Adaptive Viticulture Strategies to Enhance Resilience and Grape Quality in Cold Climate Regions in Response to Climate Warming
Abstract
:1. Introduction
2. Post-Budburst Pruning
3. Osmoprotectants
4. Cluster Thinning
5. Leaf Removal
6. Cover Crops
7. Light Film Technologies
8. Plant Growth Regulators
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verdugo-Vásquez, N.; Orrego, R.; Gutiérrez-Gamboa, G.; Reyes, M.; Zurita-Silva, A.; Balbontín, C.; Gaete, N.; Salazar-Parra, C. Climate Trends and Variability in the Chilean Viticultural Production Zones during 1985–2015. OENO One 2023, 57, 345–362. [Google Scholar] [CrossRef]
- Omazić, B.; Telišman Prtenjak, M.; Prša, I.; Belušić Vozila, A.; Vučetić, V.; Karoglan, M.; Karoglan Kontić, J.; Prša, Ž.; Anić, M.; Šimon, S.; et al. Climate Change Impacts on Viticulture in Croatia: Viticultural Zoning and Future Potential. Int. J. Climatol. 2020, 40, 5634–5655. [Google Scholar] [CrossRef]
- Brendel, A.S.; del Barrio, R.A.; Mora, F.; León, E.A.O.; Flores, J.R.; Campoy, J.A. Current Agro-Climatic Potential of Patagonia Shaped by Thermal and Hydric Patterns. Theor. Appl. Climatol. 2020, 142, 855–868. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate Change Impacts Assessment on Wine-Growing Bioclimatic Transition Areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Comte, V.; Schneider, L.; Calanca, P.; Rebetez, M. Effects of Climate Change on Bioclimatic Indices in Vineyards along Lake Neuchatel, Switzerland. Theor. Appl. Climatol. 2022, 147, 423–436. [Google Scholar] [CrossRef]
- OIV. State of the World Vitivinicultural Sector in 2020; OIV: Paris, France, 2021. [Google Scholar]
- Tscholl, S.; Egarter Vigl, L. The Changing Geography of Wine Climates and Its Implications on Adaptation in the Italian Alps. Clim. Resil. Sustain. 2024, 3, e70000. [Google Scholar] [CrossRef]
- Töpfer, R.; Trapp, O. A Cool Climate Perspective on Grapevine Breeding: Climate Change and Sustainability Are Driving Forces for Changing Varieties in a Traditional Market. Theor. App Genet. 2022, 135, 3947–3960. [Google Scholar] [CrossRef]
- Jones, G.V. Climate Change in the Western United States Grape Growing Regions. Acta Hortic. 2005, 689, 41–60. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Palacios-Peralta, C.; Verdugo-Vásquez, N.; Reyes-Díaz, M.; Muñoz, A.; Ribera-Fonseca, A. Could 101-14 Mgt Rootstock Affect Post-Spring Frost Vine Developing? Preliminary Findings. Horticulturae 2024, 10, 880. [Google Scholar] [CrossRef]
- Hall, A.; Mathews, A.J.; Holzapfel, B.P. Potential Effect of Atmospheric Warming on Grapevine Phenology and Post-Harvest Heat Accumulation across a Range of Climates. Int. J. Biometeorol. 2016, 60, 1405–1422. [Google Scholar] [CrossRef] [PubMed]
- Rahemi, A.; Fisher, H.; Carter, K.; Taghavi, T. Mitigating Grapevine Winter Damage in Cold Climate Areas. Hortic. Sci. 2022, 49, 59–70. [Google Scholar] [CrossRef]
- Danko, R.; Pavloušek, P.; Kapłan, M.; Klimek, K.E. Conception, Consequences and Design of Cool Climate Viticulture Training Systems. Agriculture 2024, 14, 1966. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Jones, R.; Smith, D.K.E.; Krumins, M.; Gannon, K.E.; Dorling, L.; Johnson, Z.; Conway, D. Climate Change Projections for UK Viticulture to 2040: A Focus on Improving Suitability for Pinot Noir. OENO One 2022, 56, 69–87. [Google Scholar] [CrossRef]
- Bunbury-Blanchette, A.L.; Fan, L.; Kernaghan, G. Yeast Communities of a North American Hybrid Wine Grape Differ between Organic and Conventional Vineyards. J. Appl. Microbiol. 2024, 135, 92. [Google Scholar] [CrossRef]
- Diez-Zamudio, F.; Laytte, R.; Grallert, C.; Ivit, N.N.; Gutiérrez-Gamboa, G. Viticultural Performance of Hybrids and Vitis vinifera Varieties Established in Annapolis Valley (Nova Scotia). Horticulturae 2021, 7, 291. [Google Scholar] [CrossRef]
- Nicolle, P.; Barthe, C.; Dorais, M.; Dubé, G.; Angers, P.; Pedneault, K. Impact of Cluster Thinning and Harvest Date on Berry Volatile Composition and Sensory Profile of Vitis sp. Seyval Blanc and Vandal-Cliche. OENO One 2023, 57. [Google Scholar] [CrossRef]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper Uptake, Accumulation and Physiological Changes in Adult Grapevines in Response to Excess Copper in Soil. Plant Soil. 2014, 374, 593–610. [Google Scholar] [CrossRef]
- Brunetto, G.; Miotto, A.; Ceretta, C.A.; Schmitt, D.E.; Heinzen, J.; de Moraes, M.P.; Canton, L.; Tiecher, T.L.; Comin, J.J.; Girotto, E. Mobility of Copper and Zinc Fractions in Fungicide-Amended Vineyard Sandy Soils. Arch. Agron. Soil. Sci. 2014, 60, 609–624. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Fourment, M. Latin American Viticulture Adaptation to Climate Change; Springer International Publishing: Cham, Switzerland, 2024; ISBN 978-3-031-51325-1. [Google Scholar]
- Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Terroir and Typicity of Carignan from Maule Valley (Chile): The Resurgence of a Minority Variety. OENO One 2019, 53, 75–93. [Google Scholar] [CrossRef]
- Vanderweide, J.; Nasrollahiazar, E.; Schultze, S.; Sabbatini, P.; Castellarin, S.D. Impact of Cluster Thinning on Wine Grape Yield and Fruit Composition: A Review and Meta-Analysis. Aust. J. Grape Wine Res. 2024, 2024, 2504396. [Google Scholar] [CrossRef]
- Ribera-Fonseca, A.; Palacios-Peralta, C.; González-Villagra, J.; Reyes-Díaz, M.; Serra, I. How Could Cover Crops and Deficit Irrigation Improve Water Use Efficiency and Oenological Properties of Southern Chile Vineyards? J. Soil. Sci. Plant Nutr. 2023, 23, 6851–6865. [Google Scholar] [CrossRef]
- Han, X.; Xue, T.; Liu, X.; Wang, Z.; Zhang, L.; Wang, Y.; Yao, F.; Wang, H.; Li, H. A Sustainable Viticulture Method Adapted to the Cold Climate Zone in China. Horticulturae 2021, 7, 150. [Google Scholar] [CrossRef]
- Poni, S.; Sabbatini, P.; Palliotti, A. Facing Spring Frost Damage in Grapevine: Recent Developments and the Role of Delayed Winter Pruning—A Review. Am. J. Enol. Vitic. 2022, 73, 210–225. [Google Scholar] [CrossRef]
- Gatti, M.; Pirez, F.J.; Chiari, G.; Tombesi, S.; Palliotti, A.; Merli, M.C.; Poni, S. Phenology, Canopy Aging and Seasonal Carbon Balance as Related to Delayed Winter Pruning of Vitis vinifera L. cv. Sangiovese Grapevines. Front. Plant Sci. 2016, 7, 195118. [Google Scholar] [CrossRef]
- Friend, A.P.; Trought, M.C.T. Delayed Winter Spur-Pruning in New Zealand Can Alter Yield Components of Merlot Grapevines. Aust. J. Grape Wine Res. 2007, 13, 157–164. [Google Scholar] [CrossRef]
- Friend, A.P.; Trought, M.C.T.; Stushnoff, C.; Wells, G.H. Effect of Delaying Budburst on Shoot Development and Yield of Vitis vinifera L. Chardonnay ‘Mendoza’ after a Spring Freeze Event. Aust. J. Grape Wine Res. 2011, 17, 378–382. [Google Scholar] [CrossRef]
- Persico, M.J.; Smith, D.E.; Centinari, M. Delaying Budbreak to Reduce Freeze Damage: Seasonal Vine Performance and Wine Composition in Two Vitis vinifera Cultivars. Am. J. Enol. Vitic. 2021, 72, 346–357. [Google Scholar] [CrossRef]
- Deloire, A.; Pellegrino, A. Late Pruning of the Vine. IVES Tech. Rev. Vine Wine 2022, 7167. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in Plants under Abiotic Stresses: New Insights into a Classical Phenomenon. Planta 2019, 251, 3. [Google Scholar] [CrossRef] [PubMed]
- Mickelbart, M.V.; Chapman, P.; Collier-Christian, L. Endogenous Levels and Exogenous Application of Glycinebetaine to Grapevines. Sci. Hortic. 2006, 111, 7–16. [Google Scholar] [CrossRef]
- Himelrick, D.G.; Pool, R.M.; McInnis, P.J. Cryoprotectants Influence Freezing Resistance of Grapevine Bud and Leaf Tissue. HortScience 1991, 26, 406–407. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, M.; Wu, L.; Wang, H.; Liang, Y.; Wang, X.; Xi, Z. Screening of Efficient Antifreeze Agents to Prevent Low-Temperature Stress in Vines. Agronomy 2024, 15, 48. [Google Scholar] [CrossRef]
- Centinari, M.; Smith, M.S.; Londo, J.P. Assessment of Freeze Injury of Grapevine Green Tissues in Response to Cultivars and a Cryoprotectant Product. HortScience 2016, 51, 856–860. [Google Scholar] [CrossRef]
- Kandilli, G.G.; Söylemezoğlu, G.; Atak, A. The Effects of Glycine Betaine Application on Frost Tolerance in Three Table Grape Cultivars. Acta Hortic. 2024, 1385, 111–118. [Google Scholar] [CrossRef]
- Campos-Arguedas, F.; Kirchhof, E.; North, M.G.; Londo, J.P.; Bates, T.; van Leeuwen, C.; Destrac-Irvine, A.; Bois, B.; Kovaleski, A.P. Warming Winters, Changing Springs: Cold Hardiness Dynamics Predict Budbreak and Associated Low Temperature Threats on an Intercontinental Scale. bioRxiv 2025. [Google Scholar] [CrossRef]
- De Rosa, V.; Vizzotto, G.; Falchi, R. Cold Hardiness Dynamics and Spring Phenology: Climate-Driven Changes and New Molecular Insights Into Grapevine Adaptive Potential. Front. Plant Sci. 2021, 12, 644528. [Google Scholar] [CrossRef]
- North, M.; Workmaster, B.A.; Atucha, A. Cold Hardiness of Cold Climate Interspecific Hybrid Grapevines Grown in a Cold Climate Region. Am. J. Enol. Vitic. 2021, 72, 318–327. [Google Scholar] [CrossRef]
- Sabbatini, P.; Howell, G.S. Rootstock Scion Interaction and Effects on Vine Vigor, Phenology, and Cold Hardiness of Interspecific Hybrid Grape Cultivars (Vitis spp.). Int. J. Fruit. Sci. 2013, 13, 466–477. [Google Scholar] [CrossRef]
- Frioni, T.; Zhuang, S.; Palliotti, A.; Sivilotti, P.; Falchi, R.; Sabbatini, P. Leaf Removal and Cluster Thinning Efficiencies Are Highly Modulated by Environmental Conditions in Cool Climate Viticulture. Am. J. Enol. Vitic. 2017, 68, 325–335. [Google Scholar] [CrossRef]
- Kaan Kurtural, S.; Dami, I.E.; Taylor, B.H. Effects of Pruning and Cluster Thinning on Yield and Fruit Composition of “Chambourcin” Grapevines. Horttechnology 2006, 16, 233–240. [Google Scholar]
- Dami, I.; Ferree, D.; Prajitna, A.; Scurlock, D. A Five-Year Study on the Effect of Cluster Thinning on Yield and Fruit Composition of “Chambourcin” Grapevines. HortScience 2006, 41, 586–588. [Google Scholar]
- Wang, W.; Liang, Y.Y.; Quan, G.; Wang, X.; Xi, Z. Thinning of Cluster Improves Berry Composition and Sugar Accumulation in Syrah Grapes. Sci. Hortic. 2022, 297, 110966. [Google Scholar] [CrossRef]
- Rutan, T.E.; Herbst-Johnstone, M.; Kilmartin, P.A. Effect of Cluster Thinning Vitis vinifera cv. Pinot Noir on Wine Volatile and Phenolic Composition. J. Agric. Food Chem. 2018, 66, 10053–10066. [Google Scholar] [CrossRef]
- Dami, I.; Ennahli, S.; Scurlock, D. A Five-Year Study on the Effect of Cluster Thinning and Harvest Date on Yield, Fruit Composition, and Cold-Hardiness of ‘Vidal Blanc’ (Vitis spp.) for Ice Wine Production. HortScience 2013, 48, 1358–1362. [Google Scholar] [CrossRef]
- Preszler, T.; Schmit, T.M.; Vanden Heuvel, J.E. Cluster Thinning Reduces the Economic Sustainability of Riesling Production. Am. J. Enol. Vitic. 2013, 64, 333–341. [Google Scholar] [CrossRef]
- Ivanišević, D.; Kalajdžić, M.; Drenjančević, M.; Puškaš, V.; Korać, N. The Impact of Cluster Thinning and Leaf Removal Timing on the Grape Quality and Concentration of Monomeric Anthocyanins in Cabernet-Sauvignon and Probus (Vitis vinifera L.) Wines. OENO One 2020, 54, 63–74. [Google Scholar] [CrossRef]
- Mawdsley, P.F.W.; Dodson Peterson, J.C.; Casassa, L.F. Agronomical and Chemical Effects of the Timing of Cluster Thinning on Pinot Noir (Clone 115) Grapes and Wines. Fermentation 2018, 4, 60. [Google Scholar] [CrossRef]
- Mawdsley, P.F.W.; Dodson Peterson, J.C.; Casassa, L.F. Multi-Year Study of the Effects of Cluster Thinning on Vine Performance, Fruit and Wine Composition of Pinot Noir (Clone 115) in California’s Edna Valley AVA (USA). Sci. Hortic. 2019, 256, 108631. [Google Scholar] [CrossRef]
- Smith, M.S.; Centinari, M. Impacts of Early Leaf Removal and Cluster Thinning on Grüner Veltliner Production, Fruit Composition, and Vine Health. Am. J. Enol. Vitic. 2019, 70, 308–317. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.N.; Chen, W.K.; He, F.; Chen, W.; Cai, X.D.; Duan, C.Q.; Wang, J. Effects of Cluster Thinning on Vine Photosynthesis, Berry Ripeness and Flavonoid Composition of Cabernet Sauvignon. Food Chem. 2018, 248, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Sacks, G.L.; Lerch, S.D.; vanden Heuvel, J.E. Impact of Shoot and Cluster Thinning on Yield, Fruit Composition, and Wine Quality of Corot Noir. Am. J. Enol. Vitic. 2012, 63, 49–56. [Google Scholar] [CrossRef]
- Hannam, K.D.; Neilsen, G.H.; Neilsen, D.; Bowen, P. Cluster Thinning as a Tool to Hasten Ripening of Wine Grapes in the Okanagan Valley, British Columbia. Can. J. Plant Sci. 2015, 95, 103–113. [Google Scholar] [CrossRef]
- Andreotti, C.; Benyahia, F.; Petrillo, M.; Lucchetta, V.; Volta, B.; Cameron, K.; Targetti, G.; Tagliavini, M.; Zanotelli, D. Comparing Defoliation and Canopy Sprays to Delay Ripening of Sauvignon Blanc Grapes. Sci. Hortic. 2024, 326, 112736. [Google Scholar] [CrossRef]
- Balducci, L.; Fierravanti, A.; Rossi, S.; Delzon, S.; De Grandpré, L.; Kneeshaw, D.D.; Deslauriers, A. The Paradox of Defoliation: Declining Tree Water Status with Increasing Soil Water Content. Agric. For. Meteorol. 2020, 290, 108025. [Google Scholar] [CrossRef]
- Sabbatini, P.; Stanley Howell, G. Effects of Early Defoliation on Yield, Fruit Composition, and Harvest Season Cluster Rot Complex of Grapevines. HortScience 2010, 45, 1804–1808. [Google Scholar] [CrossRef]
- Fernández-Zurbano, P.; Santesteban, L.G.; Villa-Llop, A.; Loidi, M.; Peñalosa, C.; Musquiz, S.; Torres, N. Timing of Defoliation Affects Anthocyanin and Sugar Decoupling in Grenache Variety Growing in Warm Seasons. J. Food Compos. Anal. 2024, 125, 105729. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Kurtural, S.K. Source–Sink Manipulations Have Major Implications for Grapevine Berry and Wine Flavonoids and Aromas That Go beyond the Changes in Berry Sugar Accumulation. Food Res. Int. 2023, 169, 112826. [Google Scholar] [CrossRef]
- Yao, X.; Wu, Y.; Lan, Y.; Cui, Y.; Shi, T.; Duan, C.; Pan, Q. Effect of Cluster-Zone Leaf Removal at Different Stages on Cabernet Sauvignon and Marselan (Vitis vinifera L.) Grape Phenolic and Volatile Profiles. Plants 2024, 13, 1543. [Google Scholar] [CrossRef]
- Austin, C.N.; Wilcox, W.F. Effects of Fruit-Zone Leaf Removal, Training Systems, and Irrigation on the Development of Grapevine Powdery Mildew. Am. J. Enol. Vitic. 2011, 62, 193–198. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Holzapfel, B.P.; Stoll, M.; Friedel, M. Sunburn in Grapes: A Review. Front. Plant Sci. 2021, 11, 604691. [Google Scholar] [CrossRef]
- Alatzas, A.; Theocharis, S.; Miliordos, D.E.; Kotseridis, Y.; Koundouras, S.; Hatzopoulos, P. Leaf Removal and Deficit Irrigation Have Diverse Outcomes on Composition and Gene Expression during Berry Development of Vitis vinifera L. Cultivar Xinomavro. OENO One 2023, 57, 289–305. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Vanden Heuvel, J.E. Influence of Grapevine Training Systems on Vine Growth and Fruit Composition: A Review. Am. J. Enol. Vitic. 2009, 60, 251–268. [Google Scholar] [CrossRef]
- Hickey, C.C.; Hatch, T.A.; Stallings, J.; Wolf, T.K. Under-Trellis Cover Crop and Rootstock Affect Growth, Yield Components, and Fruit Composition of Cabernet Sauvignon. Am. J. Enol. Vitic. 2016, 67, 281–295. [Google Scholar] [CrossRef]
- Chou, M.Y.; Heuvel, J.E.V. Annual Under-Vine Cover Crops Mitigate Vine Vigor in a Mature and Vigorous Cabernet Franc Vineyard. Am. J. Enol. Vitic. 2019, 70, 98–108. [Google Scholar] [CrossRef]
- Garcia, L.; Krafft, G.; Enard, C.; Bouisson, Y.; Metay, A. Adapting Service Crop Termination Strategy in Viticulture to Increase Soil Ecosystem Functions and Limit Competition with Grapevine. Eur. J. Agron. 2024, 156, 127161. [Google Scholar] [CrossRef]
- Giese, G.; Velasco-Cruz, C.; Roberts, L.; Heitman, J.; Wolf, T.K. Complete Vineyard Floor Cover Crops Favorably Limit Grapevine Vegetative Growth. Sci. Hortic. 2014, 170, 256–266. [Google Scholar] [CrossRef]
- Jordan, L.M.; Björkman, T.; Heuvel, J.E.V. Annual Under-Vine Cover Crops Did Not Impact Vine Growth or Fruit Composition of Mature Cool-Climate ‘Riesling’ Grapevines. Horttechnology 2016, 26, 36–45. [Google Scholar] [CrossRef]
- Klodd, A.E.; Eissenstat, D.M.; Wolf, T.K.; Centinari, M. Coping with Cover Crop Competition in Mature Grapevines. Plant Soil 2016, 400, 391–402. [Google Scholar] [CrossRef]
- Reeve, A.L.; Skinkis, P.A.; Vance, A.J.; McLaughlin, K.R.; Tomasino, E.; Lee, J.; Tarara, J.M. Vineyard Floor Management and Cluster Thinning Inconsistently Affect ‘Pinot Noir’ Crop Load, Berry Composition, and Wine Quality. HortScience 2018, 53, 318–328. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Alañón-Sánchez, N.; Mateluna-Cuadra, R.; Verdugo-Vásquez, N. An Overview about the Impacts of Agricultural Practices on Grape Nitrogen Composition: Current Research Approaches. Food Res. Int. 2020, 136, 109477. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Salimi, K.; Rosa, D.; Hart, M. Screening Cover Crops for Utilization in Irrigated Vineyards: A Greenhouse Study on Species’ Nitrogen Uptake and Carbon Sequestration Potential. Plants 2024, 13, 1959. [Google Scholar] [CrossRef] [PubMed]
- Karl, A.D.; Merwin, I.A.; Brown, M.G.; Hervieux, R.A.; Vanden Heuvel, J.E. Under-Vine Management Impacts Soil Properties and Leachate Composition in a New York State Vineyard. HortScience 2016, 51, 941–949. [Google Scholar] [CrossRef]
- Schreiner, R.P. Nutrient uptake and distribution in young Pinot noir grapevines over two seasons. Am. J. Enol.Vitic. 2016, 67, 436–448. [Google Scholar] [CrossRef]
- Abad, J.; de Mendoza, I.H.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover Crops in Viticulture. A Systematic Review (2): Implications on Vineyard Agronomic Performance. OENO One 2021, 55, 1–27. [Google Scholar] [CrossRef]
- Messiga, A.J.; Gallant, K.S.; Sharifi, M.; Hammermeister, A.; Fuller, K.; Tango, M.; Fillmore, S. Grape Yield and Quality Response to Cover Crops and Amendments in a Vineyard in Nova Scotia, Canada. Am. J. Enol. Vitic. 2016, 67, 77–85. [Google Scholar] [CrossRef]
- Bontempo, A.; Smith, J.; Brandt, M.; Peterlunger, E.; Stoll, M. Evaluation of Photosensitive Films for Light Measurements in the Fruiting Zone of Grapevine Canopies. Vitis 2018, 57, 159–165. [Google Scholar] [CrossRef]
- Osrečak, M.; Karoglan, M.; Kozina, B.; Preiner, D. Influence of Leaf Removal and Reflective Mulch on Phenolic Composition of White Wines. OENO One 2015, 49, 183–193. [Google Scholar] [CrossRef]
- Yuan, Y.; Xie, Y.; Li, B.; Wei, X.; Huang, R.; Liu, S.; Ma, L. To Improve Grape Photosynthesis, Yield and Fruit Quality by Covering Reflective Film on the Ground of a Protected Facility. Sci. Hortic. 2024, 327, 112792. [Google Scholar] [CrossRef]
- Xinming, L.; Ting, C.; Jinhui, L.; Yan, L. Effects of Ground-Covering Reflective Film on Coloration and Quality of Kyoho Grapes. Fujian J. Agric. Sci. 2024, 38, 559–565. [Google Scholar] [CrossRef]
- Hu, J.; Bai, S.; Zhao, R.; Chen, G.; Cai, J. Effects of Black Geotextile Mulch and Grass Mulch on the Microclimate, Fruit Quality and Anthocyanin Components of ‘Xinyu’ Table Grape. N. Z. J. Crop Hortic. Sci. 2024, 52, 141–158. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Pearson, E.G.; De Savigny, C.; Coventry, J.; Strommer, J. Interactions of Vine Age and Reflective Mulch upon Berry, Must, and Wine Composition of Five Vitis vinifera Cultivars. Int. J. Fruit. Sci. 2007, 7, 85–119. [Google Scholar] [CrossRef]
- Osrečak, M.; Karoglan, M.; Kozina, B. Influence of Leaf Removal and Reflective Mulch on Phenolic Composition and Antioxidant Activity of Merlot, Teran and Plavac Mali Wines (Vitis vinifera L.). Sci. Hortic. 2016, 209, 261–269. [Google Scholar] [CrossRef]
- Igounet, O.; Baldy, C.; Robin, J.-P.; Boulet, J.-C.; Sanon, M.; Suard, B. Effects of Artificial Soil Covers on the Internal Temperatures of Grape Berries during the Grape Maturation. OENO One 1995, 29, 131–142. [Google Scholar] [CrossRef]
- Muñoz-Alarcón, A.; Palacios-Peralta, C.; González-Villagra, J.; Carrasco-Catricura, N.; Osorio, P.; Ribera-Fonseca, A. Impact of Reflective Ground Film on Fruit Quality, Condition, and Post-Harvest of Sweet Cherry (Prunus avium L.) Cv. Regina Cultivated Under Plastic Cover in Southern Chile. Agronomy 2025, 15, 520. [Google Scholar] [CrossRef]
- Zhao, M.; Li, J.; Shi, X.; Sanaullah Malik, M.; Quan, Y.; Guo, D.; Wang, L.; Wang, S. Effects of Exogenous Plant Regulators on Growth and Development of “Kyoho” Grape under Salt Alkali Stress. Front. Plant Sci. 2023, 14, 1274684. [Google Scholar] [CrossRef]
- Wang, H.; Kovaleski, A.P.; Londo, J.P. Physiological and Transcriptomic Characterization of Cold Acclimation in Endodormant Grapevine under Different Temperature Regimes. Physiol. Plant 2024, 176, e14607. [Google Scholar] [CrossRef]
- Dami, I.E.; Li, S.; Bowen, P.A.; Bogdanoff, C.P.; Shellie, K.C.; Willwerth, J. Foliar Applied Abscisic Acid Increases ‘Chardonnay’ Grapevine Bud Freezing Tolerance during Autumn Cold Acclimation. Horttechnology 2015, 25, 293–305. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Y.; Londo, J.P. Tetralone-ABA Enhances Winter Cold Acclimation, Reduces Deacclimation, and Delays Budbreak in V. vinifera and V. hybrid Grapevines. bioRxiv 2025. [Google Scholar] [CrossRef]
- Karimi, R.; Ershadi, A.; Nejad, A.R.; Khanizadeh, S. Abscisic Acid Alleviates the Deleterious Effects of Cold Stress on ‘Sultana’ Grapevine (Vitis vinifera L.) Plants by Improving the Anti-Oxidant Activity and Photosynthetic Capacity of Leaves. J. Hortic. Sci. Biotechnol. 2016, 91, 386–395. [Google Scholar] [CrossRef]
- Li, S.; Dami, I.E. Responses of Vitis vinifera ‘Pinot Gris’ Grapevines to Exogenous Abscisic Acid (ABA): I. Yield, Fruit Quality, Dormancy, and Freezing Tolerance. J. Plant Growth Regul. 2016, 35, 245–255. [Google Scholar] [CrossRef]
- Basit, F.; Liu, J.; An, J.; Chen, M.; He, C.; Zhu, X.; Li, Z.; Hu, J.; Guan, Y. Brassinosteroids as a Multidimensional Regulator of Plant Physiological and Molecular Responses under Various Environmental Stresses. Environ. Sci. Pollut. Res. Int. 2021, 28, 44768–44779. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Lv, M.; Zhang, J.; Li, J. Crosstalk between Brassinosteroids and Other Phytohormones during Plant Development and Stress Adaptation. Plant Cell Physiol. 2024, 65, 1530–1543. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, S.; Chen, Z.; Wang, X.; Jiang, Q.; Zhao, J.; Duan, B.; Xi, Z. Transcriptomic Analysis Provides Insights into the Abscisic Acid Mediates Brassinosteroid-Induced Cold Resistance of Grapevine (Vitis vinifera L.). Plant Growth Regul. 2023, 101, 845–860. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, T.; Gan, S.; Ren, X.; Fang, L.; Karungo, S.K.; Wang, Y.; Chen, L.; Li, S.; Xin, H. Ethylene Positively Regulates Cold Tolerance in Grapevine by Modulating the Expression of Ethylene Response Factor 057. Sci. Rep. 2016, 6, 24066. [Google Scholar] [CrossRef]
- Hou, Y.; Wong, D.C.J.; Li, Q.; Zhou, H.; Zhu, Z.; Gong, L.; Liang, J.; Ren, H.; Liang, Z.; Wang, Q.; et al. Dissecting the Effect of Ethylene in the Transcriptional Regulation of Chilling Treatment in Grapevine Leaves. Plant Physiol. Biochem. 2023, 196, 1084–1097. [Google Scholar] [CrossRef]
- Li, B.; Wang, W. Salicylic Acid Induces Tolerance of Vitis Riparia × V. Labrusca to Chilling Stress by Altered Photosynthetic, Antioxidant Mechanisms and Expression of Cold Stress Responsive Genes. Plant Signal Behav. 2021, 16, 1973711. [Google Scholar] [CrossRef]
- Jalili, I.; Ebadi, A.; Askari, M.A.; KalatehJari, S.; Aazami, M.A. Foliar Application of Putrescine, Salicylic Acid, and Ascorbic Acid Mitigates Frost Stress Damage in Vitis vinifera Cv. ‘Giziluzum’. BMC Plant Biol. 2023, 23, 135. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, X.; Yang, L.; Fang, Y.; Jiang, Y.; Li, Y. Preharvest Salicylic Acid Application Improves the Amino Acid Content and Volatile Profile in Vitis vinifera L. Cv. Chardonnay during Development. Plant Physiol. Biochem. 2023, 204, 108103. [Google Scholar] [CrossRef]
- Zebro, M.; Heo, J.Y. Salicylic Acid Treatment Improves the Shelf Life and Quality of ‘Cheonghyang’ Grapes during Cold Storage. S. Afr. J. Enol. Vitic. 2024, 45, 58–65. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Gamboa, G.; Mucalo, A. Adaptive Viticulture Strategies to Enhance Resilience and Grape Quality in Cold Climate Regions in Response to Climate Warming. Horticulturae 2025, 11, 394. https://doi.org/10.3390/horticulturae11040394
Gutiérrez-Gamboa G, Mucalo A. Adaptive Viticulture Strategies to Enhance Resilience and Grape Quality in Cold Climate Regions in Response to Climate Warming. Horticulturae. 2025; 11(4):394. https://doi.org/10.3390/horticulturae11040394
Chicago/Turabian StyleGutiérrez-Gamboa, Gastón, and Ana Mucalo. 2025. "Adaptive Viticulture Strategies to Enhance Resilience and Grape Quality in Cold Climate Regions in Response to Climate Warming" Horticulturae 11, no. 4: 394. https://doi.org/10.3390/horticulturae11040394
APA StyleGutiérrez-Gamboa, G., & Mucalo, A. (2025). Adaptive Viticulture Strategies to Enhance Resilience and Grape Quality in Cold Climate Regions in Response to Climate Warming. Horticulturae, 11(4), 394. https://doi.org/10.3390/horticulturae11040394