive trees were not treated with any compound.
2.2. Leaf Samples Collection
2.3. Anatomical Analyses
2.3.1. Leaves’ Morphology Analyses
2.3.2. Light Microscopy Analysis
2.3.3. ESEM Analysis
2.4. Ecophysiological Measurements, Chlorophyll’s Content and Colour Leaf Measurements
2.5. Fruit Weight, Oil Content and Olive Oil Quality
2.5.1. Fruit Weight and Oil Content
2.5.2. Olive Oil Production
2.5.3. Chemical Analysis of EVOO (Extra Virgin Olive Oil)
2.5.4. Sensory Analysis of EVOO
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bologna Site
3.1.1. Anatomical Analyses
Leaves’ Morphology Analyses
Light Microscopy Analysis
ESEM Observations
3.1.2. Ecophysiological Measurements, Chlorophyll’s Content and Colour Leaf Measurements
3.1.3. Fruit Oil Quantity, Chemical and Sensory Analysis of Extra Virgin Olive Oil (EVOO)
3.2. San Lazzaro Site
3.2.1. Anatomical Analyses
Leaf Morphology Analyses
Light Microscopy
3.2.2. Ecophysiological Measurements, Chlorophyll’s Content and Colour Leaf Measurements
3.2.3. Fruit Weight, Oil Quantity, Chemical and Sensory Analysis of Extra Virgin Olive Oil (EVOO)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatments | Leaf Area (mm2) |
---|---|
NZ-B | 696.45 a |
T-B | 707.69 a |
K-B | 669.33 a |
Treatment | Olfactory Olive Fruity | Olfactory Pleasant Flavours | Gustatory Olive Fruity | Bitter | Pungent | Grass | Gustatory Pleasant Flavours |
---|---|---|---|---|---|---|---|
NZ-B | 4.55 | 2.15 | 4.20 | 3.55 | 3.55 | 1.25 | 1.95 |
K-B | 4.95 | 2.50 | 4.90 | 3.95 | 3.30 | 1.15 | 2.15 |
T-B | 5.10 | 2.90 | 4.60 | 3.30 | 4.00 | 1.80 | 3.05 |
Pr > F | 0.929 | 0.494 | 0.774 | 0.630 | 0.911 | 0.774 | 0.978 |
Treatments | Leaf Area (mm2) |
---|---|
EZ-SL | 606.03 ab |
T-SL | 573.64 b |
NZ-SL | 632.93 a |
Treatment | Transverse Diameter of Epidermal Cell | Longitudinal Diameter of Epidermal Cell | Palisade Thickness | Spongy Thickness | Maximum Diameter of Leaf Xylem Vessels | Cell wall Thickness of Xylem Vessels |
---|---|---|---|---|---|---|
NZ-SL | 14.125 a | 14.295 a | 167.141 a | 227.325 a | 12.314 a | 2.187 a |
T-SL | 14.001 a | 14.407 a | 168.176 a | 225.309 a | 12.001 a | 2.155 a |
EZ-SL | 14.083 a | 14.362 a | 164.270 a | 226.642 a | 11.581 a | 1.901 b |
Pr > F | 0.587 | 0.844 | 0.160 | 0.480 | 0.297 | 0.005 |
Treatment | Olfactory Olive Fruity | Olfactory Pleasant Flavours | Gustatory Olive Fruity | Bitter | Pungent | Grass | Gustatory Pleasant Flavours |
---|---|---|---|---|---|---|---|
NZ-SL | 3.05 | 1.0 | 3.70 | 5.55 | 4.45 | 1.50 | 1.85 |
T-SL | 3.85 | 2.0 | 3.85 | 5.70 | 4.50 | 2.10 | 2.30 |
EZ-SL | 2.70 | 1.5 | 3.15 | 3.35 | 3.55 | 1.15 | 0.50 |
Pr > F | 0.594 | 0.600 | 0.781 | 0.075 | 0.134 | 0.901 | 0.939 |
References
- Malheiro, R.; Casal, S.; Baptista, P.; Pereira, J.A. A Review of Bactrocera Oleae (Rossi) Impact in Olive Products: From the Tree to the Table. Trends Food Sci. Technol. 2015, 44, 226–242. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Cunha, S.C.; Baptista, P.; Pereira, J.A. Identification of Leaf Volatiles from Olive (Olea Europaea) and Their Possible Role in the Ovipositional Preferences of Olive Fly, Bactrocera Oleae (Rossi) (Diptera: Tephritidae). Phytochemistry 2016, 121, 11–19. [Google Scholar] [CrossRef]
- Rotondi, A.; Bertazza, G.; Faccini, B.; Ferretti, G.; Morrone, L. Effect of Different Foliar Particle Films (Kaolin and Zeolitite) on Chemical and Sensory Properties of Olive Oil. Agronomy 2022, 12, 3088. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Regulation (EU) 2019/1090-of 26 June 2019-Concerning the Non-Renewal of Approval of the Active Substance Dimethoate, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 2019, 173, 39–41. [Google Scholar]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; The Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Pascual, S.; Cobos, G.; Seris, E.; González-Núñez, M. Effects of Processed Kaolin on Pests and Non-Target Arthropods in a Spanish Olive Grove. J. Pest Sci. 2010, 83, 121–133. [Google Scholar] [CrossRef]
- Gharbi, N.; Abdallah, S.B. Effectiveness of Kaolin Treatment for the Control of the Olive Fruit Fly Bactrocera Oleae in Tunisian Olive Groves. Tunis. J. Plant Prot. 2016, 11, 73–81. [Google Scholar]
- Morrone, L.; Neri, L.; Facini, O.; Galamini, G.; Ferretti, G.; Rotondi, A. Influence of Chabazite Zeolite Foliar Applications Used for Olive Fruit Fly Control on Volatile Organic Compound Emission, Photosynthesis, and Quality of Extra Virgin Olive Oil. Plants 2024, 13, 698. [Google Scholar] [CrossRef] [PubMed]
- Bozorgi, H.R. Effects of Foliar Spraying with Marine Plant Ascophyllum Nodosum Extract and Nano Iron Chelate Fertilizer on Fruit Yield and Several Attributes of Eggplant (Solanum melongena L.). J. Agric. Sci. Technol. 2012, 7, 357–362. [Google Scholar]
- Shellie, K.C.; King, B.A. Kaolin Particle Film and Water Deficit Influence Malbec Leaf and Berry Temperature, Pigments, and Photosynthesis. Am. J. Enol. Vitic. 2013, 64, 223–230. [Google Scholar] [CrossRef]
- Denaxa, N.K.; Roussos, P.A.; Damvakaris, T.; Stournaras, V. Comparative Effects of Exogenous Glycine Betaine, Kaolin Clay Particles and Ambiol on Photosynthesis, Leaf Sclerophylly Indexes and Heat Load of Olive Cv. Chondrolia Chalkidikis under Drought. Sci. Hortic. 2012, 137, 87–94. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Ferreira, H.; Rocha, L.; Pavia, I.; Moutinho-Pereira, J.; Correia, C.M. Kaolin Particle Film Modulates Morphological, Physiological and Biochemical Olive Tree Responses to Drought and Rewatering. Plant Physiol. Biochem. 2018, 133, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Dinis, L.-T.; Silva, E.; Gonçalves, A.; Matos, C.; Rodrigues, M.A.; Moutinho-Pereira, J.; Barros, A.; Correia, C. Kaolin and Salicylic Acid Foliar Application Modulate Yield, Quality and Phytochemical Composition of Olive Pulp and Oil from Rainfed Trees. Sci. Hortic. 2018, 237, 176–183. [Google Scholar] [CrossRef]
- Rosati, A.; Metcalf, S.G.; Buchner, R.P.; Fulton, A.E.; Lampinen, B.D. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies. Ann. Bot. 2007, 99, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Shellie, K.; Glenn, D.M. Wine Grape Response to Foliar Particle Film under Differing Levels of Preveraison Water Stress. HortScience 2008, 43, 1392–1397. [Google Scholar] [CrossRef]
- Glenn, D.M. Effect of Highly Processed Calcined Kaolin Residues on Apple Productivity and Quality. Sci. Hortic. 2016, 201, 101–108. [Google Scholar] [CrossRef]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and Actual Uses of Zeolites in Crop Protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Rotondi, A.; Morrone, L.; Facini, O.; Faccini, B.; Ferretti, G.; Coltorti, M. Distinct Particle Films Impacts on Olive Leaf Optical Properties and Plant Physiology. Foods 2021, 10, 1291. [Google Scholar] [CrossRef]
- Tekaya, M.; Mechri, B.; Cheheb, H.; Attia, F.; Chraief, I.; Ayachi, M.; Boujneh, D.; Hammami, M. Changes in the Profiles of Mineral Elements, Phenols, Tocopherols and Soluble Carbohydrates of Olive Fruit Following Foliar Nutrient Fertilization. LWT-Food Sci. Technol. 2014, 59, 1047–1053. [Google Scholar] [CrossRef]
- Colella, C. Recent Advances in Natural Zeolite Applications Based on External Surface Interaction with Cations and Molecules. Stud. Surf. Sci. Catal. 2007, 170, 2063–2073. [Google Scholar] [CrossRef]
- Cerrato, A.; Giovanardi, D.; Coltorti, M.; Stefani, E. LIFE MICROFIGHTERS: An EU funded project for the implementation and use of innovative Zeo-biopesticides, based on beneficial microorganisms, as an alternative to the use of copper-based products Abstracts of Presentations at the XXVII Congress of the Italian Phytopathological Society (SIPaV). J. Plant Pathol. 2022, 104, 1207–1280. [Google Scholar] [CrossRef]
- Modica, F.; Fagioli, L.; Coltorti, M.; Giovanardi, D.; Reyes, F.; Stefani, E. Reduction of copper inputs in the management of key diseases of grapevine, olive and tomato by an innovative Zeo-biopesticide. Abstracts of Presentations at the XXVIII Congress of the Italian Phytopathological Society (SIPaV). J. Plant Pathol. 2023, 105, 1237–1323. [Google Scholar] [CrossRef]
- Calabrese, J.; Pacini, C.; Vazzana, C.; Nikolla, M. Sustainability Comparison Between Organic and Conventional Systems at Farm and Field Scale: A Case Study in Olive Production Systems in Apulia Region. Eur. J. Sustain. Dev. 2013, 2, 19. [Google Scholar] [CrossRef]
- Galamini, G.; Ferretti, G.; Rosinger, C.; Huber, S.; Medoro, V.; Mentler, A.; Díaz-Pinés, E.; Gorfer, M.; Faccini, B.; Keiblinger, K.M. Recycling Nitrogen from Liquid Digestate via Novel Reactive Struvite and Zeolite Minerals to Mitigate Agricultural Pollution. Chemosphere 2023, 317, 137881. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Cortés, F.; Martinez-Calvo, J.; Badenes, M.L.; Bleiholder, H.; Hack, H.; Llacer, G.; Meier, U. Phenological Growth Stages of Olive Trees (Olea Europaea). Ann. Appl. Biol. 2002, 140, 151–157. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999; Volume 198, ISBN 0-19-508956-1. [Google Scholar]
- Donald, A.M. The Use of Environmental Scanning Electron Microscopy for Imaging Wet and Insulating Materials. Nat. Mater. 2003, 2, 511–516. [Google Scholar] [CrossRef]
- Danilatos, G.D. Foundations of Environmental Scanning Electron Microscopy. Adv. Electron. Electron Phys. 1988, 71, 109–250. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Moderate Shade Can Increase Net Gas Exchange and Reduce Photoinhibition in Citrus Leaves. Tree Physiol. 2003, 23, 119–127. [Google Scholar] [CrossRef]
- Larbi, A.; Vázquez, S.; El-Jendoubi, H.; Msallem, M.; Abadía, J.; Abadía, A.; Morales, F. Canopy Light Heterogeneity Drives Leaf Anatomical, Eco-Physiological, and Photosynthetic Changes in Olive Trees Grown in a High-Density Plantation. Photosynth. Res. 2015, 123, 141–155. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol. 1949, 24, 1–55. [Google Scholar] [CrossRef]
- Randall, E.L. Improved Method for Fat and Oil Analysis by a New Process of Extraction. J. AOAC Int. 1974, 57, 1165–1168. [Google Scholar] [CrossRef]
- European Union. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. OJ L 2022, 284, 1–22. [Google Scholar]
- Morrone, L.; Pupillo, S.; Neri, L.; Bertazza, G.; Magli, M.; Rotondi, A. Influence of Olive Ripening Degree and Crusher Typology on Chemical and Sensory Characteristics of Correggiolo Virgin Olive Oil. J. Sci. food Agric. 2017, 97, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Cerretani, L.; Bendini, A.; Biguzzi, B.; Lercker, G.; Toschi, T.G. Evaluation of the Oxidative Stability of Extra-Virgin Olive Oils, Obtained by Different Technological Plants, with Respect to Some Qualitative Parameters[Stabilità Ossidativa Di Oli Extravergini Di Oliva Ottenuti Con Diversi Impianti Tecnologici]. Ind. Aliment. 2003, 42, 706–711. [Google Scholar]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Toschi, T.G. Effect of Olive Ripening Degree on the Oxidative Stability and Organoleptic Properties of Cv. Nostrana Di Brisighella Extra Virgin Olive Oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Martin-Benito, D.; Anchukaitis, K.J.; Evans, M.N.; Del Río, M.; Beeckman, H.; Cañellas, I. Effects of Drought on Xylem Anatomy and Water-Use Efficiency of Two Co-Occurring Pine Species. Forests 2017, 8, 332. [Google Scholar] [CrossRef]
- Dinis, L.T.; Bernardo, S.; Luzio, A.; Pinto, G.; Meijón, M.; Pintó-Marijuan, M.; Cotado, A.; Correia, C.; Moutinho-Pereira, J. Kaolin Modulates ABA and IAA Dynamics and Physiology of Grapevine under Mediterranean Summer Stress. J. Plant Physiol. 2018, 220, 181–192. [Google Scholar] [CrossRef]
- do Forno, B.C.B. Influence of Kaolin Application on Physiological Behavior of Olive Trees (Olea europaea L.) Submitted to Water Deficit. Master’s Thesis, Universidade De Trás-Os-Montes E Alto Douro, Vila Real, Portugal, 2017. [Google Scholar]
- Liakopoulos, G.; Stavrianakou, S.; Karabourniotis, G. Trichome Layers versus Dehaired Lamina of Olea Europaea Leaves: Differences in Flavonoid Distribution, UV-Absorbing Capacity, and Wax Yield. Environ. Exp. Bot. 2006, 55, 294–304. [Google Scholar] [CrossRef]
- Batos, B.; Vilotić, D.; Orlović, S.; Miljković, D. Inter and Intra-Population Variation of Leaf Stomatal Traits of Quercus Robur L. in Northern Serbia. Arch. Biol. Sci. 2010, 62, 1125–1136. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Diaz-Espejo, A.; Morales-Sillero, A.; Martín-Palomo, M.J.; Mayr, S.; Beikircher, B.; Fernández, J.E. Shoot Hydraulic Characteristics, Plant Water Status and Stomatal Response in Olive Trees under Different Soil Water Conditions. Plant Soil 2013, 373, 77–87. [Google Scholar] [CrossRef]
- Segura-Monroy, S.; Uribe-Vallejo, A.; Ramirez-Godoy, A.; Restrepo-Diaz, H. Effect of Kaolin Application on Growth, Water Use Efficiency, and Leaf Epidermis Characteristics of Physallis Peruviana Seedlings under Two Irrigation Regimes. J. Agric. Sci. Technol. 2015, 17, 1585–1596. [Google Scholar]
- Roka, L.; Koudounas, K.; Daras, G.; Zoidakis, J.; Vlahou, A.; Kalaitzis, P.; Hatzopoulos, P. Proteome of Olive Non-Glandular Trichomes Reveals Protective Protein Network against (a)Biotic Challenge. J. Plant Physiol. 2018, 231, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Fernández, V.; Almonte, L.; Bahamonde, H.A.; Galindo-Bernabeu, A.; Sáenz-Arce, G.; Colchero, J. Chemical and Structural Heterogeneity of Olive Leaves and Their Trichomes. Commun. Biol. 2024, 7, 352. [Google Scholar] [CrossRef]
- Razouk, R.; Hssaini, L.; Alghoum, M.; Adiba, A.; Hamdani, A. Phenotyping Olive Cultivars for Drought Tolerance Using Leaf Macro-Characteristics. Horticulturae 2022, 8, 939. [Google Scholar] [CrossRef]
- Glenn, D.M.; Prado, E.; Erez, A.; McFerson, J.; Puterka, G.J. A Reflective, Processed-Kaolin Particle Film Affects Fruit Temperature, Radiation Reflection, and Solar Injury in Apple. J. Am. Soc. Hortic. Sci. 2002, 127, 188–193. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Kaolin Particle Film Applications Can Increase Photosynthesis and Water Use Efficiency of `Ruby Red’ Grapefruit Leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 107–112. [Google Scholar] [CrossRef]
- Le Grange, M.; Wand, S.J.E.; Theron, K.I. Effect of Kaolin Applications on Apple Fruit Quality and Gas Exchange of Apple Leaves. Acta Hortic. 2004, 636, 545–550. [Google Scholar] [CrossRef]
- Rosati, A.; Metcalf, S.G.; Buchner, R.P.; Fulton, A.E.; Lampinen, B.D. Physiological Effects of Kaolin Applications in Well-Irrigated and Water-Stressed Walnut and Almond Trees. Ann. Bot. 2006, 98, 267–275. [Google Scholar] [CrossRef]
- Gindaba, J.; Wand, S.J.E. Comparative Effects of Evaporative Cooling, Kaolin Particle Film, and Shade Net on Sunburn and Fruit Quality in Apples. HortScience 2005, 40, 592–596. [Google Scholar] [CrossRef]
- Wünsche, J.N.; Lombardini, L. “Surround” Particle Film Applications—Effects on Whole Canopy Physiology of Apple. Acta Hortic. 2004, 636, 565–571. [Google Scholar] [CrossRef]
- Saour, G.; Makee, H. Effects of Kaolin Particle Film on Olive Fruit Yeld, Oil Content and Quality. Adv. Hortic. Sci. 2003, 17, 1000–1003. [Google Scholar] [CrossRef]
- Conversa, G.; Pacifico, S.; La Rotonda, P.; Lazzizera, C.; Bonasia, A.; Elia, A. Foliar Application of Natural Zeolites Affects the Growth and Productivity of Processing Tomato. Eur. J. Agron. 2024, 154, 127100. [Google Scholar] [CrossRef]
- Petoumenou, D.G. Enhancing Yield and Physiological Performance by Foliar Applications of Chemically Inert Mineral Particles in a Rainfed Vineyard under Mediterranean Conditions. Plants 2023, 12, 1444. [Google Scholar] [CrossRef] [PubMed]
- Calzarano, F.; Seghetti, L.; Pagnani, G.; Di Marco, S. Italian Zeolitites in the Control of Grey Mould and Sour Rot and Their Effect on Leaf Reflectance, Grape and Wine. Agriculture 2020, 10, 580. [Google Scholar] [CrossRef]
- Valentini, G.; Pastore, C.; Allegro, G.; Mazzoleni, R.; Colucci, E.; Filippetti, I. Foliar Application of Kaolin and Zeolites to Adapt the Adverse Effects of Climate Change in Vitis Vinifera L. Cv. Sangiovese. BIO Web Conf. 2022, 44, 1003. [Google Scholar] [CrossRef]
- Sangiorgio, D.; Valentini, G.; Pastore, C.; Allegro, G.; Gottardi, D.; Patrignani, F.; Spinelli, F.; Filippetti, I. A Comprehensive Study on the Effect of Foliar Mineral Treatments on Grapevine Epiphytic Microorganisms, Flavonoid Gene Expression, and Berry Composition. Oeno One 2024, 58. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F. Beyond Leaf Color: Comparing Camera-Based Phenological Metrics with Leaf Biochemical, Biophysical, and Spectral Properties throughout the Growing Season of a Temperate Deciduous Forest. J. Geophys. Res. Biogeosci. 2014, 119, 181–191. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Ding, Y.; Yao, X.; Wu, X.; Weng, F.; Li, G.; Liu, Z.; Tang, S.; Ding, C.; et al. Nitrogen Fertilizer Application Affects Lodging Resistance by Altering Secondary Cell Wall Synthesis in Japonica Rice (Oryza sativa). J. Plant Res. 2017, 130, 859–871. [Google Scholar] [CrossRef]
- Plavcová, L.; Hacke, U.G.; Almeida-Rodriguez, A.M.; Li, E.; Douglas, C.J. Gene Expression Patterns Underlying Changes in Xylem Structure and Function in Response to Increased Nitrogen Availability in Hybrid Poplar. Plant Cell Environ. 2013, 36, 186–199. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Serrano, L.; Savé, R. Cell Wall Elasticity and Water Index (R970 Nm/R900 Nm) in Wheat under Different Nitrogen Availabilities. Int. J. Remote Sens. 1996, 17, 373–382. [Google Scholar] [CrossRef]
- Quezada, J.C.; Bragazza, L. Foliar Applications of a Zeolite-Based Biostimulant Affect Soil Enzyme Activity and N Uptake in Maize and Wheat under Different Levels of Nitrogen Fertilization. J. Plant Nutr. 2024, 47, 501–513. [Google Scholar] [CrossRef]
- Valentini, G.; Pastore, C.; Allegro, G.; Muzzi, E.; Seghetti, L.; Filippetti, I. Application of Kaolin and Italian Natural Chabasite-Rich Zeolitite to Mitigate the Effect of Global Warming in Vitis Vinifera l. Cv. Sangiovese. Agronomy 2021, 11, 1035. [Google Scholar] [CrossRef]
- Regni, L.; Proietti, P. Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality. Agriculture 2019, 9, 252. [Google Scholar] [CrossRef]
Treatment | Transverse Diameter of Epidermal Cell | Longitudinal Diameter of Epidermal Cell | Palisade Thickness | Spongy Thickness | Maximum Diameter of Leaf Xylem Vessels | Cell Wall Thickness of Xylem Vessels |
---|---|---|---|---|---|---|
K-B | 17.969 ± 1.899 a | 13.145 ± 1.471 a | 144.432 ± 4.254 a | 222.843 ± 2.458 a | 12.219 ± 0.405 b | 2.198 ± 0.111 a |
NZ-B | 18.016 ± 1.399 a | 13.106 ± 2.659 a | 145.741 ± 7.479 a | 224.876 ± 4.897 a | 13.058 ± 0.124 a | 1.717 ± 0.121 b |
T-B | 18.060 ± 2.887 a | 13.069 ± 3.579 a | 143.735 ± 5.463 a | 223.599 ± 3.682 a | 12.092 ± 0.387 b | 1.554 ± 0.258 b |
Pr > F | 0.514 | 0.707 | 0.091 | 0.146 | 0.002 | 0.001 |
Growth Stage | Treatment | Stomatal Max Diameter | Stomatal Area | Stomatal Density | Peltate Trichomes Density |
---|---|---|---|---|---|
Fruit set (N.69 BBCH scale) | K-B | 19.00 ± 2.91 b | 481.74 ± 156.16 a | 351.46 ± 21.55 a | 116.67 ± 17.80 b |
NZ-B | 21.62 ± 3.62 ab | 525.45 ± 178.08 a | 355.85 ± 30.80 a | 117.84 ± 20.03 b | |
T-B | 23.14 ± 2.75 a | 513.87 ± 173.24 a | 351.46 ± 17.18 a | 138.70 ± 11.76 a | |
Beginning of fruit colouring (N.81 BBCH scale) | K-B | 16.79 ± 3.24 b | 358.01 ± 145.75 b | 349.42 ± 49.77 b | 135.67 ± 24.79 b |
NZ-B | 19.84 ± 3.33 a | 472.93 ± 151.46 a | 394.44 ± 57.44 a | 132.82 ± 13.61 b | |
T-B | 18.35 ± 2.77 b | 383.26 ± 152.67 b | 346.20 ± 52.93 b | 147.95 ± 15.83 a |
Growth Stage | Treatment | Peltate Trichomes Max Diameter | Peltate Trichomes Area | Peltate Trichomes Density |
---|---|---|---|---|
Fruit set (N.69 BBCH scale) | NZ-B | 140.49 ± 13.41 a | 7292.63 ± 2820.59 a | 29.95 ± 3.12 a |
T-B | 141.68 ± 14.31 a | 8382.97 ± 3357.41 a | 26.18 ± 5.64 a | |
K-B | 138.00 ± 13.84 a | 8230.87 ± 3350.17 a | 28.75 ± 2.25 a | |
Fruit colouring (N.81 BBCH scale) | NZ-B | 138.12 ± 16.32 a | 8505.66 ± 3042.43 a | 23.72 ± 2.62 b |
T-B | 133.00 ± 15.35 a | 8061.95 ± 3035.80 a | 27.22 ± 2.48 a | |
K-B | 130.62 ± 16.82 a | 7643.77 ± 3288.78 a | 23.04 ± 5.66 b |
Growth Stage | Treatment | Photosynthetic Rate (A) | Stomatal Conductance to H2O (g) | Intercellular CO2 Concentration (Ci) | Transpiration Rate (E) |
---|---|---|---|---|---|
Fruit set (N.69 BBCH scale) | K-B | 13.78 ± 3.28 a | 0.31 ± 0.15 a | 293.96 ± 50.73 a | 6.37 ± 3.04 a |
NZ-B | 13.49 ± 3.36 a | 0.31 ± 0.14 a | 296.02 ± 55.02 a | 6.10 ± 2.30 a | |
T-B | 13.64 ± 3.43 a | 0.34 ± 0.12 a | 288.85 ± 44.74 a | 6.36 ± 2.26 a | |
Beginning of fruit colouring (N.81 BBCH scale) | K-B | 11.31 ± 3.31 a | 0.17 ± 0.07 b | 261.91 ± 28.46 b | 3.43 ± 0.97 b |
NZ-B | 13.11 ± 3.01 a | 0.28 ± 0.07 a | 298.41 ± 5.74 a | 5.02 ± 1.30 a | |
T-B | 12.79 ± 2.96 a | 0.26 ± 0.04 a | 298.17 ± 15.60 a | 5.07 ± 0.97 a |
Growth Stage | Treatment | Chlorophyll A (ChlA) | Chlorophyll B (ChlB) | ChlA/ChlB | L* | a* |
---|---|---|---|---|---|---|
Fruit set (N.69 BBCH scale) | NZ-B | 1.12 ± 0.04 a | 0.32 ± 0.02 a | 3.51 ± 0.05 a | 38.92 ± 2.06 b | −9.33 ± 3.83 a |
K-B | 1.12 ± 0.06 a | 0.36 ± 0.02 a | 3.11 ± 0.28 a | 48.14 ± 4.63 a | −8.68 ± 3.22 a | |
T-B | 1.16 ± 0.08 a | 0.35 ± 0.02 a | 3.35 ± 0.26 a | 37.30 ± 1.79 b | −12.05 ± 1.73 b | |
Pr > F | 0.724 | 0.126 | 0.161 | <0.0001 | <0.0001 | |
Beginning of fruit colouring (N.81 BBCH scale) | NZ-B | 0.97 ± 0.08 a | 0.27 ± 0.02 a | 3.65 ± 0.31 a | 42.77 ± 9.69 a | −9.11 ± 2.28 a |
K-B | 1.07 ± 0.02 a | 0.31 ± 0.01 a | 3.40 ± 0.08 a | 42.72 ± 3.04 a | −9.05 ± 1.28 a | |
T-B | 1.07 ± 0.06 a | 0.31 ± 0.03 a | 3.51 ± 0.23 a | 39.89 ± 1.49 b | −10.63 ± 2.66 a | |
Pr > F | 0.121 | 0.05 | 0.465 | <0.0001 | 0.986 |
Treatment | Acidity | Peroxide Value | Total Phenolic Content (TPC) | K 232.0 nm | K 270.0 nm |
---|---|---|---|---|---|
K-B | 0.42 ± 0.02 a | 5.39 ± 0.28 a | 266.97 ± 32.64 b | 1.83 ± 0.11 a | 0.17 ± 0 a |
NZ-B | 0.36 ± 0.03 a | 5.81 ± 0.84 a | 329.78 ± 20.57 a | 1.76 ± 0.07 a | 0.15 ± 0.03 a |
T-B | 0.35 ± 0.03 a | 4.52 ± 1.03 a | 344.95 ± 24.93 a | 1.61 ± 0.1 b | 0.14 ± 0.02 a |
Pr > F | 0.513 | 0.0686 | 0.00413 | 0.235 | 0.248 |
Screening Date | Treatment | Photosynthetic Rate (A) | Stomatal Conductance to H2O (g) | Intercellular CO2 Concentration (Ci) | Transpiration Rate (E) |
---|---|---|---|---|---|
21 July 2021 | EZ-SL | 9.38 ± 1.80 a | 0.16 ± 0.05 a | 287.26 ± 13.41 b | 1.96 ± 0.07 a |
NZ-SL | 5.55 ± 1.27 b | 0.11 ± 0.02 b | 302.62 ± 22.67 a | 1.52 ± 0.30 a | |
T-SL | 5.76 ± 1.57 b | 0.14 ± 0.04 ab | 317.00 ± 11.97 a | 1.67 ± 0.48 a | |
5 August 2021 | EZ-SL | 9.17 ± 2.14 a | 0.15 ± 0.05 a | 283.28 ± 18.22 b | 2.13 ± 0.68 a |
NZ-SL | 5.11 ± 3.34 b | 0.11 ± 0.03 ab | 309.5 ± 19.45 a | 1.3 ± 0.35 b | |
T-SL | 5.78 ± 1.43 b | 0.13 ± 0.04 b | 309.18 ± 24.79 a | 1.67 ± 0.53 b | |
2 September 2021 | EZ-SL | 7.85 ± 2.69 a | 0.11 ± 0.05 a | 258.35 ± 35.01 a | 1.94 ± 0.74 a |
NZ-SL | 4.22 ± 1.11 b | 0.03 ± 0.02 a | 210.18 ± 35.01 b | 0.84 ± 0.46 b | |
T-SL | 4.63 ± 1.03 b | 0.04 ± 0.02 a | 238.70 ± 48.51 ab | 1.03 ± 0.43 b | |
30 September 2021 | EZ-SL | 11.07 ± 1.98 a | 0.08 ± 0.01 a | 140.31 ± 44.02 a | 2.16 ± 0.29 a |
NZ-SL | 10.0 ± 1.60 a | 0.06 ± 0.01 b | 107.57 ± 57.76 a | 1.66 ± 0.43 b | |
T-SL | 10.1 ± 1.32 a | 0.06 ± 0.01 b | 130.23 ± 52.37 a | 1.74 ± 0.24 b | |
12 October 2021 | EZ-SL | 12.47 ± 1.39 a | 0.07 ± 0.01 a | 109.69 ± 41.44 a | 2.04 ± 0.23 a |
NZ-SL | 12.47 ± 2.10 a | 0.07 ± 0.01 a | 111.34 ± 49.10 a | 2.14 ± 0.29 a | |
T-SL | 12.11 ±1.20 a | 0.07± 0.01 a | 126.98 ± 5208 a | 2.03 ± 0.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotondi, A.; Ganino, T.; Calderoni, A.; Rodolfi, M.; Dhenge, R.; Morrone, L. Olive Plant Treated with Different Geo-Material Foliar Film (Zeolite and Kaolin Based): Leaf Characteristics and Oil Quality. Horticulturae 2025, 11, 338. https://doi.org/10.3390/horticulturae11030338
Rotondi A, Ganino T, Calderoni A, Rodolfi M, Dhenge R, Morrone L. Olive Plant Treated with Different Geo-Material Foliar Film (Zeolite and Kaolin Based): Leaf Characteristics and Oil Quality. Horticulturae. 2025; 11(3):338. https://doi.org/10.3390/horticulturae11030338
Chicago/Turabian StyleRotondi, Annalisa, Tommaso Ganino, Andrea Calderoni, Margherita Rodolfi, Rohini Dhenge, and Lucia Morrone. 2025. "Olive Plant Treated with Different Geo-Material Foliar Film (Zeolite and Kaolin Based): Leaf Characteristics and Oil Quality" Horticulturae 11, no. 3: 338. https://doi.org/10.3390/horticulturae11030338
APA StyleRotondi, A., Ganino, T., Calderoni, A., Rodolfi, M., Dhenge, R., & Morrone, L. (2025). Olive Plant Treated with Different Geo-Material Foliar Film (Zeolite and Kaolin Based): Leaf Characteristics and Oil Quality. Horticulturae, 11(3), 338. https://doi.org/10.3390/horticulturae11030338